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Abstract. Since the classical stable population theory in demography by

Sharpe and Lotka, the sign relation sign(λ0) = sign(R0 − 1) between the ba-

sic reproduction number R0 and the Malthusian parameter (the intrinsic rate
of natural increase) λ0 has played a central role in population theory and its

applications, because it connects individual’s average reproductivity described

by life cycle parameters to growth character of the whole population. Since R0

is originally defined for linear population evolution process in a constant envi-

ronment, it is an important extension if we could formulate the same kind of

threshold principle for population growth in time-heterogeneous environments.
Since the mid-1990s, several authors proposed some ideas to extend the

definition of R0 so that it can be applied to population dynamics in periodic

environments. In particular, the definition of R0 in a periodic environment by
Bacaër and Guernaoui (J. Math. Biol. 53, 2006) is most important, because

their definition of R0 in a periodic environment can be interpreted as the
asymptotic per generation growth rate, so from the generational point of view,

it can be seen as a direct extension of the most successful definition of R0 in

a constant environment by Diekmann, Heesterbeek and Metz (J. Math. Biol.
28, 1990).

In this paper, we propose a new approach to establish the sign relation

between R0 and the Malthusian parameter λ0 for linear structured population
dynamics in a periodic environment. Our arguments depend on the uniform

primitivity of positive evolutionary system, which leads the weak ergodicity
and the existence of exponential solution in periodic environments. For typ-
ical finite and infinite dimensional linear population models, we prove that a

positive exponential solution exists and the sign relation holds between the

Malthusian parameter, which is defined as the exponent of the exponential so-
lution, and R0 given by the spectral radius of the next generation operator by

Bacaër and Guernaoui’s definition.

1. Introduction. Since the brilliant study for the stable population theory by
Alfred Lotka and his collaborators, the threshold condition for population growth
formulated by the basic reproduction number R0 and the Malthusian parameter
(the intrinsic rate of natural increase), denoted by λ0 here, have been recognized as
a most important result in population dynamics and its applications. For example,
the basic reproduction number for infectious diseases is essential to quantify the
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disease prevention policy, and the Malthusian parameter is seen as a measure of
fitness of mutant population in evolutionary biology.

In the stable population theory, the basic population system has a positive expo-
nential solution with the growth rate λ0 which dominates the asymptotic behavior
of the population, and the following sign relation holds:

sign(λ0) = sign(R0 − 1), (1)

where the basic reproduction number R0 is the asymptotic growth factor of the size
of successive generations (the generational interpretation).

Therefore R0 can play a role of the threshold condition for population growth
based on parameters capturing the average behavior of individuals, that is, it con-
nects individual life cycle parameters to growth character of the whole population.
Then we can summarize the essential feature of this threshold theory of population
growth as follows:

1. There exists a positive dominant exponential solution, whose exponent gives
the Malthusian parameter λ0 of the population,

2. The basic reproduction number R0 that allows the generational interpretation
can be defined and the sign relation (1) holds between R0 and λ0.

The above threshold theory was successfully established for heterogeneous pop-
ulations in constant environments by Diekmann, Heesterbeek and Metz ([20], it is
called the DHM definition here for short). Then it would be an important extension
if we could formulate the same kind of threshold theory for structured populations
in time-heterogeneous environments.

During the last two decades, in the context of infectious disease epidemiology,
several authors ([2]–[7], [27], [28], [49], [52]) proposed some ideas to extend the
definition of R0 so that it can be applied to population dynamics in periodic envi-
ronments. In particular, the definition of R0 in periodic environments by Bacaër
and Guernaoui ([2]) (which is called the BG definition for short in the following) is
most important, because as is shown by Bacaër and Ait Dads ([6], [7]) and Inaba
([37]), their definition of periodic R0 allows the generational interpretation, that is,
it is interpreted as the asymptotic ratio of successive generation size, so it is a direct
extension of the DHM definition of R0 in a constant environment.

Although the threshold property of the BG definition of R0 has been proved by
several authors ([46], [38], [49]), here we propose an another approach to establish
the sign relation for R0 and λ0 in a periodic environment by focusing the existence
of exponential solution.

First we briefly review the DHM definition of R0 and the sign relation between
the Malthusian parameter and R0 in a constant environment. Second, we review
basic results for the BG definition of R0 when the state space is finite-dimensional,
that is, the basic population evolution process is formulated by an ordinary differen-
tial equation system with periodic coefficients. Thirdly we formulate the definition
of R0 for an age-dependent population with periodic parameters (the multistate
periodic Lotka–McKendrick population model) and show that a dominant positive
exponential solution exists and the sign relation holds between its exponent and
the BG definition of R0. Finally, as a more complex example, we introduce the
BG definition of R0 for the age-duration dependent SIR epidemic model with peri-
odic coefficients. We again show that there exists a dominant positive exponential
solution and the sign relation holds between its exponent and R0. Through those
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examples, our basic recipe is as follows: First we construct the solution evolution-
ary system and prove its uniform primitivity under appropriate conditions. The
uniform primitivity of the periodic evolutionary system guarantees the existence of
a dominant exponential solution, so we can define the Malthusian parameter by its
exponent. Subsequently we introduce Bacaër and Guernaoui–type next generation
operator to establish the sign relation between its spectral radius and the Malthu-
sian parameter. In Appendix (section 7), we summarize the positive operator theory
and show some new results for uniformly primitive periodic evolutionary system in
addition to classical results by G. Birkhoff ([8]–[14]) and Inaba ([32]).

2. Preliminary: The Malthusian parameter and R0 in a constant envi-
ronment. First we review the definition of the basic reproduction number R0 for
heterogeneous population with finite i-state space in a constant environment. Al-
though the definition of R0 for heterogeneous population in a constant environment
has been studied by demographers since 1970s ([36]), it was first successfully estab-
lished by Diekmann, Heesterbeek and Metz in 1990 ([20], [21]) for epidemic models
and it is still evolving ([50], [35], [49], [22]).

Suppose that the state space of individuals, denoted by Ω = {1, 2, ..., N}, is a
finite set and we neglect age structure. A subspace Ωb ⊂ Ω is called the birth state
space1 if individuals can be born at state j ∈ Ωb.

Let pk(t), k ∈ Ω be the size of population in k-th state and p(t) = (p1(t), · ·
·, pN (t))T be the density vector of multistate population. For the finite-dimensional
autonomous case, the basic population evolution equation is given by

dp(t)

dt
= Ap(t) = (Q+M)p(t), (2)

where A = Q+M , M is aN×N nonnegative, nonzero matrix called the reproduction
matrix whose (j, k)-th entry mjk denotes the number of newborns produced at state
j per unit time and per individual at state k, and Q is a N ×N transition intensity
matrix whose (j, k)-th entry qjk ≥ 0 (j 6= k) denotes the transition intensity from
k-th state to j-th state. The diagonal element qkk(t) of Q is given by

qkk = −µk −
∑
j 6=k

qjk,

where µk denotes the removal rate (by death or other causes) at k-th state. Then we
assume that Q is a nonzero essentially nonnegative matrix, that is, all off-diagonal
entries are nonnegative2. Then the survival rate matrix is given by L(t) = exp(Qt).

If a square matrix A is irreducible and essentially nonnegative, it is called essen-
tially positive. Then the following holds:

1If we consider epidemic models, the birth state is called the state-at-infection ([22]).
2An essentially nonnegative nonzero matrix is also called the quasi-positive ([49]). Here we

write A > 0 if all entries aij of a “matrix” A = (aij) are positive, while we write A ≥ 0 if aij ≥ 0

for all i and j. According to the standard definition, here a matrix A is called nonnegative if A ≥ 0,
while A is called positive if A > 0 ([51], Definition 2.1). On the other hand, as is shown in section

7, in the context of positive operator theory, a bounded linear “operator” leaving a positive cone
invariant is called positive. Therefore the linear operator x 7→ Ax in Rn is a “positive” operator
if a matrix A is nonnegative, while the linear operator x 7→ Ax in Rn is a “strongly positive”

operator if a matrix A is positive. For any elements x and y in a positive cone, the notation x < y
implies that y − x ≥ 0 and y − x 6= 0.
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Lemma 2.1 ([51], Section 8.2). A matrix A is essentially positive if and only if
A + sId

3 is nonnegative, irreducible and primitive matrix for all sufficiently large
s > 0.

Proof. Since “if” part is clear, we show “only if” part. If a matrix A is essentially
positive, it is clear that A + sId is nonnegative and irreducible for all sufficiently
large s > 0. Then we can assume that A+(s−1)Id is a nonnegative and irreducible
n × n matrix for a large s > 0. From a well-known result ([25], Chapter XIII,
Lemma 1; [51], Lemma 2.2), we have (A+ sId)

n−1 = [(A+ (s− 1)Id) + Id]
n−1 > 0,

which implies that A+ sId is primitive4.

Lemma 2.2 ([9], Lemma 2, Lemma 4; [51], Theorem 8.2). A square matrix A is
essentially nonnegative if and only if eAt ≥ 0 for all t ≥ 0, and A is essentially
positive if and only if eAt > 0 for all t > 0.

Let s(Q) be the spectral bound of matrix Q, that is, s(Q) := maxλ∈σ(Q) <λ
where σ(Q) is the set of eigenvalues of Q. Then it is natural to assume s(Q) < 0,
because individuals die out as time evolves. Then the following holds (see [21],
Lemma 6.12):

Lemma 2.3. s(Q) < 0 if and only if −Q is nonnegatively invertible, that is, (−Q)−1

exists and (−Q)−1 ≥ 0.

Applying the variation-of-constants formula to (2), we have

p(t) = eQtp(0) +

∫ t

0

eQ(t−τ)Mp(τ)dτ.

Multiplying M from the left hand side, we obtain a renewal equation formulation
of system (2):

Mp(t) = MeQtp(0) +

∫ t

0

MeQ(t−τ)Mp(τ)dτ,

= ML(t)p(0) +

∫ t

0

Ψ(τ)Mp(t− τ)dτ,

where Mp(t) gives a vector of newborns at time t and Ψ(τ) := ML(τ) is the net
reproduction matrix.

Let v(t) := Mp(t) be the birth rate vector of newborns. Then we obtain

v(t) = g(t) +

∫ t

0

Ψ(τ)v(t− τ)dτ, (3)

where g(t) = ML(t)p(0). Since g(t) is the density of newborns produced by the
initial population p(0), we can define the successive generation of newborns by

v1(t) = g(t), vm+1(t) =

∫ t

0

Ψ(τ)vm(t− τ)dτ, m = 1, 2, ..,

Then the solution of the renewal equation (3) is given by the generation expansion

v(t) =

∞∑
m=1

vm(t),

where vm(t) is the density of newborns produced as the m-th generation at time t.

3Id denotes the identity matrix.
4A nonnegative matrix A is primitive if and only if there exists an integer n such that An > 0.
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Integrating both sides of the above iterative relation from 0 to ∞, we have∫ ∞
0

vm+1(t)dt =

∫ ∞
0

∫ t

0

Ψ(τ)vm(t− τ)dτdt

=

∫ ∞
0

Ψ(τ)dτ

∫ ∞
0

vm(t)dt.

Then if we define the time-aggregated density vector of m-th generation by

φm :=

∫ ∞
0

vm(t)dt,

it follows that
φm+1 = Kφm = Kmφ1,

where

K :=

∫ ∞
0

Ψ(τ)dτ =

∫ ∞
0

MeQτdτ = M(−Q)−1.

The (i, j)-th entry of (−Q)−1 =
∫∞

0
eQτdτ denotes the expected sojourn time

that an individual born in state j spends in i-th state, so M(−Q)−1 maps a time-
aggregated density vector of newborns of m-th generation to a time-aggregated
density vector of the next generation of newborns.

