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Abstract. As blood circulates through the arterial tree, the flow and pressure

pulse distort. Principal factors to this distortion are reflections form arterial bi-
furcations and the viscous character of the flow of the blood. Both of them are

expounded in the literature and included in our analysis. The nonlinearities of

inertial effects are usually taken into account in numerical simulations, based
on Navier-Stokes like equations. Nevertheless, there isn’t any qualitative, an-

alytical formula, which examines the role of blood’s inertia on the distortion
of the pulse. We derive such an analytical nonlinear formula. It emanates

from a generalized Bernoulli’s equation for an an-harmonic, linear, viscoelas-

tic, Maxwell fluid flow in a linear, viscoelastic, Kelvin-Voigt, thin, cylindrical
vessel. We report that close to the heart, convection effects related to the

change in the magnitude of the velocity of blood dominate the alteration of

the shape of the pressure pulse, while at remote sites of the vascular tree, con-
vection of vorticity, related to the change in the direction of the velocity of

blood with respect to a mean axial flow, prevails. A quantitative comparison

between the an-harmonic theory and related pressure measurements is also
performed.

1. Introduction. Variations in the form of the arterial pressure and flow pulse
are often used as clinical indicators of cardiovascular diseases [41]. Therefore, it is
important to gain an understanding of the underlying mechanisms that constitute
the arterial pulse in normal physiology. Each beat of the heart creates a pressure
wave which travels along the arterial network, changing shape as it moves away
from the heart. The amplitude of the flow wave, or pulse, decreases monotonically
with the distance from the heart. The same applies to the pressure pulse but only
at remote locations of the arterial network. This is due to viscous dissipation,
accompanied by the viscoelasticity of the vessel wall. Nevertheless, initially, the
systolic peak of the pressure pulse increases, as it travels away from the heart. In
the arterial periphery, about half period after the systolic peak, a secondary peak,
the diastolic peak, appears. In addition, irregularities of the proximal waveform
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Nomenclature uz axial component of u
u0 characteristic velocity constant

A, Ah vector potentials ua, ub pulse velocities
A, Ah radial parts of A and Ah uc mean axial blood velocity constant
bi, i = 1, 2, 3 constants in Ps uref reference blood velocity per vessel

c
(a)
q , c

(b)
q dimensionless constants uA amplitude of 〈u〉

Ci, Di, i = 0, 1, 2, v “viscoelastic” constants Ua, Ub inverse of Mach’s numbers
of the arterial wall Uc Convection number

Db rate of deformation tensor z axial coordinate
Deb Blood Deborah number
Dea Artery Deborah number Greek letters
ei, i = r, θ, z unit vectors
fb normal stress on the α, αh, αz dimensionless radial functions, with αz

arterial wall due to blood corresponding to uz
fh impulsive body force due to heart β, βv dimensionless length to radius ratios
Fb, Fd dimensionless normal stresses γ dimensionless constant

on the arterial wall due to blood δ dimensionless densities ratio
G(τa, ηa) Green’s function εb, εa dimensionless constants
h arterial wall thickness E Young modulus of elasticity
k Mach’s to convection number product ζ dimensionless constant related to
Lb velocity gradient axial velocity profile modes
L characteristic length ηb, ηa dimensionless axial coordinates
Lv viscoelastic length constant Θ dimensionless part of
L linear viscoelasticity operator the radial wall displacement
n normal unit vector on S(t) I identity tensor
p, ps, pref dimensionless pressures Is dimensionless temporal integral part of ξs
P (t, z) pressure κ dimensionless constant related to ζ
Ps(t) solitary pressure pulse K harmonic vector potential
P0 characteristic pressure constant λe, λv elastic and viscous Lame constants
Pref reference pressure µe, µv elastic and viscous Lame constants

q order of ψ
(b)
q , ψ

(a)
q µb shear viscosity of blood

Q volumetric flow rate in artery Ma, Mb Mach’s numbers
r radial coordinate ξ displacement vector of the arterial wall
ra = R radius of deformed artery ξs(t) temporal axial displacement function
R0 radius of un-deformed artery ξm mean radial displacement constant
Re Reynolds number ρa, ρb densities
S(t) deformed arterial wall surface σ(h), σ0 Poisson’s ratios
t time τb, τa dimensionless time coordinates

Tb viscoelastic stress tensor τ
(b)
s wall shear stress

ta, tb viscoelastic time constants Φ(b), Φ(a) dimensionless spatiotemporal functions
t0 characteristic time constant χ dimensionless constant

u blood velocity vector Ψ(b), Ψ(a), ψ
(b)
q , ψ

(a)
q dimensionless spatiotemporal functions

〈u〉 average flow pulse ω vorticity vector
ur radial component of u Ω(t) blood flow region

