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Abstract. In recent years many delay epidemiological models have been pro-

posed to study at which stage of the epidemics the delays can destabilize the

disease free equilibrium, or the endemic equilibrium, giving rise to stability
switches. One of these models is the SEIR model with constant latency time

and infectious periods [2], for which the authors have proved that the two de-
lays are harmless in inducing stability switches. However, it is left open the

problem of the global asymptotic stability of the endemic equilibrium whenever

it exists. Even the Lyapunov functions approach, recently proposed by Huang
and Takeuchi to study many delay epidemiological models, fails to work on
this model. In this paper, an age-infection model is presented for the delay

SEIR epidemic model, such that the properties of global asymptotic stability
of the equilibria of the age-infection model imply the same properties for the

original delay-differential epidemic model. By introducing suitable Lyapunov

functions to study the global stability of the disease free equilibrium (when
R0 ≤ 1) and of the endemic equilibria (whenever R0 > 1) of the age-infection

model, we can infer the corresponding global properties for the equilibria of
the delay SEIR model in [2], thus proving that the endemic equilibrium in [2]
is globally asymptotically stable whenever it exists.

Furthermore, we also present a review of the SIR, SEIR epidemic models,
with and without delays, appeared in literature, that can be seen as particular

cases of the approach presented in the paper.
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1. Previous results. In the paper [2], Beretta and Breda study a two-delays SEIR
epidemic model as follows:

dS(t)

dt
= Λ− µ1S(t)− g(I(t))S(t),

dE(t)

dt
= g(I(t))S(t)− g(I(t− τ1))S(t− τ1)e−µ2τ1 − µ2E(t),

dI(t)

dt
= g(I(t− τ1))S(t− τ1)e−µ2τ1 (1.1)

− g(I(t− τ1 − τ2))S(t− τ1 − τ2)e−µ2(τ1+τ2) − µ2I(t),

dR(t)

dt
= g(I(t− τ1 − τ2))S(t− τ1 − τ2)e−µ2(τ1+τ2) − µ3R(t).

In the SEIR model (1.1), they have assumed that the exposed individuals E(t), who
are infected but not yet infectious, have a latency time τ1, after which they become
infectious I(t) (i.e. capable to infect susceptibles S(t)) and have an infectious period
τ2. Both exposed and infectious individuals are assumed to have the same death
rate “µ2”, whereas the susceptibles have a natural death rate constant “µ1”. At
the end of the infectious period, i.e. at the infection age â = τ1 + τ2, it is assumed
that the infected individuals are removed from the infection, thus entering in the
class of the removed individuals R(t), which have a proper death rate constant
“µ3”. Furthermore, for the nonlinear incidence rate g(I), the structure g(I) =
βI

1+αI , α, β ∈ R+ was chosen.

The initial conditions for model (1.1), by biological reasons, are the positive
continuous functions:

S(θ) = ψ1(θ), I(θ) = ψ2(θ), θ ∈ [−(τ1 + τ2), 0], (1.2)

with S(0), R(0) ≥ 0. Moreover, since E(t), I(t) in (1.1) can be written as:

E(t) =

∫ τ1

0

g(I(t− a))S(t− a)e−µ2ada,

I(t) =

∫ τ1+τ2

τ1

g(I(t− a))S(t− a)e−µ2ada,

then, by continuity E(0), I(0) must satisfy that :

E(0) =

∫ τ1

0

g(I(−a))S(−a)e−µ2ada, I(0) =

∫ τ1+τ2

τ1

g(I(−a))S(−a)e−µ2ada.

(1.3)
The delay model (1.1) has two equilibria: the disease-free equilibrium (DFE) E0

= (S0 = Λ
µ1
, E0 = 0, I0 = 0, R0 = 0), which exists for all the parameter values, and

the positive equilibrium E∗ = (S∗, E∗, I∗, R∗) which exists if and only if the basic
reproduction number

R0 =
1

µ2

Λ

µ1
· g′(0)e−µ2τ1(1− e−µ2τ2),

satisfies R0 > 1 , since it can be proven that its components are:

S∗ =
Λ

µ1 + g(I∗)
, E∗ =

1

µ2
g(I∗)S∗(1− e−µ2τ1),

I∗ =
1

µ2
g(I∗)S∗e−µ2τ1(1− e−µ2τ1), R∗ =

1

µ3
g(I∗)S∗e−µ2(τ1+τ2),
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In [2], both by the analysis of the characteristic equations and by the iterative
schemes coupled with the comparison principle for differential equations, the fol-
lowing dynamical properties for model (1.1), with i.c. (1.2), were obtained:

Theorem 1.1. If R0 ≤ 1 the DFE E0 is globally attractive, i.e. for all initial
conditions limt→∞(S(t), E(t), I(t), R(t)) = ( Λ

µ1
, 0, 0, 0).

Theorem 1.2. If R0 > 1, the DFE E0 is unstable.