IfK is a nonnegative, irreducible and primitive matrix, it follows from the Perron-
Frobenius Theorem that

lim
m→∞

r(K)−mφm =
vT

0 φ1

vT
0 u0

u0,

where u0 and v0 are the right and left positive eigenvectors of K associated with
the dominant eigenvalue r(K). Therefore we have

lim
m→∞

m
√
|φm| = lim

m→∞
m
√
‖vm‖ = r(K),

where |φm| =
∑N
j=1 |φmj | is the norm of N -vector φm := (φm1 , .., φ

m
N )T and

‖vm‖ =

∫ ∞
0

|vm(t)|dt.

Since ‖vm‖ gives the total size of the m-th generation, the size of each generation
asymptotically grows with geometric growth rate r(K), which is called the gener-
ational interpretation. Then K is called the next generation matrix ([20], [21]), if
every state is the birth state (Ω = Ωb)

5.
Recently, several authors established the following relation between r(K) and

the spectral bound of A ([22] Theorem A.1.; [49] Theorem 2.3; [50] Theorem 2):

Proposition 2.4. Suppose that M is a nonnegative matrix, Q is an essentially
nonnegative matrix with s(Q) < 0 and K = M(−Q)−1. Let R0 = r(K). Then it
follows that

sign(s(A)) = sign(R0 − 1). (4)

From Proposition 2.4, we know that the stability of the trivial steady state (the
steady state corresponding to population extinction) can be formulated by the spec-
tral radius of the next generation matrix K. Based on the generational interpre-
tation and the sign relation (4), the basic reproduction number R0 for multistate
(heterogeneous) populations is defined by R0 = r(K). Although there are often

5If the state space is larger than the birth state space, K is called the next generation matrix
with large domain ([22]).
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surrogate threshold parameters which share the same kind of sign relation with R0

([29]), R0 = r(K) is distinguished from other indices by its generational interpreta-
tion.

Lemma 2.5. Under the assumption of Proposition 2.4, there exists a nonnegative
exponential solution eλ0tφ0 for the basic system (2), where φ0 is a nonnegative
eigenvector of A associated with eigenvalue λ0 = s(A).

Proof. Since A is essentially nonnegative, there exists α > 0 such that A+ αI ≥ 0.
From the Perron–Frobenius Theorem, there exists a nonnegative eigenvector φ such
that (A+αI)φ = r(A+αI)φ. Since λ ∈ σ(A+αI) if and only if λ−α ∈ σ(A), we
have s(A) = r(A+αI)−α ∈ σ(A) and φ is its corresponding eigenvector. Therefore
we know that (1) has a nonnegative exponential solution es(A)tφ.

If we ensure the existence of a positive dominant6 exponential solution, we need
additional conditions:

Proposition 2.6 (Birkhoff [9]). If A is essentially positive, it has a unique (up
to a constant factor) strictly positive eigenvector φ0 associated with a real, simple
eigenvalue λ0 such that λ0 > <λ for any λ ∈ σ(A) \ {λ0}. Then the basic system
(2) has a positive dominant exponential solution eλ0tφ0.

We remark that if eQt > 0, that is, an individual born in any state can reach
every state, Q is essentially positive, hence A is also essentially positive and there
exists a dominant positive exponential solution.

In the following, if a dominant positive exponential solution exists, we call its
exponent λ0 the Malthusian parameter (the intrinsic rate of natural increase) of the
heterogeneous population in a sense that every state-specific population asymptot-
ically grows with a common exponent λ0.

3. Finite-dimensional periodic evolutionary system. Now we assume that
individuals’ reproduction and survival parameters are changing with time. If we
consider the case that density-dependent effects can be neglected, p(t) satisfies a
linear differential equation system as follows7.

dp(t)

dt
= A(t)p(t) = (Q(t) +M(t))p(t), p(0) = p0 ∈ RN+ , (5)

Define the survival rate matrix L(t) as the solution of a matrix differential equa-
tion

dL(t)

dt
= Q(t)L(t), L(0) = Id,

where Id denotes the N×N identity matrix. In other words, L(t) is the fundamental
matrix of the N -dimensional nonhomogeneous ODE system dx(t)/dt = Q(t)x(t), so
it is invertible. Let `ij(t) be the (i, j)-th entry of L(t). Then `ij(t) for j ∈ Ωb is the
probability that a newborn produced at state j and time zero will survive in state
i and time t.

6If any solution of the basic equation (2) is asymptotically proportional to the exponential
solution, we call it the dominant exponential solution.

7For the basic definitions and results about nonautonomous differential equation systems de-
scribing linear population dynamics, the reader may refer to [26], [40], [49] and [53].
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Define a 2-parameter system (the transition matrix) L(t, s) := L(t)L(s)−1, t ≥ s.
Then it forms an evolutionary system8 generated by Q(t), that is, the following
properties hold:

∂

∂t
L(t, s) = Q(t)L(t, s),

L(t, s)L(s, r) = L(t, r), r ≤ s ≤ t, L(s, s) = Id.

In the following, we call {L(t, s) : t ≥ s} the survival evolutionary system.
The transition matrix is nonnegative; L(t, s) ≥ 0, since Q(t) is essentially non-

negative. The exponential growth bound of the evolutionary system L(t, s) is defined
by

ω(L) := inf{ω : there exists a L̄ ≥ 1 such that |L(τ + s, s)| ≤ L̄eωτ ,∀s ∈ R, τ ≥ 0},

where |A| denotes the norm of a matrix A.
In this paper, we adopt the following assumption:

Assumption 3.1. We assume that Q(t) and M(t) are uniformly bounded and
continuous on R, so Q̄ := supt∈R |Q(t)| < ∞ and M̄ := supt∈R |M(t)| < ∞. For
the survival evolutionary system, we assume that ω(L) < 0.

The above assumption ω(L) < 0 is biologically reasonable, because it implies
that a closed population goes to extinction if there is no reproduction. For exam-
ple, if we assume that infj,t µj(t) =: µ > 0, then we can observe that |L(t, τ)| ≤
e−µ(t−τ), t ≥ τ , so it follows that ω(L) ≤ −µ.

Next let U(t, s), t ≥ s be the evolutionary system associated with the generator
A(t). By using a fundamental matrix Φ(t) of (5), we have U(t, s) = Φ(t)Φ(s)−1.
Then the solution of (5) is given by p(t) = U(t, s)p(s) and {U(t, s) : t ≥ s} is an
evolutionary system acting on Rn such that

∂

∂t
U(t, s) = A(t)U(t, s),

U(t, s)U(s, r) = U(t, r), r ≤ s ≤ t, L(s, s) = Id.

Applying the variation-of-constants formula, we have

U(t, s) = L(t, s) +

∫ t

s

L(t, σ)M(σ)U(σ, s)dσ, t ≥ s.

Then L(t, s) ≥ 0 implies U(t, s) ≥ 0, so {U(t, s) : t ≥ s} is a positive evolutionary
system. Moreover, we note that U(t, s) is strongly positive if L(t, s) is strongly
positive9.

Under some additional conditions, a positive evolutionary system becomes weakly
ergodic, that is, every positive solutions are asymptotically proportional to each
other (see Appendix). A useful sufficient condition to guarantee the weak ergod-
icity is uniform primitivity (see section 7.3). Here we show a simple condition to
guarantee the uniform primitivity of the evolutionary system U(t, s) associated with
the ODE system (5) ([53]):

8Evolutionary system is also called the muitiplicative process ([12], [13], [14]).
9For the definition of strongly positive operator, the reader may refer to section 7. Based on

our convention (footnote 2), if L(t, s) is a positive “matrix”, x 7→ L(t, s)x is a strongly positive
“operator” on Rn.
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Proposition 3.2. Suppose that there exists an essentially positive matrix B such
that B ≤ A(t) for all t ∈ R10. Then the positive evolutionary system U(t, s), t > s
is uniformly primitive.

Proof. From our assumption here and the assumption 3.1, there exists an essentially
positive matrix C such that A(t) ≤ C for all t ∈ R. From the variation-of-constants
formula, we can observe that

U(t, s) = e(t−s)C +

∫ t

s

eC(t−σ)(A(σ)− C)U(σ, s)dσ

= e(t−s)B +

∫ t

s

eC(t−σ)(A(σ)−B)U(σ, s)dσ

Then we obtain 0 < e(t−s)B ≤ U(t, s) ≤ e(t−s)C . Therefore if p(0) > 0, then
p(t) > 0 for all t > 0 and it is easy to see that the projective diameter of U(s+ 1, s)
is uniformly bounded, so U(t, s) forms a uniformly primitive multiplicative process
in the sense of G. Birkhoff.

In the following, let us consider the periodic case. Define the state space E :=
Cθ(R;Rn), which is a Banach space of all θ-periodic continuous functions from R
to Rn equipped with maximum norm. Let E+ be its positive cone. Suppose that
Q(t) and M(t) are θ-periodic (matrix-valued) functions. Then it follows that

L(t+ θ, τ + θ) = L(t, τ), U(t+ θ, τ + θ) = U(t, τ).

If there exist a number λ ∈ C and φ ∈ E \ {0} such that eλtφ(t) satisfies (5) for
all t ∈ R, we call it the exponential solution with exponent λ. If the basic system (5)
has a positive exponential solution and any solution is asymptotically proportional
to the exponential solution, we call the exponent of the exponential solution the
Malthusian parameter (or the intrinsic rate of natural increase).

For the weakly ergodic evolutionary system, if there exists a positive exponential
solution, any positive solution is asymptotically proportional to the exponential
solution by the weak ergodicity, so the positive exponential solution necessarily
dominates the asymptotic behavior of the evolutionary system, and the exponent
of the positive exponential solution is the Malthusian parameter.

From Proposition 3.2 and general results Proposition 7.19 and Proposition 7.24,
we have

Corollary 3.3. Under the assumption of Proposition 3.2, the basic system (5) with
periodic coefficients has a positive exponential solution and every positive solutions
are asymptotically proportional to the exponential solution.

If the periodic system (5) has a positive exponential solution eλ0tφ(t), the mon-
odromy matrix U(s+θ, s) has a positive eigenvector φ(s) associated with a positive
eigenvalue eλ0θ, because eλ0(s+θ)φ(s+ θ) = U(s+ θ, s)eλ0sφ(s) and φ(s+ θ) = φ(s).
If U(s + θ, s) is primitive, it follows from Perron–Frobenius theory that eλ0θ =
r(U(s + θ, s)), so λ0 is the dominant Floquet exponent. Then the following sign
relation holds:

sign(λ0) = sign(r(U(s+ θ, s))− 1).

10If there exists an essentially positive matrix B such that Q(t) ≥ B, the assumption of
Proposition 3.2 is satisfied, so the population evolution process can be uniformly primitive even if

there exists a non-reproductive season as M(t) = 0.
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From the dominant property of the exponential solution and the above sign rela-
tion, we know that r(U(s+ θ, s)) is “the most obvious choice as threshold quantity
for periodic system” ([21], p. 149), so several authors developed this type of ap-
proach to R0 ([27], [28], [4]). However, the monodromy operator is not the next
generation operator, so r(U(s+ θ, s)) does not have the generational interpretation
and we can not see r(U(s+ θ, s)) as an extension of the DHM definition of R0 in a
constant environment.

Instead of the monodromy matrix approach, Bacaër and his collaborators ([2]–
[7]) have developed a definition of R0 in periodic environments based on the theory
of periodic renewal equation theory ([46], [38]). For our ODE model (5), the next
generation operator Kθ in the Bacaër–Guernaoui definition is defined as follows:

(Kθφ)(t) =

∫ ∞
0

M(t)L(t, t− σ)φ(t− σ)dσ,

where Kθ is acting on E = Cθ(R;Rn). The basic reproduction number in a periodic
environment by the BG definition is the spectral radius of the positive operator Kθ.