(like the dicrotic notch: a notch in the pressure pulse that marks the closure of
the aortic valve) are smoothed out peripherally. A long-standing problem is the
interpretation of these flow and pressure pulse distortions in terms of physiological
factors (cardiac output, blood’s viscosity, vessel wall elasticity, mean flow velocity,
etc.) and geometrical characteristics of the arterial network (distance from the
heart, vessel diameter, degree of bifurcation of the arterial network, etc.). A range
of models have been proposed for this purpose, like: Fourier [30] and wave intensity
analysis [35] of forward and backward propagating pulses, solitary pressure waves
in elastic tubes [11] and computational fluid dynamics simulations of local flows
[16, 29, 39]. Hybrid (partly analytical, partly numerical) distributed models, which
frequently use measurements as inlet conditions, proved to be the most successful on
predicting pulse distortions [31]. Sensitivity analysis has also been employed in order
to estimate the multiple parameters entering in numerical computations [38]. The
need for a detailed examination of the arterial flow, directed also the construction
of in vitro silicon replica of the arterial tree [28], which is accompanied by similar
hybrid computational tools. Previously, we proposed an analytical, an-harmonic,
one-dimensional, viscous model to account for the interdependence between the
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peripheral distortion of pressure-flow pulse and physiological-geometrical factors of
the arterial tree [52]. Despite the lack of the observed periodicity, this time-domain
approach predicted the viscous dissipation of the flow and pressure pulse at remote
sites of the arterial network and achieved a quantitative agreement with the systolic
peak of the arterial pressure pulse, but failed to fit the diastolic peak and to interpret
the initial increase of the systolic peak in the arterial periphery.

The purpose of this study is to extend our pervious analysis, in order to con-
tribute to the interpretation of the initial increase of the systolic peak of the pressure
pulse as it propagates away from the heart (and other arterial pulse distortions),
through: a careful estimation of all classes of inertial effects (transport and convec-
tive acceleration), a physiologically firm constitutive framework for the rheology of
blood and the elasticity of the arterial wall, and a three-dimensional, analytical, an-
harmonic, time-domain, quasi-lumped model. We name our model quasi-lumped,
since we represent the arterial network by a single tube (a lump-model analysis
characteristic), but the flow dynamics depends an-harmonically on the streamwise
space dimension (an unlumped-model analysis characteristic) [55].

In section 2 we illustrate the fluid-structure model, for the interaction between
the flow of blood and the elastic response of the arterial wall. The analytical, an-
harmonic solution is presented in section 3. A comparison with previous pressure
recordings for the radial artery is given in section 4. In the same section we describe
the modeling of forward and backward interfering waves and also clarify the role of
inertial effects on altering the shape of the arterial pressure, flow, shear stress and
radius pulse. In section 5 we discuss the implications of the an-harmonic analysis
on interpreting the peripheral distortion of the arterial pulse and therefore corre-
late inertial effects with arterial dysfunctions like hypertension and atherosclerosis.
Finally, some conclusions, possible improvements and extensions of the modeling
approach are provided in section 6.

2. Model. Blood is a complex fluid (a suspension of deformable cells: red cells,
white cells and platelets in an aqueous solution of electrolytes and non-electrolytes:
plasma) that flows either in large vessels (systemic arteries and veins), or in a
capillary complex network, with rheological properties which vary with pressure,
temperature, electromagnetic field and other factors. Computational fluid dynamic
simulations can focus on particular branches of the arterial network [16]. Most
of these models [39] treat blood as a Newtonian fluid, although its complex, non-
Newtonian, rate type character is still a prerequisite [3]. Arteries are inelastic,
anisotropic and with a nonlinear stress-strain history [18]. Their material properties
may vary along the arterial network, as well as with aging, hypertension innervation,
denervation etc. [8, 15, 17, 19, 20, 32, 33]. Pressure recordings have also been used
in order to characterize the arterial wall mechanics [27, 50].