Theorem 1.3. The positive equilibrium E∗ is globally attractive if “ β
α < µ1”.

Theorem 1.4. The system (1.1) is permanent if R0 > 1 and “βα < µ1”.

Theorem 1.5. Whenever it exists, the positive equilibrium E∗ is locally asymptot-
ically stable.

As already noticed in [2], the results in Theorems 1.1.-1.5. show that both
the delays are harmless in inducing stability switches at both the equilibria E0

and E∗. However, since the basic reproductive number R0 depends upon both
the latency time τ1 and on the infectivity period τ2, even the existence condition
R0 > 1 of the positive equilibrium E∗, jointly with the stability properties of E0 ,
will be dependent upon both delays. The latency time and the infectivity period
however play an opposite role on the existence of the endemic equilibrium E∗ (we
say E∗ to be endemic iff we can prove that whenever R0 > 1 then E∗ is globally
asymptotically stable): while the condition R0 > 1 requires that the latency time
τ1 must be sufficiently small in order that

τ1 < h(τ2) :=
1

µ2
ln

[
βΛ

µ1µ2
(1− e−µ2τ2)

]
,

on the opposite side, the infectivity period must be sufficiently large to ensure that:

τ2 > τ∗2 :=
1

µ2
ln

[
βΛ

βΛ− µ1µ2

]
.

Furthermore, it is evident from the condition τ1 < h(τ2) that there is a threshold
for the latency time, say

τ∗1 :=
1

µ2
ln

[
βΛ

µ1µ2

]
,

such that if τ1 > τ∗1 the condition R0 > 1 cannot be realized whatever large the
infectivity period τ2 is.

Returning to the asymptotic stability of the positive equilibrium E∗, we see that
Theorems 1.3. and 1.5. only imply its global asymptotic stability if “βα < µ1”.
Hence, it is interesting to see wether it is possible to prove the global asymptotic
stability of the endemic equilibrium E∗ whenever it exists (R0 > 1). This is one of
the main targets of this paper.

Recently, many researchers studied delay epidemic models by using Lyapunov
approach and achieve nice results on global stability of equilibria (e.g., [6, 7, 8, 18]).
In [7, 8], Huang and Takeuchi employed a class of Goh-type Lyapunov functions
that integrate over past states to establish global stability for delay SIR, SEIR,
SEI, SIS epidemiological models with a general incidence rate. However, in the
models appearing in the above mentioned papers the delay terms appeared with
positive signs and this is an essential feature to ensure that the related Lyapunov
functionals work well. However, in the model (1.1) two delay terms appear with
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negative signs. Correspondingly, the typical Lyapunov functions in [7, 8] do not
work for the model (1.1). Hence, the global asymptotic stability of the positive
equilibrium E∗ by Lyapunov functionals is left as open question in [2].

In this paper, in Section 2 we reformulate the above delay differential equations
model with nonlinear incidence as an equivalent age-infection model with nonlinear
boundary conditions, which implies the stability properties of (1.1). In Section
3, by using Lyapunov function approach for age-structured models [9, 14, 15], we
establish the global stability of the endemic equilibrium of the delay model (1.1).
Furthermore, in Section 4, we prove that our approach by Lyapunov functions
applied to infection age-structured models can be applied to a wide class of delay-
differential models.

2. Reformulating the delay model as an age-structured model. To refor-
mulate the delay-differential model (1.1) we introduce the density i(t, a) at time t
of infected individuals with infection age a, where the variable a measures, at time
t, the duration for which the individuals have been infected. According to the SEIR
model (1.1), we define:

E(t) =

∫ τ1

0

i(t, a)da, I(t) =

∫ τ1+τ2

τ1

i(t, a)da, (2.1)

whereas, the balance equation for the removed individuals R(t) is

dR(t)

dt
= i(t, τ1 + τ2)− µ3R(t). (2.2)

Thus, the age-structured model corresponding to the delay-differential model
(1.1) is: 

d
dtS(t) = Λ− µ1S(t)− i(t, 0),
∂
∂t i(t, a) + ∂

∂a i(t, a) = −µ2i(t, a),

+b.c. i(t, 0) = g(I(t))S(t).

+i.c. i(0, a) = ψ(a), a ∈ [0, â],

(2.3)

jointly with the equations (2.1) and (2.2).
It is to be noticed that, once known the initial condition (1.2) for system (1.1), the

initial condition ψ(a), a ∈ [0, â] for the age model (2.3) is also given and, according
to (1.2), satisfies the continuity condition (1.3) for E(0), I(0). This initial condition
is:

ψ(a) := g(ψ2(−a))ψ1(−a) exp(−µ2a), a ∈ [0, â]. (2.4)

Now , it is well known (see [5] [13]) that the solution of the Lotka-McKendric
equation: 

∂
∂t i(t, a) + ∂

∂a i(t, a) = −µ(a)i(t, a),

i(t, 0) = B(t) := g(I(t))S(t),

i(0, a) = ψ(a), a ∈ [0, â],

(2.5)

where ψ(a), a ∈ [0, â], is the initial condition (2.4), exists and it is unique for all
(t, a) ∈ (0,+∞)× [0, â].