As is shown in separate papers ([6], [7], [37]), the basic reproduction number given
by r(Kθ) satisfies the generational interpretation, that is, it gives the asymptotic
ratio of successive generation size. Thus it is reasonable to define R0 by r(Kθ) from
the generational point of view. In the following, we show that the sign relation
(1) holds between the Malthusian parameter λ0, whose existence is guaranteed by
Corollary 3.3, and R0 given by the BG definition11.

First observe that eλtφ is an exponential solution of (5) if and only if the following
eigenvalue problem has a solution (λ, φ) ∈ C× E12:

Ãφ :=

(
− d

dt
+A(t)

)
φ = λφ, φ ∈ E, λ ∈ C. (6)

According to the standard split of the population generator ([21], [40], [50]), we
define

(Ã1φ)(t) := −dφ(t)

dt
+Q(t)φ(t), (Ã2φ)(t) := M(t)φ(t),

where φ ∈ E.
Consider the resolvent equation as

(λ− Ã1)−1ψ = φ.

For any s < t, by using the variation of constants formula, we have

φ(t) = e−λ(t−s)L(t, s)φ(s) +

∫ t

s

e−λ(t−σ)L(t, σ)ψ(σ)dσ.

Observe that there exists a number M ≥ 1 such that

e−λ(t−s)|L(t, s)| ≤Me−(λ−ω(L))(t−s).

Then if we let s→ −∞ with <λ > ω(L), we have

φ(t) =

∫ t

−∞
e−λ(t−σ)L(t, σ)ψ(σ)dσ =

∫ ∞
0

e−λσL(t, t− σ)ψ(t− σ)dσ.

11Thieme ([49]) shows the sign relation between R0 by the BG definition and the growth bound

of U by using the evolution semigroup method.
12The operator Ã is the generator of the evolution semigroup associated with the evolution

system U(t, s) ([49]).
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Therefore the resolvent operator exists for <λ > ω(L) and it is positive for real
λ > ω(L)13:

(R(λ, Ã1)ψ)(t) = ((λ− Ã1)−1ψ)(t) =

∫ ∞
0

e−λσL(t, t− σ)ψ(t− σ)dσ.

For <λ > ω(L), let K̃(λ) be an operator14 defined by

(K̃(λ)φ)(t) : = ((λ− Ã1)−1Ã2φ)(t)

=

∫ ∞
0

e−λσL(t, t− σ)M(t− σ)φ(t− σ)dσ.

Using the operator K̃(λ), we can rewrite the eigenvalue problem (6) as follows:

φ = K̃(λ)φ, <λ > ω(L).

On the other hand, we can also introduce a similar operator K(λ) as follows:

(K(λ)ψ)(t) := (Ã2(λ− Ã1)−1φ)(t) =

∫ ∞
0

e−λσM(t)L(t, t− σ)ψ(t− σ)dσ.

Then we know that if
ψ = K(λ)ψ, <λ > ω(L),

then φ := (λ− Ã1)−1ψ gives the eigenfunction of (6) associated with eigenvalue λ.

Then it holds that Pσ(K(λ)) = Pσ(K̃(λ)) and r(K(λ)) = r(K̃(λ)) , although we
omit the proof.

Proposition 3.4. The evolutionary system (5) has a strictly positive exponential
solution if and only if there exist a number λ0 > ω(L) and a strictly positive periodic

function φ ∈ E◦ or ψ ∈ E◦ such that φ = K̃(λ0)φ or ψ = K(λ0)ψ.

Proof. Since “if” part is clear from the above argument, we show that if the evo-
lutionary system (5) has a strictly positive exponential solution eλ0tφ(t), φ ∈ E◦,
then λ0 > ω(L). Solving the equation −φ′ + (M + Q)φ = λ0φ by the variation of
constants formula, we obtain

φ(t) = e−λ0tL(t, 0)φ(0) +

∫ t

0

e−λ0(t−σ)L(t, σ)M(σ)φ(σ)dσ.

Therefore we have φ(0) > e−λ0θL(θ, 0)φ(0), which shows that eλ0θ − L(θ, 0) is
nonnegatively invertible, so eλ0θ > r(L(θ, 0)) = eω(L)θ. Then we have λ0 > ω(L)

and can rewrite the eigenvalue problem (6) as φ = K̃(λ0)φ.

In order to reduce K̃(λ) to a compact operator, using the well-known calculation

([2], [4]), we define an integral operator J̃(λ) on Z := {φ ∈ C([0, θ];Rn) : φ(0) =
φ(θ)} by

(J̃(λ)φZ)(t) =

∫ θ

0

Θ̃λ(t, σ)φ(σ)dσ, φZ ∈ Z,

where Θ̃(t, σ) is a function defined by

Θ̃λ(t, σ) :=

{∑∞
n=0 Ψ̃λ(t, t− σ + nθ) (t > σ),∑∞
n=1 Ψ̃λ(t, t− σ + nθ) (t < σ),

13The resolvent R(λ, Ã1) is given by the Laplace transform of the evolution semigroup associ-

ated with the evolution system L(t, s) ([49]).
14 K̃(0) is introduced by Wang and Zhao ([52]) as the next infection operator under slightly

different theoretical framework.
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for t, σ ∈ [0, θ] and

Ψ̃λ(t, σ) := e−λσL(t, t− σ)M(t− σ).

Then Ψ̃ and Θ̃ have a period θ. Observe that

|Ψ̃(t, t− σ + nθ)| ≤ L̄M̄e−(λ−ω(L))(t−σ+nθ).

Then a matrix Θ̃λ(t, σ) is well defined for <λ > ω(L) on (t, σ) ∈ [0, θ] × [0, θ] and
it is continuous except for t = σ. From the Ascoli-Arzelá Theorem, it follows that
J̃(λ) is a compact operator on Z.

Let P : Z → E be a periodization operator defined by

(PφZ)(t) = φZ(t− [t/θ]θ), φZ ∈ Z, t ∈ R.

As is shown by [4] and [6], we can observe that for φ ∈ E

(K̃(λ)φ)(t) = (K̃(λ)φ)(u) =

∫ ∞
0

Ψ̃λ(u, σ)φ(u− σ)dσ

=

∫ u

−∞
Ψ̃λ(u, u− σ)φ(σ)dσ =

∫ θ

0

Θ̃λ(u, σ)φZ(σ)dσ,

where u := t− [t/θ]θ ∈ [0, θ). Then it follows that

K̃(λ)P = P J̃(λ), r(K̃(λ)) = r(J̃(λ)).

Proposition 3.5. Suppose that the basic system (5) with periodic coefficients has

a positive exponential solution with exponent λ0. If J̃(λ) or J(λ) is compact and
strongly positive for all λ > ω(L), then the sign relation holds:

sign(λ0) = sign(R0 − 1),

where R0 = r(K̃(0)) = r(K(0)).

Proof. It is sufficient to prove for the case that J̃(λ) is compact and strongly positive
for all λ > ω(L). From the well-known Krein-Rutman theorem and its stronger ver-

sion based on the strong positivity ([17], Theorem 19.2, 19.3), r(J̃(λ)) is an eigenva-

lue of J̃(λ) and r(J̃(λ)) is strictly monotone decreasing for λ, because J̃(λ1)� J̃(λ2)

when λ1 < λ2. Since r(J̃(λ0)) = r(K̃(λ0)) = 1 with λ0 > ω(L), it is clear that

sign(λ0) = sign(r(J̃(0))− 1) = sign(r(K̃(0))− 1).

4. Infinite-dimensional periodic evolutionary system I:
The Lotka–McKendrick age-depndent population model. If we take into
account the age structure, the basic linear population system is formulated as the
multistate stable population model (Lotka–McKendrick model), which has been de-
veloped in mathematical demography15 ([31], [32], [34], [35]). Here we introduce
the definition of R0 for the multistate Lotka–McKendrick model with time periodic
parameters16 and establish the sign relation.

15Although here we consider the chronological-age dependent case (demographic model), the
basic model (7) can be applied to the infection-age dependent model or the duration-dependent

model in mathematical epidemiology ([35]).
16The Lotka–McKendrick model with time periodic parameters is examined in [1], [42] and [6].
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In general, the age-dependent population dynamics in a heterogeneous environ-
ment is described as follows ([31], [32], [35]):

∂p(t, a)

∂t
+
∂p(t, a)

∂a
= Q(t, a)p(t, a),

p(t, 0) =

∫ β

0

M(t, a)p(t, a)da,

(7)

where p(t, a) = (p1(t, a), ..., pN (t, a))T is the population density vector composed of
the age density function pj(t, τ) at each state j ∈ Ω, a is the chronological age and
β is the length of reproductive period, which is assumed to be finite, Q(t, a) is an
essentially nonnegative matrix whose (j, k) (j 6= k) element qjk(a) is the force of
transition from k-th state to j-th state at age a at time t, and the diagonal element
is given by

qnn(t, a) := −µn(t, a)−
∑
j 6=n

qjn(t, a), (n = 1, 2, .., N),

µn(t, a) is the removal rate (caused by death, emigration, etc.) and M(t, a) is a
nonnegative matrix whose jk-th element mjk(a) is the age-dependent fertility rate
of children with state j who are produced by individuals at state k. We assume
that M(t, a) ≡ 0 for a > β.

First we define the survival rate matrix L(x; t, a), x ≥ 0 as the solution of the
matrix ODE system:

dL(x; t, a)

dx
= Q(t+ x, a+ x)L(x; t, a), L(0; t, a) = Id.

Integrating the McKendrick equation along the cohort line ([32]), the solution
p(t, a) of (7) with initial data p(s, a), s ≤ t is given as p(t, a) = (U(t, s)p(s, ·))(a),
where two-parameter family of linear positive operators U(t, s), s ≤ t from the state
space X+ := L1

+([0, β];Rn) into itself is given by

(U(t, s)φ)(a) =

{
L(a; t− a, 0)B(t− s− a;φ, s), t− s > a,

L(t− s; s, a− t+ s)φ(a− t+ s), t− s ≤ a,
(8)

where B(ξ;φ, s), ξ > 0 denotes the number of newborns per unit time at time s+ ξ
with initial data φ at time s, it is the solution of the renewal equation:

B(ξ;φ, s) = G(ξ;φ, s) +

∫ ξ

0

Ψ(s+ ξ, a)B(ξ − a;φ, s)da,

where

Ψ(t, a) := M(t, a)L(a; t− a, 0),

G(ξ;φ, s) :=

∫ ∞
ξ

M(ξ + s, a)L(ξ; s, a− ξ)φ(a− ξ)da.

Although the expression (8) is not necessarily differentiable with respect to time
and age, it has a directional derivative along the cohort line, so we consider (8) as a
generalized solution of the Lotka–McKendrick system (7) with initial data φ ∈ X+

([30]).
Then U(t, s), s ≤ t, forms an evolutionary system (time-inhomogeneous multi-

plicative process), so it satisfies the law of evolution:

U(t3, t2)U(t2.t1) = U(t3, t1), t1 ≤ t2 ≤ t3, U(s, s) = Id.
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Moreover, here we assume that M(t, a) and Q(t, a) are θ-periodic with respect
to time t. Then it follows that

L(x; t+ θ, a) = L(x; t, a), U(t+ θ, s+ θ) = U(t, s).

For the periodic evolutionary system U(t, s), if there exists a θ-periodic X+-
valued function φ such that eλtφ(t) = U(t, s)eλsφ(s) for all t > s, it is called
the exponential solution. As is shown by Lemma 7.23, if U is a strictly positive
evolutionary system, there exists an exponential solution with exponent λ if and
only if the monodromy operator U(s + θ, s) has an eigenvector associated with a
positive eigenvalue eθλ.

In the following, we assume the following assumption:

Assumption 4.1. 1. M(t, a) and Q(t, a) are uniformly bounded and measurable
for (t, a) ∈ R× [0, β].