In this work we look at the arterial pulse as a traveling wave which satisfies a
“wave” equation. The similarities between an-harmonic, time-domain, analytical
solutions of the Klein-Gordon equation and the arterial pressure and flow pulse
urged us to embody this telegraph wave like equation in an appropriate constitu-
tive framework. Some first results in this direction for a one-dimensional model
[52] were promising, but failed to explain thoroughly the distortion of the arterial
pulse. This work completes our previous three-dimensional improvements [53, 54].
We concentrate our interest on interpreting the changes in the shape of the arterial
pulse as it travels in the arterial network. Nevertheless, the proposed fluid-structure
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constitutive model serves as a limiting case to the broadest possible framework for
rate type fluids [3, 21, 23, 25] and similar soft tissues [7, 17, 18, 50]. We present
an-harmonic, analytical, time-domain, radial symmetric solutions of the coupled
fluid-structure wave propagation problem. Although the model geometry corre-
sponds to a flow in a single vessel, the contributions of reflected waves from arterial
bifurcations, or stiffer and smaller blood vessels are also included, since the linear
character of the model permits expansion of the solution in the eigenfunction space.
This is a typical lumped modeling analysis technique. However, our model is not
a pure lumped one, since the flow is streamwise space dependent (an un-lumped
model analysis characteristic [55]). Therefore, it is legitimate to call our approach
a quasi-lumped model.

Henceforth, capital and normal bold characters denote tensors and vectors, re-
spectively, unless otherwise designated. Subscripts a and b, or superscripts (a) and
(b) denote variables and constants in the arterial wall and blood, respectively. Char-
acters with over-bars denote dimensionless variables and constants in the arterial
wall.

2.1. The blood flow problem. We assume that blood is an incompressible, lin-
ear viscoelastic, Maxwell fluid, that flows axi-symmetrically, under no temperature
gradients, in a single, systemic arterial vessel:

ρb
Du

Dt
= ∇ ·Tb −∇P + fh, in Ω(t), (1)

∇ · u = 0, in Ω(t), (2)

LTb = 2µbDb, L ≡ 1 + tb
∂

∂t
, (3)

Db = 1
2

(
Lb + LTb

)
, Lb = ∇⊗ u, (4)

where
Du

Dt
≡ ∂u

∂t
+ u · ∇u =

∂u

∂t
− u× ω + 1

2
∇u2 (5)

is the material time derivative. P, µb, ρb, tb u and ω = ∇×u are the blood’s, pres-
sure, the shear viscosity, the density, the relaxation time, the velocity vector and
the vorticity vector respectively. fh is a body force due to the impulsive heart mo-
tion. Body force terms, like fh, are frequently used to fit clinical data [45]. Tb, Lb,
Db and I are the viscoelastic stress, the velocity gradient, the rate of deformation
and the identity tensors, respectively. Eqs. (1) and (2) are the equations of motion
(conservation of momentum) and continuity (conservation of mass for incompress-
ible flow), respectively, which hold in the time dependent domain Ω(t) (see Fig. 1
and Eq. (12), below). Eq. (3) is the constitutive law for a linear Maxwell fluid.
The linear viscoelasticity operator L is not objective (it changes with the frame of
reference). For an objective Maxwell fluid constitutive law, we should replace L by
the material frame indifferent operator LI, with:

LITb ≡ Tb + tb
5
Tb,

5
Tb ≡

DTb

Dt
− LbTb −TbL

T
b . (6)

5
Tb is the upper convective time derivative of Tb. Keeping the frame indifferent form
of the constitutive law does not contribute much to the analytical character of the
solution, apart from minor modifications, related with the form of fh and Ps(t) (see
below and in Appendix A). Thereupon, we restrict our analysis to a linear Maxwell
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fluid. We assume that the impulsive heart force, fh, has the typical form of a polar
fluid with rotational viscosity [10]:

fh = ∇×Ah, Ah = Ah(r) Ψ(b)(t, z) eθ. (7)

We use cylindrical coordinates (r, θ, z). Ψ(b) is a dimensionless, non-separable, spa-
tiotemporal function. The blood flow is also rotational:

u = ∇×A, A = A(r) Ψ(b)(t, z) eθ . (8)

A, and Ah, are vector potentials for blood velocity and heart’s impulsive force,
respectively. A and Ah are the radial functions of the above vector potentials,
respectively. Notice that we selected u and fh to be collinear and differ only with
respect to their radial dependence. Then, the continuity equation for incompressible
flow (2) is automatically satisfied. A flow of the form (8) is complex lamellar
(u · ω = 0) [49]. In linearized calculations, only the transient acceleration (the first
part of the right hand size of Eq. (5)) survives. Lighthill [24] noticed that almost all
pressure gradient combats fluid inertia, and that we are not forced to look towards
nonlinear effects, in order to explain the peripheral distortion of the arterial pulse.
Accordingly, following an Oseen type approximation, we include the convective
acceleration in Eq. (5) as:

u · ∇u = −u× ω + 1
2
∇u2 ' −uc × ω + 1

2
∇u2 (9)

that is, we retain a linear convection of vorticity term (first term on the right hand
side), with uc = uc ez a constant axial velocity vector, which can be related with
vorticity measures [49]. Notice that we left untouched the second, Bernoulli term,
of Eq. (9). This quasi-linear insertion of the convective acceleration is vital for our
further analysis. It assists the comparison with measured pulses and explains from
a new perspective the distortion of the arterial pulse.