Once introduced the “survival probability Π(a) = exp(−
∫ a

0
µ(ν)dν)”, the solu-

tion is given by:

i(t, a) =

{
ψ(a− t) Π(a)

Π(a−t) if a ≥ t,
B(t− a)Π(a) if a < t.
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Since for system (2.3) we have Π(a) = exp(−µ2a), then the solution to system
(2.3) with i.c. (2.4) becomes:

i(t, a) =

{
g(ψ2(−(a− t)))ψ1(−(a− t))Π(a− t) Π(a)

Π(a−t) if a ≥ t,
g(I(t− a))S(t− a)Π(a) if a < t.

(2.6)

Hence, in synthesis, the solution (2.6) can be written as:

i(t, a) = g(I(t− a))S(t− a) exp(−µ2a) for all t ≥ 0 and a ∈ [0, â], (2.7)

where, according to the initial conditions for the delay system (1.1), it is:

S(t− a) = ψ1(t− a), I(t− a) = ψ2(t− a), whenever t− a ∈ [−â, 0].

Now, thanks to (2.7), we want to show that the age model (2.3) with (2.1), (2.2)
is equivalent to the delay-differential SEIR model (1.1) in the sense that, any of
its solution (S(t), E(t), I(t), R(t)), t ≥ 0, is also solution of system of the delay-
differential system (1.1) with initial conditions (1.2).

From (2.1) and (2.2), we have

dE(t)

dt
=

d

dt

∫ τ1

0

i(t, a)da =

∫ τ1

0

∂

∂t
i(t, a)da

= −
∫ τ1

0

(
∂

∂a
i(t, a) + µ2i(t, a)

)
da

= − i(t, a) |τ10 −µ2

∫ τ1

0

i(t, a)da

= i(t, 0)− i(t, τ1)− µ2E(t),

that thanks to (2.7) gives

dE(t)

dt
= g(I(t))S(t)− e−µ2τ1 · g(I(t− τ1))S(t− τ1)− µ2E(t).

Similarly, we have

dI(t)

dt
=

d

dt

∫ τ1+τ2

τ1

i(t, a)da = i(t, τ1)− i(t, τ1 + τ2)− µ2I(t)

= e−µ2τ1 · g(I(t− τ1))S(t− τ1)

− e−µ2(τ1+τ2) · g(I(t− τ1 − τ2))S(t− τ1 − τ2)− µ2I(t),

and finally

dR(t)

dt
= i(t, τ1 + τ2)− µ3R(t) = e−µ2(τ1+τ2)i(t− (τ1 + τ2), 0)− µ3R(t)

= e−µ2(τ1+τ2) · g(I(t− (τ1 + τ2)))S(t− (τ1 + τ2))− µ3R(t).

The above three equations are identical to the last three delay-differential equa-
tions in system (1.1). Hence, we have the following:

Proposition 1. The model (1.1) is implied by the age-structured model (2.3) with
(2.1) and (2.2) in the sense that, for all t ≥ 0, any of its solutions (S(t), E(t), I(t),
R(t)) is also solution of the delay-differential system (1.1).
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3. Global stability of the age-structured model (2.3). The equilibria E =
(S∗, i∗(a)), a ∈ [0, â] of the age-structured model (2.3) with (2.1) and (2.2) are
solutions of {

Λ− µ1S − i(0) = 0,
d
da i(a) = −µ2i(a), i(0) = g(I)S, a ∈ [0, â],

(3.1)

where, according to (2.1), the other equilibrium components are given by

E∗ =

∫ τ1

0

i∗(a)da, I∗ =

∫ τ1+τ2

τ1

i∗(a)da, R∗ =
i∗(τ1 + τ2)

µ3
. (3.2)

We see that the trivial equilibrium of model (2.3) is the disease-free equilibrium

E0 = (S0, i0(a)) =

(
Λ

µ1
, 0

)
, a ∈ [0, â],

which, according to (3.2), corresponds to the disease-free equilibrium E0 = (Λ/µ1, 0,
0, 0) of system (1.1).

Besides E0, system (2.3) has the positive equilibrium

E∗ = (S∗ =
Λ

µ1 + g(I∗)
, i∗(a)), a ∈ [0, â],

where

i∗(a) = g(I∗)S∗e−µ2a, a ∈ [0, â].

According to (3.1) and (3.2), S∗, I∗ is the unique positive solution of{
Λ− µ1S

∗ − g(I∗)S∗ = 0,

µ2I
∗ = g(I∗)S∗(e−µ2τ1 − e−µ2(τ1+τ2)),

(3.3)

which exist if and only if the basic reproduction number R0 of system (1.1) is:
R0 > 1. Of course, according (3.2) the equilibrium E∗ corresponds to the positive
equilibrium E∗ of system (1.1).