2. There exist nonnegative primitive matrix N and numbers 0 < γ1 < γ2 < β
such that Ψ(t, a) ≥ N for all (t, a) ∈ R× [γ1, γ2].

3. Let Φ(t, a) be a positive matrix17 defined by

Φ(t, a) :=

∫ β

0

M(t+ ρ, a+ ρ)L(ρ; t, a)dρ.

Then Φ(t, a) is almost everywhere positive for (t, a) ∈ R× [0, β].

Although we omit the proof here, the above assumption is sufficient to show the
the uniform primitivity of U by using the same kind of argument as [32]:

Proposition 4.2 ([32]). Under the assumption 4.1, U is a uniformly primitive
evolutionary system in X+.

From the above proposition and Proposition 7.24, we conclude that

Corollary 4.3. Under the assumption 4.1, if U is a periodic evolutionary system
on X+, then it has a dominant positive exponential solution.

From the above corollary, the periodic evolutionary system U has the Malthusian
parameter λ0. Then we establish the sign relation between the Malthusian parame-
ter λ0 and R0 calculated as the spectral radius of the the next generation operator
for the periodic Lotka–McKendrick system (7):

(Kθf)(t) :=

∫ ∞
0

M(t, a)L(a; t− a, 0)f(t− a)da,

where f is a θ-periodic locally integrable function18.
First note that if the exponential solution eλtφ(t, a) satisfies the basic system (7)

in the sense of generalized solution, (λ, φ) ∈ R × F is a solution of the eigenvalue
problem:

(−D +Q(t, a))φ(t, a) = λφ(t, a),

φ(t, 0) =

∫ β

0

M(t, a)φ(t, a)da,
(9)

17The (i, j)-th entry φij(t, a) of Φ(t, a) gives the expected total number of children with state

i produced by an individual at state j with time t and age a during the remaining life.
18In [6], the reader may find another argument to establish the sign relation between the

asymptotic growth rate of the system (7) and R0 = r(Kθ) based on the space of continuous

functions. The reason of the choice of Kθ as the next generation operator is that it allows the
generational interpretation ([7], [37]).
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where D is a directional derivative operator defined by

Dφ(t, a) := lim
h→0

φ(t+ h, a+ h)− φ(t, a)

h
,

and F is a Banach lattice composed of θ-periodic, locally integrable function R ×
[0, β]:

F := {φ ∈ L1([0, θ]× [0, β];Rn) : φ(t, ·) = φ(t+ θ, ·)},
where its norm is given by

‖φ‖F :=

∫ θ

0

dt

∫ β

0

|φ(t, a)|da.

In order to formulate a next generation operator, we formally rewrite (9) as an
abstract eigenvalue problem in an extended state space19 to use the standard split
of the population generator as in the previous section. Let Y be a Banach lattice
composed of θ-periodic, Rn-valued locally integrable function on R:

Y := {f ∈ L1([0, θ];Rn) : f(t) = f(t+ θ)},

where Y -norm is given by

‖f‖Y :=

∫ θ

0

|f(t)|dt.

Let W := Y ×F be an extended state space for the eigenvalue problem (9). Then
F is identified with the subspace W2 := {0} × F ⊂ W and we write φ ∈ F as (0, φ)
when we see φ ∈ F as an element of W2. Moreover, Y is identified with the subspace
W1 := Y ×{0} ⊂W and we write f ∈ Y as (f, 0) when we see f ∈ Y as an element
of W1.

Let D(D) := {φ ∈ F : Dφ exists, Dφ ∈ F}. Define operators A1 : {0} × D(D)→
W and A2 : W2 →W1 as

A1(0, φ) = (−φ(t, 0),−Dφ+Q(t, a)φ), A2(0, φ) =

(∫ β

0

M(t, a)φ(t, a)da, 0

)
.

Then the eigenvalue problem (9) is formulated as follows:

(A1 +A2)(0, φ) = λ(0, φ).

Observe that for λ ∈ R

(λ−A1)−1(f, 0) = (0, e−λaL(a; t− a, 0)f(t− a)).

Then we have

A2(λ−A1)−1(f, 0) =

(∫ β

0

e−λaM(t, a)L(a; t− a, 0)f(t− a)da, 0

)
.

Therefore we can define an operator K(λ) : W1 → W1 as K(λ) := A2(λ − A1)−1,
the eigenvalue problem (9) can be written as

K(λ)(f, 0) = (f, 0).

In fact, if there exists a number λ such that K(λ)(f, 0) = (f, 0), (λ, φ) is a solution
of the eigenvalue problem (9) where (λ−A1)−1(f, 0) = (0, φ).

19The reader may refer to [48] for the extended state space method by which the boundary
condition is treated as a bounded perturbation of the generator.
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Based on the above formal discussion, again we define a linear integral operator
K(λ) on Y by

(K(λ)f)(t) =

∫ ∞
0

e−λaΨ(t, a)f(t− a)da, f ∈ Y.

where we adopt a convention that Ψ = 0 for a ∈ R \ [0, β]. Then we obtain

Lemma 4.4. The periodic evolutionary system U has a positive exponential solution
with exponent λ0 if and only if K(λ0) has a positive eigenvector associated with
eigenvalue unity.

Proof. If there exists f ∈ Y+ \{0} such that f = K(λ0)f , then it is easy to see that

eλ0tφ(t, a) = eλ0(t−a)L(a; t− a, 0)f(t− a),

is a positive exponential solution of (9) with exponent λ0. Conversely if (7) has a
positive exponential solution eλ0tφ(t, a), (λ0, φ) satisfies the eigenvalue problem (9).
By solving the McKendrick equation of (9) along the characteristic line, we have
an expression as

φ(t, a) = e−λ0aL(a; t− a, 0)φ(t− a, 0),

Inserting the above expression into the boundary condition of (9), we conclude that
φ(t, 0) is a positive eigenvector of K(λ0) associated with eigenvalue unity.

Now we define a linear operator J(λ) on Z as

(J(λ)fZ)(t) :=

∫ θ

0

Θλ(t, σ)fZ(σ)dσ, fZ ∈ Z, t ∈ [0, θ],

where

Θλ(t, σ) :=

{∑[β/θ]+1
n=0 e−λ(t−σ+nθ)Ψ(t, t− σ + nθ) (t > σ),∑[β/θ]+1
n=1 e−λ(t−σ+nθ)Ψ(t, t− σ + nθ) (t < σ).

Here we note that Ψ(t, a) = 0 for a > β, Θλ(t, σ) is given by a finite sum of
e−λ(t−σ+nθ)Ψ(t, t− σ + nθ), because t− σ + nθ > β when n ≥ [β/θ] + 2. Then the
matrix Θλ(t, σ) is well defined for all λ ∈ C and (t, σ) ∈ [0, θ]× [0, θ].

By the well known calculation based on the periodicity ([2], [4]), it follows that
PJ(λ) = K(λ)P from which we have r(K(λ)) = r(J(λ)), where P denotes the
periodization operator.

By using the same kind of argument as Norton’s lemma ([32], Lemma 4.1), we
here prepare the following technical lemma:

Lemma 4.5. Under the assumption 4.1, for any δ > 0 such that 0 < δ < (γ2 −
γ1)/2, it follows that

Ψ(n)(t, a) ≥ Nnδn−1, n = 1, 2, ..., (10)

for a ∈ Sn := [γ1 + (n − 1)(γ1 + δ), γ2 + (n − 1)(γ2 − δ)], where Ψ
(n)
0 is defined

iteratively as follows:

Ψ(1)(t, a) := Ψ(t, a), Ψ(n+1)(t, a) =

∫ a

0

Ψ(t, σ)Ψ(n)(t− σ, a− σ)dσ.

Proof. From our assumption, (10) holds for n = 1. Assume that (10) holds for
n = k. If we assume that t− a ∈ Sk, we have t− a ≥ γ1 and

Ψ
(k+1)
0 (t, t− a) =

∫ t

a

Ψ0(t, t− σ)Ψ
(k)
0 (σ, σ − a)dσ.
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If t− a ≥ γ2, we have

Ψ
(k+1)
0 (t, t− a) ≥

∫ t−γ1

t−γ2
Ψ0(t, t− σ)Ψ

(k)
0 (σ, σ − a)dσ.

Let I = I1 ∩ I2 where

I1 := [t− γ2, t− γ1], I2 := [a+ γ1 + (k − 1)(γ1 + δ), a+ γ2 + (k − 1)(γ2 − δ)].
If t− a ∈ Sk+1, it follows that I2 ⊂ I1, hence the length of the interval I, denoted
by |I|, is greater than |I2| ≥ γ2 − γ1 > δ. Therefore we obtain

Ψ
(k+1)
0 (t, t− a) ≥

∫
I2

Ψ0(t, t− σ)Ψ
(k)
0 (σ, σ − a)dσ ≥ Nk+1δk,

since t− σ ∈ S1 and σ − a ∈ Sk for σ ∈ I2. Next if t− a < γ2, we have

Ψ
(k+1)
0 (t, t− a) ≥

∫ t−γ1

a

Ψ0(t, t− σ)Ψ
(k)
0 (σ, σ − a)dσ.

Now we define I = I1 ∩ I2 where

I1 := [a, t− γ1], I2 := [a+ γ1 + (k − 1)(γ1 + δ), a+ γ2 + (k − 1)(γ2 − δ)].
Then again we have |I| > δ, because t− a− [a+ γ1 + (k − 1)(γ1 + δ)] > δ, and

Ψ
(k+1)
0 (t, t− a) ≥

∫
I

Ψ0(t, t− σ)Ψ
(k)
0 (σ, σ − a)dσ ≥ Nk+1δk.

Therefore we conclude that (10) holds for n = k + 1. By mathematical induction,
(10) holds for every positive integer.

Lemma 4.6. Under the assumption 4.1, the operator J(λ) is nonsupporting20 for
λ ∈ R.

Proof. Observe that for f = PfZ ∈ Y , t ∈ [0, θ]

(Jn(λ)fZ)(t) = (Kn(λ)f)(t) =

∫ ∞
0

e−λaΨ
(n)
0 (t, a)f(t− a)da.

where f = PfZ . From Lemma 4.5, we have∫ ∞
0

e−λaΨ
(n)
0 (t, a)f(t− a)da ≥ Nnδn−1e−|λ|(γ2+(n−1)(γ2−δ))

∫
Sn

f(t− a)da.

If we take a large n such that |Sn| > θ and Nn > 0, for each t ∈ [0, θ] there exists
an integer k such that

[kθ, (k + 1)θ] ⊂ [t− γ2 − (n− 1)(γ2 − δ), t− γ1 − (n− 1)(γ1 + δ)].

Then it follows that∫
Sn

f(t− a)da =

∫ t−γ1−(n−1)(γ1+δ)

t−γ2−(n−1)(γ2−δ)
f(a)da ≥

∫ (k+1)θ

kθ

f(a)da =

∫ θ

0

f(a)da.

Therefore we obtain for t ∈ [0, θ]

(Kn(λ)f)(t) ≥ Nnδn−1e−|λ|(γ2+(n−1)(γ2−δ))
∫ θ

0

f(a)da > 0.

Let F ∈ Z∗+21 be a positive functional. From the above estimate, it follows that

〈F, Jn(λ)nfZ〉 = 〈F, P−1Kn(λ)nf〉 > 0,

20For the definition of nonsupporting operators, the reader may refer to section 7.
21Z∗ is the dual cone of the positive cone Z+.
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which implies that the operator J(λ) is nonsupporting.

Now we introduce another technical assumption:

Assumption 4.7. The following holds uniformly for σ ∈ [0, θ]:

lim
h→0

∫ θ

0

|Θλ(t+ h, σ)−Θλ(t, σ)|dt = 0,

where we use a convention that Θλ(t, σ) = 0 for t /∈ [0, θ].