2.2. The arterial wall problem. A three-dimensional viscoelastic arterial wall
model, analogous to the fluid one of Eqs. (1)-(2), is also required. To the best of
our knowledge, a complete mathematical analysis of such coupled three-dimensional
fluid-structure problems is not available yet [39]. Even in recent, sophisticated,
three-dimensional finite element simulations of blood flow in the arterial tree, the
structure problem is absorbed into the satisfaction of the boundary conditions for
the fluid domain [16, 29, 47]. Simpler models have been proposed to account for
stress relaxation of the arterial wall [5, 13, 50, 51]. Of special interest are one-
dimensional models, based on the radial deformation, ξ = ξ(t, z) er in Fig. 1, of
the vessel wall [7, 14, 39]. They are based on the following simplifying assumptions
[39]: (i) small vessel thickness (h� R) in Fig. 1 and plain stresses, (ii) cylindrical
reference geometry and radial displacements, (iii) small deformation gradients and
(iv) an incompressible arterial wall. We adopt here the approach (and notation)
introduced by Canic et al. [7], where the arterial wall is considered a viscoelastic
(Kelvin-Voigt), Koiter’s type, thin shell, that satisfies, the following one-dimensional
equation of motion:

ρa h
∂2ξ

∂t2
− C1

∂2ξ

∂z2
− C2

∂4ξ

∂z4
+ C0ξ +D0

∂ξ

∂t
−D1

∂3ξ

∂t∂z2
+D2

∂5ξ

∂t∂z4
= fb, (10)
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Figure 1. Geometry for the deformation of the arterial wall. The
deformations, ξ, are radial, with R = R0 + ξ, and R0 the radius in
the reference configuration. The arterial wall is thin, with thickness
h. Blood flows along the positive z axis, with mean axial velocity
uc, within the present configuration, Ω(t), bounded by the the de-
formed boundary S(t). n is the normal unit vector on S(t).

where

C0 =
h

R2
0

E

1− σ2

(
1 +

h2

12R2
0

)
+
Pref

R0
,

C1 = 2
h3

12R2
0

Eσ

1− σ2
, C2 =

h3

12

E

1− σ2
,

D0 =
h

R2
0

Cv

(
1 +

h2

12R2
0

)
, (11)

D1 = 2
h3

12R2
0

Dv, D2 =
h3

12
Cv,

Cv =
2λvµv
λv + 2µv

+ 2µv, Dv = Cv − 2µv .

We embrace the model by Canic et al., because of our further analytical cal-
culations, that exploit the same eigenfunction space, either for the fluid (blood)
or the structure (arterial vessel) problem, in sections 3.1 and 3.2 below. C0, C1

and C2 are coefficients that account for elastic effects, while D0, D1, D2, Cv and
Dv are coefficients that account for viscoelastic effects. C0 includes also the effect
of prestress, due to the reference pressure Pref, related with circumferential strain
[7]. Terms multiplying h/2 account for stretching (membrane effects), while terms
multiplying h3/12 account for bending (flexural-shell effects) [7]. h is the thickness
of the arterial wall and R0 is the reference, un-deformed radius of the blood vessel
at the beginning of the systole phase of the cardiac circle (see Fig. 1). E and σ are
the Young’s modulus of elasticity and Poisson’s ratio, respectively. λv and µv are
the viscoelastic Lame constants and ρa the density of the arterial wall.

2.3. Fluid-structure coupling. Modeling the interactions between an incom-
pressible blood flow and a deforming vascular structure represents one of the major
challenges in the field of cardiovascular mechanics. Appropriate forms of, either the
computational domain, or the compatibility, boundary and initial conditions are
required. The blood flow problem, of Eqs. (1)-(2), hold in the cylindrical domain:

Ω(t) =
{

(r cos θ, r sin θ, z) ∈ R3 : r < R0 + ξ(t, z), θ ∈ [0, 2π], z ∈ [0, L]
}
, (12)
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bounded by the lateral boundary:

