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Abstract. In this work, we investigate the behavior of the pulsatile blood
flow in the system of human coronary arteries. Blood is modeled as an in-
compressible non-Newtonian fluid. The transient phenomena of blood flow
through the coronary system are simulated by solving the three dimensional
unsteady state Navier-Stokes equations and continuity equation. Distributions
of velocity, pressure and wall shear stresses are determined in the system under
pulsatile conditions on the boundaries. Effect of branching vessel on the flow
problem is investigated. The numerical results show that blood pressure in
the system with branching vessels of coronary arteries is lower than the one in
the system with no branch. The magnitude of wall shear stresses rises at the
bifurcation.

1. Introduction. The major vessels of the coronary circulation as shown in Fig.
1 are the left coronary (LCA) that divides into left anterior descending (LAD) and
circumflex branches (LCX), and the right coronary artery (RCA). The left and
right coronary arteries originate at the base of the aorta and lie on the surface of
the heart. Through these vessels, blood is distributed to different regions of the
heart muscle. As one gets older, vessels may become hardened and contain fatty
deposits or atheromas on the inner lining of the vessel. This reduces the vessel’s
ability to expand during the systole. The deposition of atheromas in the arteries
causes narrowing of the coronary arteries known as the coronary artery disease
(CAD). These arterial changes occur silently, and symptoms are often present only
until atheromas occlude more than two thirds of the vessel [32]. Fig. 2 shows a
conventional angiogram of a stenosed coronary artery with an arrow pointing to the
stenosis at the proximal part of the RCA.

2000 Mathematics Subject Classification. Primary: 92C10; Secondary: 92C50.
Key words and phrases. Mathematical modelling, blood flow, human coronary artery.

199

http://dx.doi.org/10.3934/mbe.2012.9.199


200 B. WIWATANAPATAPHEE, Y. H. WU, T. SIRIAPISITH AND B. NUNTADILOK

Figure 1. The major vessels of the coronary circulation

Figure 2. The angiogram of the RCA with stenosis. The arrow
in the figure points to the stenosis.

Today the CAD is considered as one of the major causes of human death. Most
of the cases are associated with some form of abnormal blood flow in arteries due
to the existence of stenoses. To create a new pathway for blood flow, the technique
of coronary artery bypass grafting (CABG) has been widely used for patients with
severe coronary artery diseases. In a CABG operation, the surgeon grafts the patient
own blood vessels, such as veins from the legs or arteries from the chest or arms,
onto the diseased coronary artery.
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Over the last two decades, a large number of bypass grafts have been implanted
worldwide. However, up to 25 percents of grafts fail within one year and up to
50 percents fail within ten years after surgery [33]. Today, it has been recognized
that one of the most important determinations in a successful bypass operation is
the information of the rheological behavior of blood, the flow speed, the pressure
distribution, the wall shear stress, and the wall deformation in cardiac cycles. Thus
over the last two decades, extensive research has been carried out to study blood
flow problems in the coronary artery, including experimental, analytical and numer-
ical studies. Studies for both normal and stenotic vessels have been carried out for
idealized arteries, idealized arterial bifurcations, branchings, and for specific, clini-
cally important cases such as the aortic arch, the carotid artery, and the coronary
arteries. In most work, blood is assumed to be a Newtonian fluid which is generally
a valid approximation for the rheological behavior of blood in the large blood ves-
sels with diameter of 2-3 millimeters [23, 26, 35]. Fei et al. [26] constructed three
dimensional iliofermoral bypass graft distal anastomoses under various conditions
of anastomotic angle configurations of 20, 30, 40, 45, 50, 60 and 70 degree. The flow
patterns and wall shear stress were numerically simulated. Staalsen et al. [35] per-
formed the end-to-side anastomosis with polyurethane graft on the pig abdominal
aorta.