From the well-known compactness criterion in L1 and the assumption 4.7, it is
easy to see that J(λ) is a compact operator on Z.

Proposition 4.8. Under the assumption 4.1 and 4.7, there exists a positive expo-
nential solution with exponent λ0 and the sign relation holds:

sign(λ0) = sign(r(K(0))− 1). (11)

Proof. From Lemma 4.4, K(λ0) and so J(λ0) has a positive eigenvector associated
with eigenvalue unity. Since J(λ0) is nonsupporting and compact, its spectral radius
r(J(λ)) is a positive dominant eigenvalue of J(λ) associated with a (essentially
unique) positive eigenvector and it is a strictly decreasing function of λ (Corollary
7.6, Proposition 7.7). Therefore we have r(J(λ0)) = r(K(λ0)) = 1 and we obtain
the sign relation (11).

Since Kθ = K(0), we conclude that the BG definition R0 = r(Kθ) is the rea-
sonable extension of the definition of R0 in a constant environment in a sense that
R0 allows the generational interpretation ([7], [37]), the Malthusian parameter λ0

is well-defined and the sign relation holds between R0 and λ0.

5. Infinite-dimensional periodic evolutionary system II: The age-duration
dependent SIR epidemic model. Finally, as a more complex example, let us
consider an age-duration structured epidemic model with periodic coefficients.

Let us introduce I(t, τ ; a) as the density of infected population at time t and
infection-age τ whose chronological age at infection is a. Let S(t, a) be the age
density of susceptibles at time t and age a and R(t, τ ; a) the density of recovered
individuals at time t, duration (the time elapsed since recovery) τ and age at re-
covery a. Then the age-duration-dependent homogeneous SIR epidemic system is
formulated as follows:(

∂

∂t
+

∂

∂a

)
S(t, a) = −(µ(a) + κ(t, a))S(t, a),(

∂

∂t
+

∂

∂τ

)
I(t, τ ; a) = −(µ(a+ τ) + γ(τ ; a))I(t, τ ; a),(

∂

∂t
+

∂

∂τ

)
R(t, τ ; a) = −µ(a+ τ)R(t, τ ; a),

S(t, 0) = B,

I(t, 0; a) = κ(t, a)S(t, a),

R(t, 0; a) =

∫ a

0

γ(τ ; a− τ)I(t, τ ; a− τ)dτ,

(12)
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where B is the number of susceptible newborns per unit time, µ(a) the force of
mortality, γ(τ ; a) the rate of recovery at infection-age τ and the age at infection a
and κ is the force of infection22. We assume that the force of infection is given by

κ(t, a) =

∫ ∞
0

m(t, a, σ)

∫ σ

0

f(τ)I(t, τ ;σ − τ)dτdσ, (13)

where m(t, a, σ) can be interpreted as the probability that a susceptible individual
with age a encounters with an infected individuals with age σ at time t, and the
function f(τ) is the probability of successful transmission of infective agents from
infective individuals with infection-age τ . In the expression (13), we omit the scale
factor 1/N (N is the total host population size), because we can assume that the
host population is in a demographic steady state and so N is constant.

For simplicity, we assume that demographic parameters of the host population
is time-independent, but the transmission coefficient m(t, a, σ) is θ-periodic with
respect to time variable. Although this assumption is mathematically restrictive,
it would be reasonable for common childhood infectious diseases with seasonally
changing parameters.

Thus we can assume that the host population density, described by P (t, a) :=
S(t, a)+

∫ a
0
I(t, τ ; a−τ)+R(t, a), is in a demographic steady state as P (t, a) = B`(a),

where `(a) is the survival rate given by `(a) = exp(−
∫ a

0
µ(σ)dσ) and the disease-free

steady state is given by (S, I,R) = (S0(a), 0, 0) with S0(a) := B`(a).
Now the disease invasion process is described by the linearized equation at the

disease-free steady state:

DJ(t, τ ; a) = −(µ(a+ τ) + γ(τ ; a))J(t, τ ; a)

J(t, 0; a) = S0(a)

∫ ∞
0

m(t, a, σ)

∫ σ

0

f(τ)J(t, τ ;σ − τ)dτdσ,
(14)

where J(t, τ ; a) denotes the density of infected population at time t and infection-age
τ whose age at infection is a in the initial invasion phase.

First we check the uniform primitivity ergodicity of the linear evolutionary pro-
cess given by (14). Integrating (14) along the characteristic line, we can obtain the
expression as

J(t, τ ; a) =

{
`(a+τ)
`(a) Γ(τ ; a)J(t− τ, 0; a), t− τ > 0,
`(a+τ)
`(a+τ−t)

Γ(τ ;a)
Γ(τ−t;a)J(0, τ − t; a), τ − t > 0,

(15)

where

Γ(τ ; a) := exp

(
−
∫ τ

0

γ(x; a)dx

)
,

denotes the survival rate that an infected individual with age at infection a remains
in the infected status at infection-age τ .

Inserting (15) into the boundary condition of (14), we obtain an abstract renewal
equation for B(t, a) := J(t, 0; a) as

B(t, a) = G(t, a) +

∫ t

0

(Ψ(t, t− z)B(z, ·))(a)dz, (16)

where

(Ψ(t, x)u)(a) := S0(a)

∫ ∞
x

m(t, a, σ)f(x)
`(σ)

`(σ − x)
Γ(x;σ − x)u(σ − x)dσ,

22The reader may refer to [34] for the origin and applications of the model (12).
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G(t, a) :=

∫ ∞
t

dx

∫ ∞
x

S0(a)m(t, a, σ)f(x)
`(σ)

`(σ − t)
Γ(x;σ − x)

Γ(x− t;σ − x)
J(0, x−t;σ−x)dσ.

Here we assume that the infectious period is finite, so there exists a number
β > 0 (the length of the period of infectiousness) such that f(τ) = 0 for τ > β.
Then Ψ(t, x) is a linear positive operator on L1(R+) and Ψ = 0 for x > β.

Let R(t, z) be the resolvent kernel (operator on L1) corresponding to Ψ(t, t− z)
defined by the solution of the resolvent equation:

R(t, z) = Ψ(t, t− z) +

∫ t

z

Ψ(t, t− ζ)R(ζ, z)dζ. (17)

Using the resolvent kernel, we can obtain the solution of (16) as follows:

B(t, a) = G(t, a) +

∫ t

0

(R(t, z)G(z, ·))(a)dz.

Since G = 0 for t > β, it follows that for t > 2β, τ ∈ [0, β],

J(t, τ ; a) =
`(a+ τ)

`(a)
Γ(τ ; a)B(t− τ, a)

=
`(a+ τ)

`(a)
Γ(τ ; a)

∫ β

0

(R(t− τ, z)G(z, ·))(a)dz.

(18)

For simplicity, we here adopt the following assumption, although we could relax
this positivity condition as assumption 4.1 in the previous section:

Assumption 5.1. m, γ, f and µ are bounded nonnegative measurable functions
for t ∈ R and a, σ, τ ∈ R+. In particular, suppose that f := inf f > 0 and β :=
inf β > 0.

Lemma 5.2. Under the assumption 5.1, it follows that

mf(x)S0(a)e−(µ̄+γ̄)x‖u‖L1 ≤ (Ψ(t, x)u)(a) ≤ m̄f(x)S0(a)‖u‖L1 , (19)

(R(t, z)u)(a) ≤ m̄f̄S0(a)em̄f̄‖S0‖L1 (t−z)‖u‖L1 , (20)

where m̄ := supm, f̄ := sup f , µ̄ := supµ and γ̄ := sup γ.

Proof. Since (19) easily follows from the definition of Ψ, let us show (20). It follows
from (19) that

(R(t, z)u)(a) ≤ m̄f̄S0(a)‖u‖L1 +

∫ t

z

(Ψ(t, t− ζ)R(ζ, z)u)(a)dζ. (21)

Applying (19) again, we have

‖R(t, z)u‖L1 ≤ m̄f̄‖u‖L1‖S0‖L1 + m̄f̄‖S0‖L1

∫ t

z

‖R(ζ, z)u‖L1dζ.

Therefore it follows that

‖R(t, z)u‖L1 ≤ m̄f̄‖u‖L1‖S0‖L1em̄f̄‖S0‖L1 (t−z).

Again using (19), we have∫ t

z

(Ψ(t, t− ζ)R(ζ, z)u)(a)dζ ≤ m̄f̄S0(a)

∫ t

z

‖R(ζ, z)u‖L1dζ

≤ m̄f̄S0(a)

∫ t

z

m̄f̄‖u‖L1‖S0‖L1em̄f̄‖S0‖L1 (ζ−z)dζ

= m̄f̄S0(a)‖u‖L1(em̄f̄‖S0‖L1 (t−z) − 1).
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Thus it follows from (21) that (20) holds.

Let us define the population evolution operator U(t, s), t > s on

X := L1([0, β];L1(R+)),

as follows:

(U(t, s)φ)(τ ; a) =

{
`(a+τ)
`(a) Γ(τ ; a)Bs(t− s− τ, a), t− s− τ > 0,
`(a+τ)

`(a+τ−t+s)
Γ(τ ;a)

Γ(τ−t+s;a)φ(τ − t+ s; a), τ − t+ s > 0,

where Bs(ζ, a), ζ > 0 is the solution of the abstract renewal equation:

Bs(ζ, a) = Gs(ζ, a) +

∫ ζ

0

(Ψ(s+ ζ, τ)Bs(ζ − τ, ·))(a)dτ,

where

Gs(ζ, a) := S0(a)

∫ ∞
ζ

dτ

∫ ∞
τ

m(s+ ζ, a, σ)
`(σ)

`(σ − ζ)

Γ(τ ;σ − τ)

Γ(τ − ζ;σ − τ)
φ(τ − ζ;σ − τ).

Then the following holds:

Proposition 5.3. Under the assumption 5.1, U is a uniformly primitive periodic
multiplicative process.

Proof. Since U(t, s), t > s is a solution evolution operator for (14), it forms an non-
negative evolutionary system. It follows from Ψ(t+θ, x) = Ψ(t, x) and Gs+θ(ζ, a) =
Gs(ζ, a) that Bs+θ(ζ, a) = Bs(ζ, a). Then we know that U(t + θ, s + θ) = U(t, s),
that is, U(t, s) is a periodic multiplicative process. In order to see the uniform
primitivity of U(t, s), it is sufficient to show that U(t, 0) has a finite projective di-
ameter23 for some t > 2β. In fact, if ∆(U(t, 0)) ≤ α, then ∆(U(t+nθ, nθ)) ≤ α for
all integer n by its periodicity, so U is uniformly primitive for positive time. From
(17) and (18), we have

J(t, τ ; a) = (U(t, 0)J0)(τ ; a) ≥ `(a+ τ)

`(a)
Γ(τ ; a)

∫ β

0

(Ψ(t− τ, t− z)G(z, ·))(a)dz,

where J0(τ ; a) = J(0, τ ; a) ∈ X and∫ β

0

(Ψ(t− τ, t− z)G(z, ·))(a)dz ≥ mS0(a)e−(µ̄+γ̄)t

∫ β

0

f(t− z)‖G(z, ·)‖L1dz,∫ β

0

(Ψ(t− τ, t− z)G(z, ·))(a)dz ≤ m̄S0(a)

∫ β

0

f(t− z)‖G(z, ·)‖L1dz.

Let us define

e :=
`(a+ τ)

`(a)
Γ(τ ; a)S0(a), α :=

m̄f̄

mf
e(µ̄+γ̄)t,

λ(J0) := mfe−(µ̄+γ̄)t

∫ β

0

‖G(z, ·)‖L1dz.