S(t) =
{

(r cos θ, r sin θ, z) ∈ R3 : r = R0 + ξ(t, z), θ ∈ [0, 2π], z ∈ [0, L]
}
, (13)

which coincides with the viscoelastic membrane that represents the arterial wall, in
Fig. 1. The reference configuration corresponds to a straight cylinder with radius R0

and length L. The coupling between the flow of blood and the vessel wall dynamics
is performed through the following kinematic and dynamic boundary conditions:

1. The kinematic condition requiring continuity of velocity:

ur (R0 + ξ(t, z), z, t) =
∂ξ(t, z)

∂t
, uz (R0 + ξ(t, z), z, t) = 0. (14)

2. The dynamic compatibility condition (10) requiring the balance of fluid (right
hand side) and structure (left hand side) forces. fb is the normal stress that
blood exercise on the arterial vessel. Following Canic et. al. [7]:

fb = (1 + ξ/R0)

√
1 + (∂ξ/∂z)

2
n · [(P − Pref) I− 2µbDb] · er, (15)

where n is the normal vector on the deformed lateral boundary S(t) and er
is the radial unit vector.

A well posed problem demands inlet-outlet conditions of the form [7]:

1. The pressure is prescribed at both ends:

P + Pb − Pc = Pz={0,L}(t) + Pref, at z = {0, L}. (16)

2. The blood enters and leaves the single blood vessel parallel to the axis of
symmetry, with zero displacement:

ur(t, z = {0, L}) = 0, ξ(t, z = {0, L}) = 0, ur ≡ −A
∂Ψ(b)

∂z
. (17)

3. The arterial tube is clamped:

∂ξ

∂z
(t, z = {0, L}) = 0. (18)

Initially, the blood and the arterial wall are at rest, with zero displacement from
the reference configuration:

u(t = 0, z) = 0, ξ(t = 0, z) = 0,
∂ξ

∂t
(t = 0, z) = 0. (19)

Even in its present form, where the arterial vessel is replaced by a thin viscoelas-
tic shell, the fluid-structure problem of Eqs.(1), (2), (10) followed by the boundary
conditions (14), (16)-(18) and the initial conditions (19) is a formidable task. A vari-
ety of numerical methodologies have been developed to treat similar fluid-structure
model, like: finite-element [16], Lattice Boltzmann [29, 43], or heterogeneous do-
main decomposition methods [39]. Besides, Canic et. al. [7], did not consider the
structure problem (10) and (14) (17)-(18) in all its details, but instead applied
homogenization methods to derive a reduced model, for numerical evaluation.

The purpose of this study is not to solve a local fluid-structure problem, like
the one just presented, but rather to exploit an eigenfunction subspace with an-
harmonic analytical solutions, in order to interpret changes in a propagating arterial
pulse, throughout the arterial network. Hence, the conditions (18)-(19) will be
suppressed and the satisfaction of the kinematic conditions on S(t), will be relaxed,
by introducing the mean radial displacement ξm (see Eq. (55), below).
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Eq. (16) is Eq. (3.5) in Ref. [7], augmented with the convective pressure, Pc
in Eq. (21), below. The designation of the pressure at the inlet, in Eq. (16), is
equivalent with the presence of the impulsive heart force, fh, in Eq. (7), that defines
blood as a polar fluid with rotational viscosity. For numerical investigations the
inlet-outlet conditions (16) are preferable, but for our further analytical calculations
the presence of fh in Eq. (1) is advisable.

3. Analysis. In the era of direct numerical simulation in complex geometries [16,
29, 39, 43], and hybrid models, associated with exercise [46], aging [38] or vascular
disease [4], analytical solutions, when they exist, they may serve, either as a single
theoretical framework for explaining major characteristics of blood flow in arter-
ies, or as suitable input in the above computational methodologies. Most analytical
calculations, related to pulse propagation in arteries, rely on Fourier harmonic anal-
ysis [30]. The principal drawback of harmonic analysis is that it is limited to the
frequency domain and therefore it is impossible to relate specific time events in
the cardiac cycle [36]. An an-harmonic, time-domain approach, like the one we
introduced in [52], overcomes these defects.