To investigate the relationship between hemodynamic effect of the blood circu-
lation and vascular diseases in small vessels, the non-Newtonian effect of the blood
has been considered [22, 28, 29, 39]. Basombrio et al. [22] constructed numeri-
cal experiments for non-trivial flow, close to realistic situations in hemodynamics.
The non-Newtonian effect based on the Casson’s rheological model was included.
Jie et al. [28] also included the effect of non-Newtonian property of blood in the
model. They investigated the influence of the non-Newtonian property of fluid on
the wall shear stress and flow phenomena. It is noted that the studies mentioned
above used totally unrealistic boundary conditions, such as constant velocity at the
inlet and constant pressure at the outlet. In 2006, Wiwatanapataphee et al. [39]
studied the effect of the bypass graft angle on the blood flow. They simulated the
three-dimension unsteady non-Newtonian blood flow in the artificial artery bypass
graft using realistic boundary conditions arising from the heart pump. The effect
of using different bypass graft angles, 45o, 60o and 90o, on the flow pattern was
investigated in that study.

In this work, we extend our previous work [39] on two aspects. Firstly, the
computational model is constructed based on the real geometry of human coronary
arteries by using CT scans. Secondly, the model includes the aorta, the left and
the right coronary arteries, and mimics the pulsatile flow condition. In comparison
with previous work, these two new features represent a significant advance toward
the application of mathematical model in surgery, as the model with these features
enable the computation of blood distribution to each part of the coronary artery
system so as for doctors to determine the critical conditions for surgery. It also
provides a computer-aided means for doctors to design the geometry of bypass
grafts if necessary.

The rest of this paper is organized as follows. In section two, the complete
set of governing equations for blood flow is presented. In section three, a Bubnov-
Galerkin finite element method and numerical scheme for the solution of the problem
is formulated. In section four, numerical simulations for flow through the coronary
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artery are shown. Finally some conclusions and the clinical significance of the results
are presented in section five.

2. Mathematical model. The reliability of a robust mathematical model for sim-
ulating blood flow in the coronary artery system depends on the proper construction
of the three essential components: the geometry of the system, the flow mechanism
and relevant boundary conditions, and the underlying differential equations govern-
ing the dynamics of the flow.

The construction of the computation domain of the system of human coronary
arteries is based on over four hundreds computed tomography (CT) images of a
patient. CT scan data is converted to Stereolithography (STL) format and saved
in a file by the MIMIC software. From the CT image data, we obtain the real
geometry of many cross-sections of the aorta and RCA as well as LCA branches.
These cross-section boundaries are smoothed using B-spline curves [3, 38] and then
are superimposed perpendicularly onto the central lines of the aorta and RCA/LCA
branches to form the 3-D domain. Figure 3 shows the 3-D geometry of the system
of human coronary arteries.

Figure 3. Geometry of the system of human coronary arteries.

For the dynamics of blood flow, we assume blood as an incompressible non-
Newtonian fluid. The governing equations of blood flow consist of the continuity
equation and the Navier-Stokes equations, which can be expressed in vector notation
as follows:

∇ · u = 0 in Ω1, (1)

∂u

∂t
+ (u · ∇)u =

1

ρ
∇ · σ in Ω1, (2)

where u is the blood velocity vector in the lumen region, ρ is the density of blood,
σ is the total stress tensor which is defined by

σ = −pI + 2η(γ̇)D, (3)
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where p is the pressure and D is the rate of deformation tensor given by

D =
1

2

(
∇u+ (∇u)T

)
,

in which η and γ̇ denote respectively the viscosity of blood and shear rate. Various
non-Newtonian models have been proposed to describe the relation between η and
γ̇. In this work, we use Carreau’s shear-thinning model, namely,

η = η∞ + (η0 − η∞)
[
1 + (λγ̇)2

](n−1)/2
,

in which the zero shear viscosity η0 and the infinite shear viscosity η∞ are set to be
0.56 and 0.0345 (dyne/cm2) · s, respectively; a model parameter λ is set to be 3.313

s and the consistency index n is a parameter whose value is 0.3568; γ̇ =
√
2tr(D2)

is a scalar measure of the rate of deformation tensor:

γ̇ =
√
2u1

2
x + 2u2

2
y + 2u3

2
z + (u1y + u2x)2 + (u2z + u3y)2 + (u1z + u3x)2.