For the sake of simplicity, in the following, by referring to the equilibria E0 and
E∗ we will leave out the information a ∈ [0, â].

Proposition 2. The age-infection model (2.3) has always the disease-free equi-
librium E0(Λ/µ1, i0(a)). In addition, there exists a unique positive equilibrium
E∗(S∗, i∗(a)) when R0 > 1.

In the following, we would study the stability of equilibria of the age-infection
model (2.3) by Lyapunov functions.

Theorem 3.1. When R0 ≤ 1, the equilibrium E0 = (Λ/µ1, 0) is globally asymptot-
ically stable.

Proof. Firstly, we define two non-negative functions:

(i), φ(a) = (1− e−µ2τ2)eµ2(a−τ1) for a ∈ [0, τ1]. We have

φ(0) = (1− e−µ2τ2)e−µ2τ1 ,

φ(τ1) = 1− e−µ2τ2 ,

φ′a(a) =
d

da
φ(a) = µ2φ(a).
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(ii), ϕ(a) =
∫ τ1+τ2
a

µ2 · eµ2(a−θ) dθ for a ∈ [τ1, τ1 + τ2]. We have

ϕ(τ1) = 1− e−µ2τ2 ,

ϕ(τ1 + τ2) = 0,

ϕ′a(a) =
d

da
ϕ(a) = µ2ϕ(a)− µ2.

Note that φ(τ1) = ϕ(τ1).

Define a Lyapunov function

V1 = φ(0)

(
S(t)− S0 − S0 ln

S(t)

S0

)
+

∫ τ1

0

φ(a)i(t, a)da+

∫ τ1+τ2

τ1

ϕ(a)i(t, a)da, (3.4)

which is positive definite with respect to the disease free equilibrium. Taking the
time derivative of (3.4), we have

dV1

dt
= φ(0)

(
1− S0

S(t)

)
· dS(t)

dt
+

∫ τ1

0

φ(a) · ∂
∂t
i(t, a)da+

∫ τ1+τ2

τ1

ϕ(a) · ∂
∂t
i(t, a)da

= φ(0)

(
1− S0

S(t)

)
[µ1(S0 − S(t))− g(I(t)S(t))]

−
∫ τ1

0

φ(a)

(
∂i(t, a)

∂a
+ µ2i(t, a)

)
da

−
∫ τ1+τ2

τ1

ϕ(a)

(
∂i(t, a)

∂a
+ µ2i(t, a)

)
da

= φ(0)

(
1− S0

S(t)

)
µ1(S0 − S(t))− φ(0) · (S(t)− S0)g(I(t))

−
∫ τ1

0

φ(a)
∂

∂a
i(t, a)da−

∫ τ1

0

φ(a)µ2i(t, a)da

−
∫ τ1+τ2

τ1

φ(a)
∂

∂a
i(t, a)da−

∫ τ1+τ2

τ1

ϕ(a)µ2i(t, a)da

Then, using integration by parts,

dV1

dt
= φ(0)

(
1− S0

S(t)

)
µ1(S0 − S(t))− φ(0) · (S(t)− S0)g(I(t))

− [φ(a)i(t, a)]
∣∣a=τ1

a=0
+

∫ τ1

0

[φ′(a)− µ2φ(a)] i(t, a)da

− [ϕ(a)i(t, a)]
∣∣a=τ1+τ2

a=τ1
+

∫ τ1+τ2

τ1

[ϕ′(a)− µ2ϕ(a)] i(t, a)da

Since

i(t, 0) = S(t)g(I(t)), (3.5)

φ(τ1) = ϕ(τ1), (3.6)

φ′(a)− µ2φ(a) = 0, (3.7)

ϕ′(a)− µ2ϕ(a) = −µ2, (3.8)
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taking the above into account and that ϕ(τ1 + τ2) = 0, we obtain

dV1

dt
= φ(0)

(
1− S0

S(t)

)
µ1(S0 − S(t))− φ(0) · (S(t)− S0)g(I(t))

+ φ(0)g(I(t))S(t)− µ2I(t)

= − µ1

S(t)
φ(0)(S(t)− S0)2 + φ(0)S0g(I(t))− µ2I(t)

= − µ1

S(t)
φ(0)(S(t)− S0)2 + µ2I(t)

(
φ(0)S0

µ2

g(I(t))

I(t)
− 1

)
≤ − µ1

S(t)
φ(0)(S(t)− S0)2 + µ2I(t)

(
φ(0)S0

µ2
g′(0)− 1

)
= − µ1

S(t)
φ(0)(S(t)− S0)2 + µ2I(t)(R0 − 1).

where R0 = S0

µ2
g′(0)φ(0).

Therefore, R0 ≤ 1 ensures that dV1

dt ≤ 0 holds. Every solution of (2.3) tends to

M, where M is the largest invariant subset in dV1

dt = 0. Note that when R0 < 1,
the equality holds only if S(t) = S0 and I(t) = 0. From (2.1), we have i(t, a) = 0
for t > a in M. Hence we have that M = {E0}.