3.1. The blood flow solution. After some manipulations of the viscoelastic fluid
flow problem consisting of Eqs. (1), (3), (5) and (7)-(9) (for details see Appendix
A) we obtain a linear vector telegraph equation:

µb∇2A− ρb tb
∂2A

∂t2
− ρb

∂A

∂t
− ρb uc · ∇A + Ah = 0 , (20)

for the convection and diffusion of vorticity and a generalized Bernoulli equation:

P = Ps − Pb + Pc + Pref, Pb = 1
2
ρb u

2, Pc = ρb uc · u, (21)

where Ps = Ps(t) is an arbitrary spatial function and Pref is a reference constant
pressure. This analytical, nonlinear pressure-flow formula suffices to explain the
pulse distortion. Eq. (21) is the cornerstone of all our further calculations, behind
the validation of our theoretical approach against experimental recordings. Ps =
Ps(t) is a solitary pulse, since it propagates undistorted throughout the arterial
network. We attribute its origin, as we did previously and with the body force fh,
to the cardiac output during systole. It may change with the metabolic needs of the
body (exercise, relaxation, etc.), or due to cardiac disfunctions (cardiomyopathy,
aortic-mitral valve insufficiency, etc.). Pb is the well known Bernoulli’s pressure.
Pc is the pressure, due to the convection of vorticity (a nonlinear effect that is
introduced in our quasi-linear analysis). It emanates from the first term on the
right hand side of Eq. (9), while Pb from the second. The form of the cardiac
solitary pulse Ps(t), the value of uc, as well as the amplitude, the width and the
shift of the flow pulse u, with respect to Ps, controls all the peripheral changes in
the shape of the pressure pulse.

The generalized Bernoulli equation (21) holds in the deformed fluid domain Ω(t).
The inlet-outlet conditions (16) are the special cases of Eq. (21) at z = {0, L}, with
Pz=0(t) = Ps(t). Eq. (20) differs from the vorticity equation, only by an arbitrary
harmonic vector potential, in the right hand side, which is neglected in our further
an-harmonic analysis (for details see Appendix A). This is evident from: (i) the
rotational and solenoidal character of u and A, respectively, in Eq. (8), since ω =
∇× u = −∇2A and (ii) the linear differential operator that acts on the right hand
side of Eq.(20).
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Let us introduce the dimensionless parameters:

α = A/(Lu0), αh = Ah/P0, r̃ = r/R0, β = L/R0, p = P/P0,

Uc = uc/u0, k = Uc/Ub, Ub = 1/
√
DebRe = ub/u0 = 1/Mb, (22)

with

ub =
√
µb/(ρb tb), P0 = ρb u

2
0, u0 = L/t0. (23)

ub, Deb, Mb, Re, and β, are the shear wave velocity, the Deborah number, the
Mach’s number, the Reynolds number and the length to radius ratio, respectively.
L, t0, u0, and P0, are the characteristic: length, time, velocity and pressure, respec-
tively. We call Uc the convection number. Many, not always equivalent definitions,
are given for Deborah number. Some authors even call it Weissenberg number, al-
though under the same name exist other combinations of such parameters [21]. Deb
is the ratio of elastic to viscous forces, and Uc is the ratio of convection to inertial
forces. Other compositions of Deb, Mb, Re and Uc are also used to describe the
physical processes in a Maxwell fluid, like k, the product of Mach’s number with
the convection number.

If we rescale according to:

τb = εb t/(2Deb t0), ηb = εb z/(2Deb LUb), εb =
√

4U2
bDe

2
bζ

2 + k2 − 1, (24)

with τb, ηb the dimensionless time and axial coordinates, respectively, and use the
transformation:

Ψ(b) = e(kηb−τb)/εbΦ(b)(τb, ηb), (25)

the vorticity Eq. (20) separates into:

d2α

dr̃2
+

1

r̃

dα

dr̃
+

(
κ2 − 1

r̃2

)
α = −Reαh(r̃), κ = ζ/β, (26)

∂2Φ(b)

∂η2
b

− ∂2Φ(b)

∂τ2
b

− Φ(b) = 0, (27)

where ζ is a dimensionless constant that emanates from the semi-separable form
of the blood’s velocity vector potential A, in Eq. (8). This is not the first time
that the Klein-Gordon Eq. (27) has been used, in order to explain the peripheral
distortion of the arterial pulse [6].

After straightforward but lengthy calculations [44], the an-harmonic solution of
Eq. (27) can be expressed as:

Ψ(b)(τb, ηb) =
∑
q

c(b)q Ψ(b)
q , Ψ(b)

q (τb, ηb) ≡
∂ψ

(b)
q

∂τb
, (28)

ψ(b)
q (τb, ηb) = e

kηb−τb
εb

(
τb − ηb
τb + ηb

) q
2

Jq

(√
τ2
b − η2

b

)
, (29)

∂ψ
(b)
q

∂τb
=

1

2

(
ψ

(b)
q−1 − ψ

(b)
q+1 −

2

εb
ψ(b)
q

)
, (30)

−∂ψ
(b)
q

∂ηb
=

1

2

(
ψ

(b)
q−1 + ψ

(b)
q+1 −

2k

εb
ψ(b)
q

)
. (31)

Jq is the Bessel function of order q with τb ≥ ηb and c
(b)
q are undetermined constants.