In the human cardiovascular system, due to the pulsatile pressure created by the
heart pump, blood is pushed from aorta to the left and the right coronary arteries
from which blood is distributed to different part of the heart muscle. In most
existing model, the computational region is limited to one artery and the flow rate
to this artery is fixed, which obviously does not describe the real situation. Thus,
in this work, we construct the model consisting of the aorta, the RCA and the
LCA, with which the flow rate on the entry of the aorta is specified while the flow
rate to the RCA and The LCA is allowed to be determined based on the system
configuration and the flow condition which is more realistic and allow determination
of flow behaves under different conditions. As blood is pumped into the aorta with
a fixed pulsatile flow rate and is distributed to different branches and exits, we set
the condition on the entry of the aorta as pulsatile velocity boundary condition,
and the condition on the exits of arteries as pressure boundary condition, while the
conditions on the blood-vessel wall are non-slip boundary condition.

Thus, on the entry of aorta, the velocity is set to the pulsatile velocity

ūin(t) = Q(t)/A, (4)

where A and Q(t) are the cross-section area of the inlet surface and the pulsatile
flow rate. The typical pressure and flow rate profiles in different parts of the arterial
system are as shown in figure 4. According to reference [39], the flow waveform can
be expressed by the following Fourier series:

Q(t) = Q+

4∑

n=1

αQ
n cos(nωt) + βQ

n sin(nωt). (5)

On the exits, the pulsatile condition is used. According to [39], the pulsatile pressure
takes the form of the following Fourier series:

p(t) = p+
4∑

n=1

αp
ncos(nωt) + βp

nsin(nωt), (6)

where Q̄ is the mean volume flow rate, ω =
2π

T
is the angular frequency with period

T = 0.8s and p̄ is the mean pressure. Thus, on the outlet boundary, the boundary
condition is

σ · n = −p(t)n, (7)
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Figure 4. The periodic blood pressure and flow rate waveforms
oscillating within systolic and diastolic levels with cardiac period
T = 0.8s.

Table 1. Values of the parameters αQ
n , α

p
n, β

Q
n and βp

n

Artery vessel n αQ
n βQ

n αp
n βp

n

Aorta 1 1.7048 -7.5836 8.1269 -12.4156
Q̄ = 5.7222 2 -6.7035 -2.1714 -6.1510 -1.1072
p̄ = 97.2222 3 -2.6389 2.6462 -1.333 -0.3849
A = 6.7287 4 0.7198 0.2687 -2.9473 1.1603

LCA 1 0.1007 0.0764 -3.3107 -2.2932
Q̄ = 0.1589 2 -0.0034 -0.0092 -9.8639 8.0487
p̄ = 84.9722 3 0.0294 0.0337 3.0278 3.8009

4 0.0195 -0.0129 2.2476 -3.2564
RCA 1 0.0393 0.0241 5.9369 3.6334

Q̄ = 0.0896 2 -0.0360 0.0342 -11.1997 2.1255
p̄ = 95.3333 3 -0.0131 0.0026 -2.2778 -3.7528

4 -0.0035 -0.0041 2.7333 -0.6375

where n is the outward unit normal vector at the boundary. No-slip condition is
applied to the outer arterial wall. The values of Q̄, p̄, αQ

n , α
p
n, β

Q
n and βp

n are as
shown in Table 1.
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In summary, the blood flow problem in the system of human coronary arteries is
governed by the following boundary value problem.

BVP: Find u and p such that equations (1)-(2) and all boundary conditions are
satisfied.

3. Numerical algorithm based on the finite element method. To develop a
variational statement corresponding to the BVP, we consider the following alterna-
tive problem:
Find u ∈ [H1(Ω)]3, and p ∈ H1(Ω) such that for all wu ∈ [H1

0 (Ω)]
3, and wp ∈

H1
0 (Ω), all boundary conditions are satisfied and

(∇ · u, wp) = 0,(
∂u

∂t
,wu

)
+ ((u · ∇)u,wu) =

1

ρ

(
∇ · [−pI + η(∇u+ (∇u)T )],wu

)
,

(8)

where H1(Ω) is the Sobolev space W 1,2(Ω) with norm ‖ · ‖1,2,Ω and H1
0 (Ω) = {v ∈

H1(Ω)|v = 0 on the Dirichlet type boundary}, and (·, ·) denotes the inner product
on the square integrable function space L2(Ω).