When R0 = 1, dV1

dt = 0 only if S(t) = S0. We show thatM also consists only the
equilibrium E0. Let (S(t), i(t, a)) be the solution with initial data in M. From the
invariance of M, S(t) = S0 for any t. By the first equation of (2.3), it follows that
g(I(t)) = 0 for any t, which implies I(t) = 0 for any t. Similar to the case R0 < 1,
we have that M = {E0}. Thus, by Laypunov-LaSalle asymptotic stability theorem
for semiflows, the disease free equilibrium E0 = (S0, 0) is globally asymptotically
stable whenever R0 ≤ 1.

Theorem 3.2. Consider (2.3) when R0 > 1. The endemic equilibrium E∗ = (S∗,
i∗(a)), a ∈ [0, â] exists, and if the function g(I) satisfies that

{
I
I∗ ≤

g(I)
g(I∗) ≤ 1 for 0 < I ≤ I∗,

1 ≤ g(I)
g(I∗) ≤

I
I∗ for I > I∗,

(3.9)

then the endemic equilibrium is globally asymptotically stable.

Proof. Define a Lyapunov function:

U(t) = φ(0)

(
S(t)− S∗ − S∗ ln

S(t)

S∗

)
+

∫ τ1

0

φ(a)i∗(a)

(
i(t, a)

i∗(a)
− 1− ln

i(t, a)

i∗(a)

)
da (3.10)

+

∫ τ1+τ2

τ1

ϕ(a)i∗(a)

(
i(t, a)

i∗(a)
− 1− ln

i(t, a)

i∗(a)

)
da.
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Here φ(.) and ϕ(.) are defined as same as (i) and (ii) in proof of Theorem 3.1. Let

U1 = φ(0)

(
S(t)− S∗ − S∗ ln

S(t)

S∗

)
,

U2 =

∫ τ1

0

φ(a)i∗(a)

(
i(t, a)

i∗(a)
− 1− ln

i(t, a)

i∗(a)

)
da,

U3 =

∫ τ1+τ2

τ1

ϕ(a)i∗(a)

(
i(t, a)

i∗(a)
− 1− ln

i(t, a)

i∗(a)

)
da.

Here the function U1 ≥ 0 and has a minimal value at point S∗, and U2, U3 ≥ 0 has
a minimal value at i∗(a). Hence, U(t) = U1 +U2 +U3 is positive definite and takes
its minimal value zero at the equilibrium point E∗ = (S∗, i∗(a)).

Calculating the time derivative of Ui(t)(i = 1, 2, 3) along (2.3), we have

dU1

dt
= φ(0)

(
1− S∗

S(t)

)
(µ1S

∗ − µ1S(t))

+ φ(0)

(
1− S∗

S(t)

)
(g(I∗)S∗ − g(I(t))S(t))

= φ(0)

(
1− S∗

S(t)

)
µ1(S∗ − S(t))

+ φ(0)g(I∗)S∗ − φ(0)g(I(t))S(t)

− S∗

S(t)
φ(0)g(I∗)S∗ + φ(0)g(I(t)S∗,

and

dU2

dt
=

∫ τ1

0

φ(a)i∗(a)
∂

∂t

(
i(t, a)

i∗(a)
− 1− ln

i(t, a)

i∗(a)

)
da

=

∫ τ1

0

φ(a)

(
1− i∗(a)

i(t, a)

)
∂i(t, a)

∂t
da

=

∫ τ1

0

φ(a)

(
1− i∗(a)

i(t, a)

)(
−∂i(t, a)

∂a
− µ2i(t, a)

)
da

= −
∫ τ1

0

φ(a)

(
1− i∗(a)

i(t, a)

)
∂i(t, a)

∂a
da−

∫ τ1

0

µ2φ(a)i(t, a)

(
1− i∗(a)

i(t, a)

)
da.

Note that

∂

∂a

(
i(t, a)

i∗(a)
− 1− ln

i(t, a)

i∗(a)

)
=

(
1− i∗(a)

i(t, a)

)
×
(
ia(t, a)

i∗(a)
− i(t, a) · i∗a(a)

[i∗(a)]2

)
,

here ia(a, t) = ∂
∂a i(t, a) and i∗a(a) = d

da i
∗(a).

From the second equation of (2.3), we know

i∗a(a) = −µ2i
∗(a).
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hence,

dU2

dt
=−

∫ τ1

0

φ(a)i∗(a)d

(
i(t, a)

i∗(a)
− 1− ln

i(t, a)

i∗(a)

)
=− φ(a)i∗(a)

(
i(t, a)

i∗(a)
− 1− ln

i(t, a)

i∗(a)

) ∣∣a=τ1

a=0

+

∫ τ1

0

(
i(t, a)

i∗(a)
− 1− ln

i(t, a)

i∗(a)

)
d(φ(a)i∗(a))

Further, from φ′a(a) = µ2φ(a) and i∗a(a) = −µ2i
∗(a), we have

d(φ(a)i∗(a)) = [φ′a(a)i∗(a) + φ(a)i∗a(a)]da = [µ2 − µ2]φ(a)i∗(a)da = 0.