Then for J0 ∈ X, we have

λ(J0)e ≤ U(t, 0)J0 ≤ αλ(J0)e.

For a fixed t > 2β, λ is a positive functional and e is a quasi-interior point in
X+. Therefore we conclude that ∆(U(t, 0)) ≤ 2 logα. Then U(t, s) is a uniformly
primitive multiplicative process.

23The definition of the projective diameter is given in Appendix of this text.
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From Proposition 5.3, we know that there exists a dominant positive exponential
solution and so the Malthusian parameter λ0 is defined as its exponent. Inserting
an exponential solution eλtψ(t, τ ; a) into (14), we obtain the following eigenvalue
problem:

− (D + µ(a+ τ) + γ(τ ; a))ψ(t, τ ; a) = λψ(t, τ ; a),

ψ(t, 0; a) = S0(a)

∫ ∞
0

β(t, a, σ)

∫ σ

0

f(x)ψ(t, x;σ − x)dxdσ
(22)

where ψ is a θ-periodic X-valued function.
Let

Y := {PφZ : φZ ∈ L1([0, θ]× R+)},
where P : Y → Z := L1([0, θ]× R+) is a periodization operator defined by

(PφZ)(t, a) = φZ(t− [t/θ]θ, a), t ∈ R,

and its norm is given by

‖φ‖Y =

∫ θ

0

∫ ∞
0

|φ(t, a)|dadt.

Then it is easy to see that a function ψ given by

ψ(t, τ ; a) = e−λτ
`(a+ τ)

`(a)
Γ(τ ; a)φ(t− τ, a),

satisfies the eigenvalue problem (22) if φ ∈ Y satisfies the boundary condition:

φ(t, a) =

∫ ∞
0

S0(a)m(t, a, σ)

∫ σ

0

e−λx
`(σ)

`(σ − x)
Γ(x;σ − x)f(x)φ(t− x, σ − x)dxdσ

=

∫ ∞
0

dx

∫ ∞
x

S0(a)m(t, a, σ)e−λx
`(σ)

`(σ − x)
Γ(x;σ − x)f(x)φ(t− x, σ − x)dσ.

(23)
The boundary value ψ(t, 0; a) = φ(t, a) denotes the density of newly produced
infecteds at age a and time t.

Define a linear positive operator on L1(R+) as

(Ψλ(t, x)u)(a) : =

∫ ∞
x

S0(a)m(t, a, σ)e−λx
`(σ)

`(σ − x)
Γ(x;σ − x)f(x)u(σ − x)dσ

=

∫ ∞
0

S0(a)m(t, a, z + x)e−λx
`(z + x)

`(z)
Γ(x; z)f(x)u(z)dz,

where u ∈ L1(R+).
Then (23) can be written as follows:

φ(t, a) = (K(λ)φ)(t, a) =

∫ ∞
0

dx(Ψλ(t, x)φ(t− x, ·))(a)

=

∫ t

−∞
dy(Ψλ(t, t− y)φ(y, ·))(a),

(24)

where K(λ) is a linear operator on Y defined by

(K(λ)φ)(t, a) :=

∫ ∞
0

dx

∫ ∞
x

S0(a)m(t, a, σ)

× e−λx `(σ)

`(σ − x)
Γ(x;σ − x)f(x)φ(t− x, σ − x)dσ.
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If φ = PφZ ∈ Y for φ ∈ Z, it follows from the periodicity of φ and Ψλ that (24)
can be reduced to an equation on the space Z:

φZ(t, a) = (J(λ)φZ)(t, a) :=

∫ θ

0

dy(Θλ(t, y)φZ(y, ·))(a).

where

Θλ(t, y) :=

{∑[ω/θ]+1
n=0 Ψλ(t, t− y + nθ) (t > y),∑[ω/θ]+1
n=1 Ψλ(t, t− y + nθ) (t < y).

Therefore , we have K(λ)P = PJ(λ) and r(K(λ)) = r(J(λ)).
Now we define a bounded measurable function Πλ(t, a, y, z) for t, y ∈ R and

a, z ∈ R+ as

Πλ(t, a, y, z) := S0(a)m(t, a, t− y + z)e−λ(t−y) `(t− y + z)

`(z)
Γ(t− y; z)f(t− y),

where we adopt a convention that Πλ(t, a, y, z) = 0 if a < 0, z < 0 and t < y. Then
we have

∫ θ

0

dy(Ψλ(t, y)φZ(y, ·))(a) =

∫ θ

0

∫ ∞
0

Πλ(t, a, y − nθ, z)φZ(y, z)dzdy,

so we can see J(λ) as an integral operator from L1-space Z into itself.

Lemma 5.4. Suppose that the following holds uniformly for (y, z):

lim
h→0

∫
R

∫
R
|Πλ(t+ h, a+ h, y, z)−Πλ(t, a, y, z)|dtda = 0,

Then the operator J(λ), λ ∈ R is a nonsupporting compact operator on Z.

Proof. Using the function Πλ, we can rewrite (23) as

(J(λ)φZ)(t, a) =

∫ θ

0

∫ ∞
0

Hλ(t, a, y, z)φZ(y, z)dzdy,

where

Hλ(t, a, y, z) =

{∑[ω/θ]+1
n=0 Πλ(t, a, y − nθ, z), t > y,∑[ω/θ]+1
n=1 Πλ(t, a, y − nθ, z), t < y.

Therefore it follows from the above assumption and the well-known Frechét- Kol-
mogorov compactness criterion in L1 that J(λ) is compact. Next we can observe
that

(J(λ)φZ)(t, a) ≥
∫ θ

0

dy

∫ ∞
0

Πλ(t, a, y − θ, z)φZ(y, z)dz

≥ S0(a)mfe−(λ+µ̄+γ̄)t‖φZ‖Z .
Then it is easy to see that J(λ), λ ∈ R is a nonsupporting operator on Z.

By using the same kind of argument as Proposition 4.8, we can conclude as
follows:

Proposition 5.5. Under the assumption 5.1, there exists a positive dominant ex-
ponential solution with exponent λ0 such that r(J(λ0)) = r(K(λ0)) = 1 and

sign(λ0) = sign(r(J(0))− 1) = sign(r(K(0))− 1),
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From the above result, we know that it is reasonable to define the basic repro-
duction number for the periodic epidemic system (12) by the spectral radius of the
integral operator K(0) and we have the sign relation between λ0 and R0 = r(K(0)).

6. Conclusion. As is seen in the main text and the appendix, the asymptotic be-
havior of a non-autonomous linear positive system can be characterized by the pos-
itive exponential solution if it exists and the evolutionary system is weakly ergodic.
Uniform primitivity is a useful sufficient condition for weak ergodicity of positive
evolutionary system. If the evolutionary system is periodic and uniform primitive,
we can show that there exists a dominant positive exponential solution, so the basic
system has the Malthusian parameter λ0. Moreover, as is shown for typical cases
of linear population dynamics in heterogeneous environments, we can construct the
next generation operator to show the sign relation between the Malthusian param-
eter λ0 and R0 given by the spectral radius of the next generation operator. As is
shown by Bacaër and Ait Dads ([7]) and Inaba ([37]), the generational interpreta-
tion holds for this BG definition of R0 in periodic environments, that is, R0 becomes
the asymptotic growth ratio of successive generation size. Therefore, we can say
that the classical threshold theory for R0 and the Malthusian parameter in constant
environments can be extended to the case of periodic environments without loosing
its essential features.

7. Appendix.

7.1. Theory of linear positive operators. Let E be a real or complex Banach
space and let E∗ be its dual space. Then E∗ is a space of all linear functionals on
E. In the following, we write the value of f ∈ E∗ at ψ ∈ E as 〈f, ψ〉.

A closed subset C ⊂ E is called the cone (or positive cone) if the following
conditions hold:(1) C + C ⊂ C, (2) λ ≥ 0 ⇒ λC ⊂ C, (3) C ∩ (−C) = {0} and
(4) C 6= {0}. With respect to the cone C, we write x ≤ y if y − x ∈ C, and x < y
if y − x ∈ C+ := C \ {0}. If the set {ψ − φ : ψ, φ ∈ C} is dense in E, the cone
C is called total. If E = C − C, C is called a reproducing cone. If a cone C has
nonempty interior C◦, C is called a solid cone. Any solid cone is reproducing. We
write x� y if y − x ∈ C◦

Let B(E) be a set of bounded linear operators from E into itself. Let r(T ) be
the spectral radius of T ∈ B(E) and let Pσ(T ) be the point spectrum of T . The
dual cone C∗ is a subset of E∗ composed of all positive linear functionals. f ∈ C∗ is
called a positive linear functional if 〈f, ψ〉 ≥ 0 for all ψ ∈ C. ψ ∈ C is called a quasi-
interior point or nonsupporting point provided that 〈f, ψ〉 > 0 for all f ∈ C∗ \ {0}.
A positive linear functional f ∈ C∗ is called strictly positive if 〈f, ψ〉 > 0 for all
ψ ∈ C+. T ∈ B(E) is called positive if T (C) ⊂ C and T ∈ B(E) is called strictly
positive if T (C+) ⊂ C+24. If (T − S)(C) ⊂ C for T, S ∈ B(E), we write S ≤ T . If
C is a solid cone and T (C+) ⊂ C◦, T is called strongly positive.

Proposition 7.1 (Krein–Rutman Theorem; [39], [45]). Suppose that C is total, a
positive linear operator T : C → C is compact and r(T ) > 0. Then r(T ) is an
eigenvalue of T corresponding to a positive eigenvector ψ ∈ C+.

Proposition 7.2. Suppose that C is a solid cone and T : C → C is a compact
linear strongly positive operator. Then it follows that

24The reader should remark that in rather old papers as Birkhoff’s, a positive operator is called
nonnegative, and a strictly positive operator is called positive.
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(1) r(T ) > 0, r(T ) is a simple eigenvalue associated with an eigenvector in Co

and there is no other eigenvalue with a positive eigenvector.
(2) |λ| < r(T ) for all eigenvalues λ 6= r(T ).

Definition 7.3 ([44], [41]). A positive operator T ∈ B(E) is called semi- nonsup-
porting if for any ψ ∈ C+ and f ∈ C∗ \ {0}, there exists an integer p = p(ψ, f)
such that 〈f, T pψ〉 > 0. A positive operator T ∈ B(E) is called nonsupporting if
for any ψ ∈ C+ and f ∈ C∗ \ {0}, there exists an integer p = p(ψ, f) such that
〈f, Tnψ〉 > 0 for all n ≥ p. A positive operator T ∈ B(E) is called strictly nonsup-
porting if for any ψ ∈ C+, there exists a positive integer p = p(ψ) such that Tnψ is
a quasi-interior point of C for all n ≥ p.

The idea of semi-nonsupporting is an infinite-dimensional extension of indecom-
posability of nonnegative matrices. Krasnoselskij called it irreducible. The idea
of nonsupporting is an infinite-dimensional extension of primitivity of nonnegative
matrices.

Proposition 7.4 ([44], [41]). Suppose that the cone C is total, T ∈ B(E) is semi-
nonsupporting with respect to C and r(T ) is a pole of resolvent R(λ, T ) = (λ−T )−1.
Then the following holds:

(1) r(T ) ∈ Pσ(T ) \ {0} and r(T ) is a simple pole of the resolvent R(λ, T );
(2) The eigenspace corresponding to r(T ) is one-dimensional and its eigenvector

ψ ∈ C is a quasi-interior point. Any eigenvector in C is proportional to ψ;
(3) The adjoint eigenspace corresponding to r(T ) is one-dimensional and its eigen-

functional f ∈ C∗ \ {0} is strictly positive.