By using the boundary conditions (4) and (7) and applying the standard proce-
dures for the development of the Galerkin finite element formulation, we obtain the
following system

CTU = 0,

MU̇+Du(u)U+ ĈP = 0,
(9)

where U = (u1, u2, u3, ..., uN ) with ui being the velocity vector at the ith finite

element node; the matrices C, M, Du(u) and Ĉ are derived in the Galerkin finite
element formulation but are not presented here to keep details of the paper to
minimum.

In the present study, we solve the system of equation (9) using an implicit time
integration scheme. For a typical time step (tn → tn+1), we have

CTUn+1 = 0,(
M

∆tn
+Du(u)

)
Un+1 + ĈPn+1 =

M

∆tn
Un,

(10)

which is nonlinear because Du depends on Un+1. To deal with this nonlinearity for
an iterative solution of (10), we use the following iterative updating:

CTUi+1
n+1 = 0,(

M

∆tn
+Di

n+1

)
Ui+1

n+1 + ĈP i+1
n+1 =

M

∆tn
Ui

n,
(11)

where the superscript i denotes evaluation at the ith iteration step. Therefore,
in a typical time step (tn → tn+1), starting with U0

n+1 = Un we determine

Ui+1
n+1 and P i+1

n+1 by solving system (11) repeatedly until
∥∥Ui+1

n+1 −Ui
n+1

∥∥ < εu
and

∥∥P i+1
n+1 − P i

n+1

∥∥ < εp. In this study, εu and εp are set to be 0.001.
By repeatedly using the above procedure for n = 0, 1, 2, . . . we can determine

the state U and P of the system at t0, t1, t2, . . .. If the norm ‖Un+1 −Un‖
and ‖Pn+1 − Pn‖, are sufficiently small, then the system approaches the so-called
steady state.
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(a) (b)

Figure 5. The finite element mesh of the three-dimensional coro-
nary artery: (a) with branches; (b) with no branch.

4. Results and discussion. We have simulated the three-dimensional blood flow
through the system of coronary artery with branches and with no branch. The
computation region, as shown in Figure 3, represents the system of human coronary
arteries. The system of the coronary arteries consists of the right coronary artery
(RCA) and the left coronary artery (LCA) which typically runs for 1 to 25 mm and
then bifurcates into the left anterior descending (LAD) artery and the left circumflex
artery (LCX) [1]. In this study, the volume and surface area of the coronary system
are 30.872 cm3 and 82.615 cm2. The area and perimeter of the inlet aorta are
6.712 cm2 and 9.893 cm. The area and perimeter of the exit boundary of the aorta
are 8.0243 cm2 and 10.0559 cm. The lengths of the RCA, the LAD and the LCX
are 14.9215 cm, 8.7269 cm and 8.2293 cm, respectively.

Flow simulations were conducted under typical physiological conditions. The
fluid properties are typical of human blood with the density of 1.06 g · cm−3 [37].
The mean flow rate (Q̄) and mean pressure (p̄) of the aorta are equal to 5.7222
l ·min−1 and 97.2222 mmHg, respectively. Two finite element meshes of the system
with and with no branch are shown in Figure 5 consisting of 15, 510 tetrahedral
elements with 121, 194 degrees of freedom and 13, 106 tetrahedral elements with
104, 019 degrees of freedom, respectively.

Figure 6 illustrates the pressure field in a cardiac cycle at various points in the
system with branches. It is noted that the pressure decreases linearly along the
arterial axis. Figure 7 shows the vector plot of the blood flow in the system with
branches at the peak of the systole. It shows that the blood passes through the
RCA at 40 cm/sec at the beginning section originating from the aorta of the heart
and at 5 cm/sec at the end section of the RCA. When it arrives at the bifurcation,
it splits into two parts. This reduces the pressure along the artery line while the
magnitude of wall shear stresses rises at the bifurcation as shown in figures 13(a)
and 14(a). The results indicate that artherosclerotic lessions is likely to develop
around the branchings of the artery.
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Figure 6. Pressure field in a cardiac cycle at various points (A-I)
in the RCA and the LCA.