Thus,

dU2

dt
= φ(0)i(t, 0)− φ(0)i∗(0)− φ(0)i∗(0) ln

i(t, 0)

i∗(0)

− φ(τ1)i(t, τ1) + φ(τ1)i∗(τ1)− φ(τ1)i∗(τ1) ln
i(t, τ1)

i∗(τ1)
.

Similarly, we have

dU3

dt
= −

∫ τ1+τ2

τ1

ϕ(a)i∗(a)d

(
i(t, a)

i∗(a)
− 1− ln

i(t, a)

i∗(a)

)
=− ϕ(a)i∗(a)

(
i(t, a)

i∗(a)
− 1− ln

i(t, a)

i∗(a)

) ∣∣a=τ1+τ2

a=τ1

+

∫ τ1+τ2

τ1

(
i(t, a)

i∗(a)
− 1− ln

i(t, a)

i∗(a)

)
dϕ(a)i∗(a)

By using

d(ϕ(a)i∗(a)) = ϕ(a)di∗(a) + i∗(a)dϕ(a) = −µ2i
∗(a)da,

we have

dU3

dt
= ϕ(τ1)i(t, τ1)− ϕ(τ1)i∗(τ1)− ϕ(τ1)i∗(τ1) ln

i(t, τ1)

i∗(τ1)

− ϕ(τ1 + τ2)i∗(τ1 + τ2)

(
i(t, τ1 + τ2)

i∗(τ1 + τ2)
− 1− ln

i(t, τ1 + τ2)

i∗(τ1 + τ2)

)
−
∫ τ1+τ2

τ1

µ2i
∗(a)

(
i(t, a)

i∗(a)
− 1− ln

i(t, a)

i∗(a)

)
da.
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Since φ(τ1) = ϕ(τ1) and ϕ(τ1 + τ2) = 0, combining U ′2(t) with U ′3(t), we obtain

dU2(t)

dt
+
dU3(t)

dt

= φ(0)i(t, 0)− φ(0)i∗(0)− φ(0)i∗(0) ln
i(t, 0)

i∗(0)

−
∫ τ1+τ2

τ1

µ2i
∗(a)

(
i(t, a)

i∗(a)
− 1− ln

i(t, a)

i∗(a)

)
da

= φ(0)g(I)S − φ(0)g(I∗)S∗ − φ(0)g(I∗)S∗ ln
g(I)S

g(I∗)S∗

−
∫ τ1+τ2

τ1

µ2

(
i(t, a)− i∗(a)− i∗(a) ln

i(t, a)

i∗(a)

)
da

= φ(0)g(I)S − φ(0)g(I∗)S∗ − φ(0)g(I∗)S∗ ln
g(I)S

g(I∗)S∗

− µ2I + µ2I
∗ +

∫ τ1+τ2

τ1

µ2i
∗(a) ln

i(t, a)

i∗(a)
da,

and

dU

dt
=
dU1

dt
+
dU2

dt
+
dU3

dt

= φ(0)

(
1− S∗

S(t)

)
µ1(S∗ − S(t))

+ φ(0)g(I∗)S∗
(
−S
∗

S
+

g(I)

g(I∗)
+ ln

g(I∗)S∗

g(I)S

)
− µ2I + φ(0)g(I∗)S∗ +

∫ τ1+τ2

τ1

µ2i
∗(a) ln

i(t, a)

i∗(a)
da

= − µ1

S(t)
φ(0) (S(t)− S∗)2

+ φ(0)g(I∗)S∗
(

1− S∗

S
+ ln

S∗

S

)
+ µ2I

∗
(
g(I)

g(I∗)
− I

I∗
+ ln

g(I∗)

g(I)

)
+

∫ τ1+τ2

τ1

µ2i
∗(a) ln

i(t, a)

i∗(a)
da,

here using

φ(0)g(I∗)S∗ = e−µ2τ1(1− e−µ2τ2)g(I∗)S∗ = µ2I
∗,

and

ln
g(I∗)S∗

g(I)S
= ln

S∗

S
+ ln

g(I∗)

g(I)
.