Proposition 7.5 ([44], [41]). Suppose that the cone C is total, T ∈ B(E) is non-
supporting with respect to C and r(T ) is a pole of resolvent R(λ, T ) = (λ − T )−1.
Then (1)-(3) of Proposition 7.4 hold and moreover, it follows that

(1) r(T ) is a dominant point of the spectrum σ(T ), that is, |µ| < r(T ) for all
µ ∈ σ(T ) \ {r(T )};

(2) B1 := limn→∞ r(T )−nTn converges in the operator norm and B1 is a strictly
nonsupporting operator given by

B1 =
1

2πi

∫
Γ0

R(λ, T )dλ,

where Γ0 is a positively oriented circle with center at r(T ) such that no points
of the spectrum σ(T ) except r(T ) lie on and inside the circle Γ0.

From the above statement, we know that limn→∞ r(T )−nTn converges to a pro-
jection operator on one-dimensional eigenspace spanned by the positive eigenvector
associated with the dominant positive eigenvalue r(T ).

Combining Krein-Rutman Theorem and Sawashima’s theorem, we can obtain a
useful statement:

Corollary 7.6. Suppose that the cone C is total, r(T ) > 0, T is power compact25

and nonsupporting with respect to C. Then all statements of Proposition 7.4 and
7.5 hold.

Proof. Suppose that Tn is compact. Then the spectrum σ(Tn) is a countable
set with no accumulation point different from zero. From the Spectral Mapping
Theorem, we have σ(Tn) = {σ(T )}n, in particular r(Tn) = r(T )n > 0 and

25T ∈ B(E) is power compact if there is a positive integer n such that Tn is compact.



THE MALTHUSIAN PARAMETER AND R0 337

r(T ) = r(Tn)1/n ∈ σ(T ). Since T is power compact, its nonzero eigenvalue r(T ) is
a pole of the resolvent R(λ, T ) ([23], p. 579). Therefore we can apply Proposition
7.4 to T and arrive at the conclusion.

Proposition 7.7 ([41]). Let E be a Banach lattice. Suppose that S, T ∈ B(E) are
positive operators. Then the following holds:

(1) If S ≤ T , then r(S) ≤ r(T ).
(2) If S, T are semi-nonsupporting and compact, S ≤ T , S 6= T and r(T ) 6= 0,

then r(S) < r(T ).

7.2. The projective metric and uniform primitivity. We here summarize
some basic concepts and results of the projective metric and uniform primitivity
of positive operators, as long as they are needed to discuss the weak ergodicity
of evolutionary system in a Banach lattice26. For omitted proofs, the reader may
consult Birkhoff ([12], [13], [14]), Inaba ([32]) and its references.

Let E be a Banach lattice27 with a total positive cone C. For (x, y) ∈ E × C+,
we define sup(x/y) := inf{λ : x ≤ λy} and inf(x/y) := sup{µ : µy ≤ x}, where
we adopt conventions such that inf ∅ = ∞ and sup ∅ = −∞. In C+, the Hilbert
projective pseudometric is defined as follows:

d(x, y) := log

[
sup(x/y)

inf(x/y)

]
, (x, y) ∈ C+ × C+.

Then it is easy to see that d(x, y) has the following properties:

Lemma 7.8. If x, y, z ∈ C+, then

(1) d(x, x) = 0, d(x, y) = d(y, x) and d(x, z) ≤ d(x, y) + d(y, z),
(2) d(x, y) = 0 if and only if there exists a λ > 0 such that x = λy,
(3) For any λ > 0 and µ > 0, d(λx, µy) = d(x, y).

By the metric d, {C+, d} becomes a pseudometric space. The connected compo-
nent in {C+, d} is an equivalent class composed of elements such that d(x, y) <∞.
The ray is an equivalent class composed of elements such that d(x, y) = 0. Two
elements x, y in C+ are called comparable if there exist µ > 0 and α ≥ 1 such that
µy ≤ x ≤ αµy. Then two elements x, y of C+ belong to the same component if
and only if they are comparable.

If two elements in C+ are comparable, images of those elements by a strictly
positive linear operator A are also comparable, and it follows that

d(Ax,Ay) ≤ d(x, y), ∀(x, y) ∈ C+ × C+.

Then a strictly positive linear operator is a contraction mapping with respect to
the projective metric d. The projective diameter of a strictly positive operator A is
defined by

∆(A) := sup{d(Ax,Ay) : (x, y) ∈ C+ × C+}.

26The main results of Birkhoff’s theory hold in Archimedian semi-ordered real linear space.
27For a real liner space X with partial order ≤, X is called lattice if for any two elements

x, y ∈ X, there are the least upper bound by the partial order ≤, denoted by sup(x, y) =: x ∨ y
and the the greatest lower bound, denoted by inf(x, y) =: x ∧ y. Moreover, the partial order ≤
satisfies the following condition (1) x ≤ y, then x+ z ≤ y+ z, (2) x ≤ y and λ ≥ 0, then λx ≤ λy,
then X is called vector lattice. The absolute value of an element of a vector lattice x ∈ X is defined

by |x| = x ∨ (−x). A real Banach space X is called Banach lattice if it is a vector lattice and its
norm ‖ · ‖ satisfies ‖x‖ ≤ ‖y‖ provided that |x| ≤ |y|.
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For a linear strictly positive operator A, it is called uniformly positive if ∆(A) <
∞. If a power of A becomes uniformly positive, A is called uniformly primitive28.

Lemma 7.9. Let A and B be strictly positive linear operators. Then it follows that

∆(AB) ≤ min{∆(A),∆(B)}.

Proof. From the definition, we have

∆(AB) = sup{d(ABx,ABy) : (x, y) ∈ C+ × C+}
≤ sup{d(Ax,Ay) : (x, y) ∈ C+ × C+} = ∆(A),

becauseB(C+) ⊂ C+. On the other hand, it follows from d(ABx,ABy) ≤ d(Bx,By)
that ∆(AB) ≤ ∆(B). This completes our proof.

Lemma 7.10 ([32]). A strictly positive linear operator A is unifromly positive if
and only if there exist e ∈ C+, α ≥ 1 and a strictly positive functional λ(x) such
that

λ(x)e ≤ Ax ≤ αλ(x)e, (25)

for any x ∈ C.

Corollary 7.11. If A is a uniformly primitive operator such that (25) holds for a
quasi-interior point e, then A is strictly nonsupporting.

Proof. Suppose that for some integer n, An satisfies (25) with a quasi-interior point
e. For any v∗ ∈ C∗ \ {0} and x ∈ C+, we have 〈v∗, Anx〉 ≥ λ(x)〈v∗, e〉 > 0, which
shows that Anx is a quasi-interior point.

Corollary 7.12. If a strictly positive linear operator A is uniformly primitive,
there exists an integer n such that the range of Am(C+) (m ≥ n) is included in a
connected component K and K is invariant with respect to A, that is, A(K) ⊂ K.

For a strictly positive linear operator A and elements x, y such that 0 < d(x, y) <
∞, the projective norm ‖A‖p or the Birkhoff contraction ratio k(A) is defined by

‖A‖p = k(A) := sup

{
d(Ax,Ay)

d(x, y)
: 0 < d(x, y) <∞, (x, y) ∈ C+ × C+

}
,

and the oscillation ratio N(A) is defined by

N(A) = inf
{
λ : osc(Ax/Ay) ≤ λosc(x/y), (x, y) ∈ C+ × C+

}
,

where osc(x/y) := sup(x/y)− inf(x/y).

Proposition 7.13 ([15], [43]). If A is a strictly positive linear operator in E, then
k(A) = N(A).

Proposition 7.14 ([8]-[14]). Suppose that A is a strictly positive linear operator
in E. Then it follows that

k(A) ≤ tanh

[
∆(A)

4

]
.

28The definitions of uniform positivity in 1957 ([8]) was slightly extended in the paper at
1962 ([12]) by Birkhoff so that it can be applied to not necessarily strictly positive operator. For

simplicity, we limit our argument to strictly positive operators ([32]).
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From the above theorem, a uniformly positive linear operator A is a strictly
contractive mapping with respect to the projective metric. That is, its contraction
ratio is less than tanh(∆(A)/4):

d(Ax,Ay) ≤ tanh

[
∆(A)

4

]
d(x, y).

Proposition 7.15 ([8]). A connected component of a positive cone C in E is a
complete pseudo metric space with respect to the projective metric.

Proposition 7.16 (The projective contraction mapping principle). If a strictly
positive bounded linear operator A on a Banach lattice E is uniformly primitive, A
has a unique fixed point (positive eigenvector) φ ∈ C+ with respect to d, and Anx
(n = 1, 2, ..) converges to φ for any x ∈ C+.

Proof. The original proof for the case of uniformly positive operator is given in [8].
Suppose that for some integer k, Ak is uniformly positive. Then ∆(Ak) < ∞. For
integers m,n ≥ k, define α := min([m/k]− 1, [n/k]− 1). Then it follows that

d(Amx,Anx) ≤
(

tanh
∆(Ak)

4

)α
d(AkAm−(α+1)kx,AkAn−(α+1)kx)

≤
(

tanh
∆(Ak)

4

)α
∆(Ak)→ 0, (m,n→∞).

Therefore {Ak+jx}j=1,2,,.. is a Cauchy sequence in a complete connected component
Ak(C+), so there exists φ ∈ Ak(C+) such that limj→∞ d(Ak+jx, φ) = 0. Observe
that for m ≥ k + 1

d(Aφ, φ) ≤ d(Aφ,Amφ) + d(Amφ, φ) ≤ d(φ,Am−1φ) + d(Amφ, φ)→ 0, (m→∞),

which shows that φ is a positive eigenvector of A.

Corollary 7.17. Let φ is a positive eigenvector of a uniformly primitive operator
A associated with positive eigenvalue γ. Then there exist a strictly positive linear
functional v∗, a positive constant M(x) and 0 < ρ < γ independent of x ∈ C+ such
that

|Anx− 〈v∗, x〉γnφ| ≤M(x)ρnφ, (26)

where v∗ is a strictly positive eigenfunctional of the dual operator A∗ associated with
the positive eigenvalue γ.

Proof. Suppose that Ak is uniformly positive. Observe that sup(Anx/Anφ), n =
1, 2, .. is monotone decreasing and inf(Anx/Anφ) is monotone increasing and posi-
tive for x ∈ C+ because An(C+) is a connected component for n ≥ k, and it holds
that

0 ≤ osc(Anx/Anφ) = sup(Anx/Anφ)− inf(Anx/Anφ)

≤ (ed(Anx,Anφ) − 1) sup(Akx/Akφ)→ 0, (n→∞).

Then we can define a strictly positive functional v∗ as

〈v∗, x〉 := lim
n→∞

inf(Anx/Anφ) = lim
n→∞

sup(Anx/Anφ).

From the definition, we have

inf(Anx/Anφ)Anφ ≤ Anx ≤ sup(Anx/Anφ)Anφ.

inf(Anx/Anφ)Anφ ≤ 〈v∗, x〉Anφ ≤ sup(Anx/Anφ)Anφ
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Therefore we have

|Anx− 〈v∗, x〉γnφ| ≤ osc(Anx/Anφ)γnφ.

Let α := [n/k]− 1 for n ≥ k. Then we have

osc(Anx/Anφ) ≤ ‖Ak‖αp osc(Akx/Akφ).

Therefore if we choose ρ and M(x) as

γ‖Ak‖α/np < ρ < γ, M(x) := osc(Akx/Akφ),

then we arrive at (26). It follows from (26) that v∗ is a continuous linear functional.
Finally from (26), we obtain

lim
n→∞

γ−n〈A∗v∗, x〉 = 〈v∗, x〉〈v∗, φ〉.

Observe that

lim
n→∞

γ−n〈(A∗)n+1v∗, x〉 = 〈v∗, Ax〉〈v∗, φ〉

= γ lim
n→∞

γ−(n+1)〈(A∗)n+1v∗, x〉 = γ〈v∗, x〉〈v∗, φ〉,

which holds for any x ∈ C, so it implies that A∗v∗ = γv∗. Then v∗ is a positive
eigenfunctional of A∗ associated with eigenvalue γ.