To investigate the branchings on blood flow in the system of human coronary
arteries, pressure distribution, velocity field, flow rate and wall shear stress are in-
vestigated. Figure 8 shows distributions of blood pressure in the system of coronary
arteries with no branch and with branches at the beginning and the peak of the
systolic period. Figures 9 and 10 present pressure profiles along the main arteries
of the RCA and the LCA connecting to LAD. The figures indicate that blood pres-
sures in the system with branches are significantly less than the ones in the system
with no branch. Figures 11 and 12 show the transient flow rate through the main
arteries of the RCA and the LCA with branches and with no branch, respectively.
It can be noted that the model with branches gives a higher flow rate of blood
passing through the main artery with branches. Figures 13 and 14 show the wall
shear stresses along the main arteries of the RCA and the LCA connecting to LAD,
respectively. Compared with the results obtained from the model with no branch,
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(a) (b)

Figure 7. The distribution of blood velocity (cm/sec) from the
base of the Aorta to the RCA and the LCA: (a) at the end part of
the RCA; (b) the middle part of the LCA.

the wall shear stress tends to increase in the model with branches. The figures
depict the appearance of the high wall shear stress around the bifurcation area of
the model with branches but at the end of the model with no branches. It has
been reported that swirling of a fluid with reverse streamlines occurs when the fluid
flows through an obstacle, a curvature, or a region with diameter change [24]. Our
results also show that wall shear stress vanishes at some points where swirling flow
occurs. Figures 15 and 16 show blood speed during a cardiac cycle at the entrance
(the beginning from the aorta of the heart) and at the end of the main arteries
of the model with branches and with no branch. In the model with branches, the
blood passes through the RCA with the highest speeds of 40 cm/sec at the entrance
(solid line) and 5 cm/sec at the end (solid line with square) of the artery as shown
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(a)

(b)

Figure 8. Blood pressure (mmHg) at the beginning (left column)
and the peak (right column) of the systolic period in the system of
coronary artery: (a) with no branch; (b) with branch.

(a) with branches (b) with no branch

Figure 9. Pressure along the main artery of the RCA at the be-
ginning (dashed line) and the peak (solid line) of the systolic period:
(a) with branch, (b) with no branch.

in Figure 15(a). In the model with no branch, the blood passes through the RCA
with the highest speed of 42.5 cm/sec at the entrance of the RCA and it flows with
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(a) with branches (b) with no branch

Figure 10. Pressure along the main artery of the LCA connecting
to LAD at the beginning (dashed line) and the peak (solid line) of
the systolic period: (a) with branch, (b) with no branch.

(a) with branches (b) with no branch

Figure 11. Transient flow rate through the main artery of the
RCA at various locations: (a) with branches, (b) with no branch.
The labels 1-6 refer to the locations shown in Figure 7.

the highest speed of 17.5 cm/sec when it arrives to the end of the artery as shown
in Figure 15(b). The results also indicate that in the LCA connecting to the LAD
with branches, the blood passes through the main artery with the highest speeds
of 33 cm/sec at the entrance and 25 cm/sec at the end of the artery as shown in
Figure 16(a). In the model with no branch, blood passes through the main artery
with highest speeds of 30 cm/sec at both the entrance and at the end of the artery
as shown in Figure 16(b).

5. Conclusions. In this work, we present the simulation results of the blood flow
through the system of the coronary arteries taking into account the pulsatile condi-
tions at the boundaries. The effect of branchings of the artery on the flow problem
is investigated. The blood is assumed to be an incompressible non-Newtonian fluid.
From the results, it is noted that a branching is a key factor contributing to a re-
duction in the pressure distribution and an increase in the wall shear stresses along
the artery axis. The results show that the branchings of the artery have significant
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(a) with branches (b) with no branch

Figure 12. Transient flow rate through the main artery of the
LCA connecting to LAD at various locations: (a) with branches,
(b) with no branch. The labels 7-10 refer to the locations shown
in Figure 7.

(a) with branches (b) with no branch

Figure 13. Wall shear stresses along the main arteries of the RCA
at the beginning (dashed line) and the peak (solid line) of the
systolic period: (a) with branch, (b) with no branch.

effects on the blood flow. Artherosclerotic lessions may develop due to the higher
wall shear stresses at the bifurcation.
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