Since

µ2I
∗ = µ2

∫ τ1+τ2

τ1

i∗(a)da,
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we have

dU

dt
= − µ1

S(t)
φ(0) (S(t)− S∗)2

+ φ(0)g(I∗)S∗
(

1− S∗

S
+ ln

S∗

S

)
+

∫ τ1+τ2

τ1

µ2i
∗(a)

(
g(I)

g(I∗)
− I

I∗
+ ln

g(I∗)i(t, a)

g(I)i∗(a)

)
da

= − µ1

S(t)
φ(0) (S(t)− S∗)2

+ φ(0)g(I∗)S∗
(

1− S∗

S
+ ln

S∗

S

)
+

∫ τ1+τ2

τ1

µ2i
∗(a)

(
1− g(I∗)i(t, a)

g(I)i∗(a)
+ ln

g(I∗)i(t, a)

g(I)i∗(a)

)
da

+

∫ τ1+τ2

τ1

µ2i
∗(a)

(
g(I)

g(I∗)
− I

I∗
− 1 +

g(I∗)i(t, a)

g(I)i∗(a)

)
da

Here ∫ τ1+τ2

τ1

µ2i
∗(a)

(
g(I)

g(I∗)
− I

I∗
− 1 +

g(I∗)i(t, a)

g(I)i∗(a)

)
da

= µ2I
∗
(
g(I)

g(I∗)
− I

I∗
− 1 +

g(I∗)I

g(I)I∗

)
= µ2I

∗
(
I

I∗
− g(I)

g(I∗)

)(
g(I∗)

g(I)
− 1

)
Hence,

dU(t)

dt
= − µ1

S(t)
φ(0) (S(t)− S∗)2

(3.11)

+ φ(0)g(I∗)S∗
(

1− S∗

S
+ ln

S∗

S

)
(3.12)

+

∫ τ1+τ2

τ1

µ2i
∗(a)

(
1− g(I∗)i(t, a)

g(I)i∗(a)
+ ln

g(I∗)i(t, a)

g(I)i∗(a)

)
da (3.13)

+ µ2I
∗
(
I

I∗
− g(I)

g(I∗)

)(
g(I∗)

g(I)
− 1

)
(3.14)

Obviously, the following inequalities always hold for positive i(t, a)

1− S∗

S
+ ln

S∗

S
≤ 0, (3.15)

1− g(I∗)i(t, a)

g(I)i∗(a)
+ ln

g(I∗)i(t, a)

g(I)i∗(a)
≤ 0. (3.16)

From the conditions (3.9), we have(
I

I∗
− g(I)

g(I∗)

)(
g(I∗)

g(I)
− 1

)
≤ 0. (3.17)

That is, positive-definite function U(t) has negative derivative d
dtU(t). Furthermore,

the equality d
dtU(t) = 0 holds if and only if S(t) = S∗ and i(t, a) = i∗(a). Hence,
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every solution of (2.3) tends to E∗ = (S∗, i∗(a)), which is globally asymptotically
stable when it exists.

Finally we have to notice that, concerning the SEIR delay differential model
(1.1), the condition (3.9) in Theorem 3.2 simply holds when the nonlinear incidence
function g(I) is a concave function with respect to I, condition which is obviously

satisfied by the function g(I) = βI
1+αI , α, β ∈ R+ chosen in [2].

Therefore, the age-infection model (2.3) with any given initial condition is such
that ∣∣(S(t), i(t, a))− (S∗, i∗(a))

∣∣→ 0 as t→∞
for all a ∈ [0, τ1 + τ2], thus implying that the solutions of (1.1) satisfy

|S(t)− S∗| → 0,

|E(t)− E∗| =
∣∣∣∣∫ τ1

0

[i(t, a)− i∗(a)]da

∣∣∣∣ ≤ ∫ τ1

0

|i(t, a)− i∗(a)| da→ 0,

|I(t)− I∗| =
∣∣∣∣∫ τ1+τ2

τ1

[i(t, a)− i∗(a)]da

∣∣∣∣ ≤ ∫ τ1+τ2

τ1

|i(t, a)− i∗(a)| da→ 0,

as t→∞, which in turn implies |R(t)−R∗| → 0 as t→∞ and therefore the global
attractivity for the positive equilibrium E∗ = (S∗, E∗, I∗, R∗). This, jointly with
the local asymptotic stability of E∗(see Theorem 1.5), implies the global asymptotic
stability of E∗.

Theorem 3.3. When R0 > 1, then E∗ is globally asymptotically stable for model
(1.1).

4. Discussion and conclusion. We should point out that we can also improve
our proof and Lyapunov functions to more general case f(S)g(I) and f(S, I) as in
[7, 8]. The reader can prove it easily by using the same approaches here. It only
needs that the front part of Lyapunov function U(t) is instead by

U1 = ϕ(0)

(
S −

∫ S

0

f(σ)

f(S∗)
dσ

)
or U1 = ϕ(0)

(
S −

∫ S

0

f(σ, I∗)

f(S∗, I∗)
dσ

)
.

A minor open question concerning the delay model (1.1) concerns the possibility
that each stage of the epidemic model has different death rate constant (d.r.c.).
For example, the exposed E have d.r.c. µE and the infectious people have d.r.c.
µI 6= µE . In such a case the age-infection model (2.3) can easily be generalized by
introducing an age dependent death rate:

µ(a) =

{
µE if a ∈ (0, τ1]
µI if a ∈ (τ1, τ1 + τ2],

i.e. {
d
dtS(t) = Λ− µ1S(t)− g(I(t))S(t),
∂
∂t i(t, a) + ∂

∂a i(t, a) = −µ(a)i(t, a),
(4.1)

with the boundary condition i(t, 0) = g(I(t))S(t), where I(t) =
∫ τ1+τ2
τ1

i(t, a)da,

and initial condition i(0, a) = ψ(a), a ∈ [0, τ1 + τ2].