7.3. Uniformly primitive evolutionary system. An evolutionary system (which
was called the time-inhomogeneous multiplicative process by Birkhoff) for positive
[negative] time J = [s0,∞) [for negative time J = (−∞, s0]] on a Banach lattice E
with a total cone C is a two-parameter family of positive linear operators U(t, s),
t ≥ s, t, s ∈ J satisfying the multiplicative property:

U(t, r)U(r, s) = U(t, s), t ≥ r ≥ s, t, r, s ∈ J,

and U(s, s) = Id where Id is the identity operator.
A strictly positive evolutionary system for positive [negative] time is uniformly

primitive when for some α > 0, there exist for any K > s0 [K < s0] some t > s > K
[s < t < K] such that ∆(U(t, s)) ≤ α.

A function f(t) defined for all t ∈ J and with values f(t) ∈ C is consistent with
the evolutionary system U when f(t) = U(t, s)f(s) for all t, s ∈ J .

Let C∗ be the set of linear nonnegative functionals on E and let E∗ := {f∗−g∗ :
f∗, g∗ ∈ C∗}. Then C∗ is a positive cone of E∗ and the vector space (E∗, C∗) is the
dual space of (E,C). As the dual of any Banach lattice is again a Banach lattice,
we can define the dual evolutionary system U∗(s, t), s ≤ t by

〈U∗(s, t)v∗, φ〉 = 〈v∗, U(t, s)φ〉,

where 〈v, φ〉 denotes the value of v ∈ E∗ at φ ∈ E. Then it is easy to see that
U∗(s, t) is an evolutionary system such that U∗(s, r)U∗(r, t) = U∗(s, t), and it is
positive if U(t, s), t ≥ s is positive.

A function v∗(t) defined for all t ∈ J and with values v∗(t) ∈ C∗ is consistent
with U∗(s, t) when for all s ≤ t, s, t ∈ J , v∗(s) = U∗(s, t)v∗(t). Then it is easy to
see that29:

29Birkhoff defines a consistent functional v∗(t) such that (26) holds for any function f(t)
consistent with the process U(t, s) ([13]).
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Proposition 7.18. If f(t) is consistent with U(t, s) and v∗(t) is consistent with
U∗(s, t), it follows that for any t, s ∈ J

〈v∗(t), f(t)〉 = 〈v∗(s), f(s)〉 = const. (27)

Let U(t, s), t ≥ s be a strictly positive evolutionary system for positive time on
(E,C), it is called weakly ergodic if for any ψ, φ ∈ C+,

lim
t→∞

d(U(t, s)ψ,U(t, s)φ) = 0.

Proposition 7.19 ([13], [32]). Let U be a strictly positive evolutionary system for
positive time on (E,C). If U is uniformly primitive for positive time, it is weakly
ergodic.

Proposition 7.20 ([13], [32]). Let U be a weakly ergodic evolutionary system for
positive time on a Banach lattice (E,C), and let f(t) and g(t), t ∈ J be consistent
with U . If d(f(s), g(s)) < ∞, there exists a strictly positive functional v∗(s) ∈ V ∗
such that

|f(t)− 〈v∗(s), f(s)〉g(t)| ≤ |g(t)|osc(f(t)/g(t)), (28)

where v∗(s), s ∈ J is defined by

〈v∗(s), φ〉 := lim
t→∞

inf(U(t, s)φ/g(t)) = lim
t→∞

sup(U(t, s)φ/g(t)).

The functional v∗(s) is consistent with the dual process U∗(s, t), s ≤ t and, up to a
positive constant factor, it is uniquely determined.

A strictly positive linear functional v∗(s) defined in Proposition 7.20 is called
importance functional.

Proposition 7.21 ([13]). Let U(t, s), t ≥ s be a weakly ergodic time-inhomogeneous
multiplicative process for positive time on a Banach lattice (E,C). Then the impor-
tance functional is a one and essentially only one positive linear functional consis-
tent with the dual process U∗(s, t), t ≥ s.

Proof. Let v∗(s) be the importance functional associated with a positive consistent
function g(t). For any ψ ∈ C+, due to the weak ergodicity, we can assume without
loss of generality that d(U(t, s)ψ, g(t)) < ∞. Let w∗(s) be any positive consistent
functional. It follows from (28) that

|〈w∗(t), U(t, s)ψ〉 − 〈v∗(s), ψ〉〈w∗(t), g(t)〉| ≤ 〈w∗(t), g(t)〉osc(U(t, s)ψ/g(t)).

From the weak ergodicity, we have limt→∞ osc(U(t, s)ψ/g(t)) = 0. Since 〈w∗(t), g(t)〉
is constant, we conclude that

〈w∗(s), ψ〉 = 〈v∗(s), ψ〉〈w∗(s), g(s)〉,

where we used (27). Therefore, we have

w∗(s) = v∗(s)〈w∗(s), g(s)〉,

which shows that w∗(s) is proportional to the importance functional v∗, because
〈w∗(s), g(s)〉 is a constant.
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7.4. Periodic evolutionary system. Finally let us consider the case that a strictly
positive evolutionary system {U(t, s)}s≤t on a Banach lattice (E,C) has a period-
icity. Suppose that for all s ≤ t, there exists θ > 0 such that

U(t+ θ, s+ θ) = U(t, s), s ≤ t.
Then it is clear that the dual process is also a periodic evolutionary system; U∗(s+
θ, t+ θ) = U∗(s, t).

Lemma 7.22. If U is a uniformly primitive θ-periodic evolutionary system, the
monodromy operator U(s+ θ, s) is uniformly primitive for any s ∈ J .

Proof. From the periodicity, we have U(s + θ, s)n = U(s + nθ, s) for any positive
integr n. From the uniform primitivity of U , for some α > 0 there exist for any
K > s0 some t > s > K such that ∆(U(t, s)) ≤ α. Then we can choose a sufficiently
large n such that there exists an interval (t1, t2) ⊂ (s, nθ) with ∆(U(t2, t1)) ≤ α.
From Lemma 7.9, we have ∆(U(s + nθ, s)) ≤ ∆(U(t2, t1)) ≤ α, which shows that
U(s+ θ, s) is uniformly primitive.

If there exists a consistent function f(t) such that f(t) = eλtφ(t) where λ ∈ R
and φ(t) is θ-periodic positive function, we call f(t) the exponential solution. Then
we can prove the following:

Lemma 7.23. Suppose that U is a strictly positive periodic evolutionary system on
(E,C). Then there exists a positive exponential solution with exponent λ if and only
if the monodromy operator U(s + θ, s) has a positive eigenvector associated with a
positive eigenvalue eλθ.

Proof. If there exists an exponential solution eλtφ(t), it follows that eλtφ(t) =
U(t, 0)φ(0). Since φ(θ) = φ(0), we have eλθφ(0) = U(θ, 0)φ(0), which shows that
U(θ, 0) has a positive eigenvector φ(0) associated with an eigenvalue eθλ. Observe
that

U(s+ θ, s)U(s, 0) = U(s+ θ, θ)U(θ, 0) = U(s, 0)U(θ, 0).

Therefore it follows that

U(s+ θ, s)[U(s, 0)φ(0)] = eλθ[U(s, 0)φ(0)],

which shows that U(s + θ, s) has an eigenvector U(s, 0)φ(0) associated with an
eigenvalue eθλ. Conversely suppose that U(s+ θ, s) has a positive eigenvector φ(s)
associated with a positive eigenvalue eλθ. Let us define a positive functional φ(t)
by φ(t) := e−λ(t−s)U(t, s)φ(s). Then it is easy to see that φ(t) has a period θ and
eλtφ(t) is a consistent function, which is an exponential solution.

Proposition 7.24. If U is a uniformly primitive periodic evolutionary system on
(E,C), it has a positive exponential solution.

Proof. From Lemma 7.23, it is sufficient to show that U(s+θ, s) has a positive eigen-
vector. Since the monodromy operator U(s + θ, s) is uniformly primitive (Lemma
7.22), it has a positive eigenvector (Proposition 7.16).

From Corollary 7.6 and Proposition 7.23, we have another condition for existence
of exponential solution:

Proposition 7.25. Suppose that E is a real Banach space with a total cone C,
U is a strictly positive periodic multiplicative process on (E,C). If the monodromy
operator U(s+θ, s) is power compact and nonsupporting, it has a positive exponential
solution.
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Proposition 7.26. Suppose that U is a uniformly primitive θ-periodic evolutionary
system on (E,C). Let eλtφ(t) be its exponential solution. Then there exists a
positive linear functional (importance functional) v∗(s) such that

lim
t→∞

‖e−λtU(t, s)x− 〈v∗(s), x〉φ(t)‖ = 0. (29)

where v∗ is an exponential solution of the dual system U∗, that is, there exists a
periodic functional w∗(s) such that

v∗(s) = e−λsw∗(s).

Proof. Suppose that a uniformly primitive periodic evolutionary system U has an
exponential solution eλtφ(t). Then it follows from (28) that there exists a positive
functional v∗(s) such that for any x ∈ C+ satisfying d(φ(s), x) <∞,

e−λtU(t, s)x = 〈v∗(s), x〉φ(t) + o(‖φ(t)‖),

where φ(t) is a periodic function, so ‖φ(t)‖ is bounded. Any two consistent functions
are going into a connected component after finite time, we have (29). From (29),
we have

e−λ(t+θ)U(t+ θ, s+ θ)x = 〈v∗(s+ θ), x〉φ(t+ θ) + o(‖φ(t+ θ)‖)
= 〈v∗(s+ θ), x〉φ(t) + o(‖φ(t)‖)

= e−λ(t+θ)U(t, s)x

= e−λθ(〈v∗(s), x〉φ(t) + o(‖φ(t)‖)),

which shows that v∗(s+ θ) = e−λθv∗(s). If we define a functional w∗(s) by w∗(s) =
eλsv∗(s), w∗ is θ-periodic. Since the importance functional is consistent with the
dual system, v∗(s) = e−λsw∗(s) is the exponential solution of the dual system.

From (29), we know that for any function f(t) = U(t, s)x consistent with a
uniformly primitive periodic multiplicative process, we obtain

lim
t→∞

‖ f(t)

‖f(t)‖
− φ(t)

‖φ(t)‖
‖ = 0,

which shows that the normalized distribution f(t)/‖f(t)‖ converges to a periodic
distribution φ(t)/‖φ(t)‖.

7.5. Reproductive value in a periodic environment. Bacaër and Abdurah-
man ([5]) proposed to define w∗(s) as the reproductive value in the periodic envi-
ronment. In fact, if the population vector p(t) is evolved as p(t) = U(t, s)p(s) and
the total reproductive value is defined by V (t) := 〈w∗(t), p(t)〉, it follows from (25)
that

V (t) = 〈w∗(t), p(t)〉 = eλt〈v∗(t), p(t)〉 = eλt〈v∗(0), p(0)〉 = eλtV (0),

which shows that the exponential growth of the “total reproductive value”, so it is
seen as an extension of Fisher’s theorem for the reproductive value in a constant
environment ([31]). On the other hand, the importance functional v∗(s) is seen as
the demographic potential defined by Ediev ([24]) in the context of Lotka’s stable
population model. Then Birkhoff’s result (27) implies Ediev’s observation that
the total demographic potential 〈v∗(t), f(t)〉 is constant in the time-inhomogeneous
Lotka model.
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If we consider a constant environment, v∗(s) becomes a (essentially) unique per-
sistent (exponential) solution of the dual evolution system (semigroup) and w∗(s)
is a time-independent positive eigenvector of the generator of the dual semigroup.
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