For the model (4.1), once suitably modified the function φ(a) and ϕ(a) as

(i) φ(a) = (1− exp(−µIτ2)) · exp(µE(a− τ1)), for a ∈ (0, τ1],
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(ii) ϕ(a) =
∫ τ1+τ2
a

µI exp(µI(a− θ))dθ, for a ∈ [τ1, τ1 + τ2],

the proofs of the global asymptotic stability of the disease-free equilibria E0 when
R0 ≤ 1 and of the endemic equilibrium E∗ when R0 > 1 can be performed with the
same structure of the Lyapunov functions and by using the same technical details
as in Theorems 3.1 and 3.2 respectively. It is to be noticed that in this case the
basic reproduction number R0 becomes

R0 =
φ(0)S0

µI
g′(0),

where S0 = Λ/µ1, and the endemic equilibrium component i∗(a) becomes

i∗(a) =

{
g(I∗)S∗e−µEa for a ∈ (0, τ1],
g(I∗)S∗e−µIa for a ∈ (τ1, τ1 + τ2].

The approach by the infection-age model followed in this paper to study the
global stability properties for an SEIR model with two delays, of course, also applies
to the delayed SIR model. For example, Xu and Du in [22] considered a delayed SIR
epidemic model with constant infectious period. That model they considered is a
special case of model (1.1) where τ1 = 0. The global stability of endemic equilibrium
was left as an open question. Here we also solved this problem. Further, comparing
with the general age-infection model in [15], the mortality rate of i(t, a) in this
nonlinear age-infection model is assumed to be constant µ2. Our results generalize
partly the results in Magal et. al., [15] and McCluskey [16] to nonlinear incidence
rate.

On the other hand, in this paper we establish the global stability for the age-
infection epidemic model with nonlinear incidence rate. Actually, we find that most
epidemiological models with or without time delay can be regarded as specific cases
of age-infection model (2.3).

(I) When τ1 = 0 and τ2 =∞, we have I(t) =
∫∞

0
i(t, a)da, and

d

dt
I(t) =

d

dt

∫ ∞
0

i(t, a)da = i(t, 0)− i(t,∞)− µ2I(t)

= g(I(t))S(t)− µ2I(t),

since g(I(t))S(t) is bounded as t→∞. Hence, age-infection model (2.3) is equiva-
lent to the following ordinary differential equation SIR model,

S′(t) = Λ− µ1S(t)− g(I(t))S(t),

I ′(t) = g(I(t))S(t)− µ2I(t), (4.2)

R′(t) = γI(t)− µ3R(t).

The stability of the above SIR model with nonlinear incidence rate has been estab-
lished by Korobeinikov et al. [10, 11, 12].

(II) When τ1 is a positive constant and τ2 = ∞ , we have E(t) =
∫ τ1

0
i(t, a)da,

I(t) =
∫∞
τ1
i(t, a)da, and

d

dt
I(t) = exp(−µ2τ1)g(I(t− τ1))S(t− τ1)− µ2I(t).
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Model (2.3) is equivalent to the following SEIR model with a discrete delay,

S′(t) = Λ− µ1S(t)− g(I(t))S(t),

E′(t) = g(I(t))S(t)− e−µ2τ1g(I(t− τ1))S(t− τ1)− µ2I(t),

I ′(t) = e−µ2τ1g(I(t− τ1))S(t− τ1)− µ2I(t), (4.3)

R′(t) = γI(t)− µ3R(t).

The global dynamical properties of the above model (4.3) are completely established
by Huang et al. in [7].

If we omit the variable E(t) in (4.3) and set new variables as s(t) = S(t), i(t) =
I(t+ τ1), r(t) = R(t+ τ1), then model (4.3) is transformed to

s′(t) = Λ− µ1s(t)− g(i(t− τ1))s(t),

i′(t) = e−µ2τ1g(i(t− τ1))s(t)− µ2i(t), (4.4)

r′(t) = γi(t)− µ3r(t).

The above delay SIR model with nonlinear incidence was widely studied in [1, 3, 4,
19, 21], and the global stability are established in [6, 8, 18].

This means that the popular epidemic models with or without delays can be
regarded as the special cases of age-infection model (2.3), and their global asymp-
totical properties can be determined by analyzing (2.3).

In conclusion, by the above analysis it appears that time delays in SIR, SEIR
models are harmless in generating stability switches delays induced. Of course, we
expect that time delays may play a destabilizing role when occurring, for example,
in the step by which removed individuals R can (partially) loss their immunity and
return to be susceptibles, that is in models like SIS, SIRS and SEIRS.
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