We further set εb > 0, in order not to use the modified Bessel functions, as in
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[52], that limited the quantitative agreement with related measurements. The an-
harmonic solution (28)-(31) confirms the predictions in [25], that three-dimensional
viscoelastic fluid flow solutions decay exponentially as time goes to infinity.

In order to obtain axial velocity profiles of the observed form (see Eqs. (35) and
(37) and Fig. 3, below), we assume that the dimensionless radial part of the vector
potential Ah of heart’s impulsive force in Eq. (7), is of the form:

αh(r̃) = ph

(
r̃n +

n2 − 1

κ2
r̃n−1

)
, ph = Pref/P0, (32)

where n is an arbitrary integer. The presence of the reference pressure Pref in
Eq. (32) guarantees the equivalence between the present analytical investigation
with numerical computations, where inlet-outlet conditions of the form (16) are
required. According to the kinematic boundary conditions (14), the axial velocity
component vanishes, namely:

αz(r̃a) = 0, αz ≡ α+ α/r̃, (33)

in dimensionless form, with:

r̃a = R/R0, R = R0 + ξ(t, z). (34)

Then, the solution of Eq. (26) that satisfies the boundary condition (33) is:

α(r̃) = cr

[
n+ 1

κ r̃a

J1(κ r̃)

J0(κ r̃a)
−
(
r̃

r̃a

)n]
, cr =

uref r̃
n
a

u0 κ2
, (35)

where

uref = PrefR0/µb , (36)

is a reference blood velocity for each arterial vessel. Hence, the axial velocity com-
ponent becomes:

αz(r̃) =
(n+ 1) cr

r̃a

[
J0(κ r̃)

J0(κ r̃a)
−
(
r̃

r̃a

)n−1
]
. (37)

What is measured in related recordings is the volumetric flow rate through the

tube, Q = 2π
∫ R

0
r uz d r, with uz = u0 αz(r̃) Ψ(t, z). Hence, we define the average

flow pulse:

〈u〉 ≡ Q/(2πR2
0) = uA Ψ(b), uA = u0 β α(r̃a)/r̃a. (38)

3.2. The arterial wall solution. We can keep terms up to the first order in h, in
Eq. (10), if we set:

σ =
R0

h
σ0, C0 '

γ hE

R2
0(1− σ2)

, γ � 1, (39)

that is, the arterial wall is inhomogeneous (the Poisson’s ratio depends on the
thickness of the arterial wall) which results in:

E =
PrefR0

γh

[
1−

(
R0 σ0

h

)2
]
, C0 '

Pref

R0
, C1 =

Prefσ0h

6γ
, D0 =

Cvh

R2
0

, (40)

with C2, D1, D2 = 0. Here, γ is a dimensionless constant and σ0 is the Poisson’s
ratio, independent of the wall thickness, h. Then Eq. (10) reduces to:

ρa h
∂2ξ

∂t2
− C1

∂2ξ

∂z2
+D0

∂ξ

∂t
+ C0 ξ = fb. (41)
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This telegraph wave equation is similar to the equivalent vector one (20) for the con-
vection and diffusion of vorticity, and therefore admits similar an-harmonic solution
with Eqs. (28)-(31). We introduce the dimensionless parameters:

τa = εa t/(βv δ h̄ t0), ηa = εaz/(LUa

√
βv δ h̄), h̄ = h/Lv, Dea = ta/t0,

Ua = ua/u0 = 1/Ma, βv = Lv/R0, ξ̄ = ξ/L, Fb = βfb/(2P0) (42)

ps = βPs/(2P0), pref = βPref/(2P0), δ = ρa/(2ρb), εa =
√
h̄− 1/4,

with

ua =

√
C1

2ρbR0
, ta =

2ρbR0

D0
, Lv =

D0 ρa
C0

, (43)

the wave velocity, the arterial wall relaxation time, and a length constant that de-
pends on viscoelastic parameters of the arterial wall, respectively. h̄, ξ̄, τa and ηa
are the dimensionless: arterial wall thickness, axial wall deformation, time and axial
coordinate, respectively. Ma and Dea are Mach’s and Deborah numbers, respec-
tively, for the arterial wall. δ is a half of densities ratio, βv is the dimensionless
ratio of viscoelastic length to unperturbed vessels radius. ps and pref are dimen-
sionless solitary and reference, internal pressures, respectively. Finally, Fb is the
dimensionless radial force that blood exerts on the arterial wall. Henceforth, all the
calculations are performed under the reasonable approximation that the arterial
wall behaves as a polymer solution [48], namely:

Dea = 1, or t0 = ta. (44)

The solution of Eq. (41) can be decomposed in dimensionless form, as (see Ap-
pendix B for the details of the derivation):

ξ̄(τa, ηa) = ξ̄s(τa) + Ψa(τa, ηa) + Θ(τa, ηa), (45)

ξ̄s(τa) = Is(τa)− Is(0) + εa prefτa +

+ εa (I′s(0) + εa pref)
(

1− eτa/εa
)
, (46)

Is(τa) =

∫ ∫ τa

0

eτ/εaps(τ) dτ dτa,

Ψ(a)(τa, ηa) =
∑
q

c(a)
q Ψ(a)

q , Ψ(a)
q (τa, ηa) ≡ ∂ψ

(a)
q

∂τa
, (47)

ψ(a)
q (τa, ηa) = e−

τa
2εa

(
τa − ηa
τa + ηa

) q
2

Jq

(√
τ2
a − η2

a

)
, (48)

∂ψ
(a)
q

∂τa
=

1

2

(
ψ

(a)
q−1 − ψ

(a)
q+1 − ψ(a)

q

)
, (49)

−∂ψ
(a)
q

∂ηa
=

1

2

(
ψ

(a)
q−1 + ψ

(a)
q+1

)
, (50)

Θ(τa, ηa) =
1

2ε2
a

∫ τa

0

∫ ηa+τa−τ

ηa−τa+τ

e
τ

2εa H(τa, ηa, τ, η) dη dτ, (51)

H(τa, ηa, τ, η) = ψ
(a)
0 (τa − τ, ηa − η)Fd(τ, η), (52)

Fd(τ, η) = Fb(τ, η)− ps(τ) + pref. (53)
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The prime in I′s(τa) denotes differentiation with respect to the argument. In di-
mensionless form, the kinematic boundary condition (14) reads:

− α(r̃a)
∂Ψ(b)(τb, ηb)

∂ηb
=

1

χ

∂ξ̄(τa, ηa)

∂τa
, χ ≡ βv δ h̄ εb

2UbDeb εa
, r̃a = 1 + βξ̄. (54)

If we substitute Eqs. (28) and (45) into (54), with ξ̄s, Ψ(a), and Θ given by Eqs.
(46), (47) and (51), respectively, we obtain an equation that determines the coupling

between the blood flow constants c
(b)
q and the arterial wall constants c

(a)
q , as well

as the blood flow and arterial wall viscoelastic parameters, in Eqs. (22) and (42),
respectively. It is a nonlinear optimization problem, with a lot of information about
the nature of the response of the arterial endothelium to the flow of blood.

3.3. The radial displacement as a blood flow function. Without solving
the nonlinear optimization problem, related with the satisfaction of the kinematic
boundary condition (54), useful information about the arterial wall response to the
flow of blood is obtained, by examining the inverse problem. More precisely, if the
solution to the fluid problem is given, we can integrate Eq. (54) in terms of ξ̄:

ξ̄(τa, ηa) = −χα(r̃a)

∫
∂Ψ(b)(τb, ηb)

∂ηb
dτa, (55)

with τb = χUb τa and ηb = χUa ηa/
√
βv δ h̄. Here, we silently assumed that r̃a = 1+

β ξ̄m, with ξm the mean radial displacement of the arterial wall. Similar numerical
computations, have also been performed recently [50]. The integral in Eq. (55) can
be computed analytically, due to Eq. (28), namely:∫

∂Ψ(b)

∂ηb
dτa =

1

χUb

∑
q

c(b)q
∂ψ

(b)
q

∂η
. (56)

Mathematical rigor, requires to include an arbitrary function of ηb in the right
hand side of (56). Hereafter, we neglect such a spatial dependent term. Finally,
substitution of Eq. (56) into Eq. (55) yields:

ξ̄(τa, ηa) = −α(r̃a)

Ub

∑
q

c(b)q
∂ψ

(b)
q

∂ηb
. (57)

Eq. (57) determines ξ̄ in terms of the blood flow eigenfunctions ψ
(b)
q , as it is the

case and for the blood pressure in Eq. (21).

4. Results. The emphasis in this study was on developing the general theoretical
framework, for interpreting the change in shape of the pulse as it propagates within
the arterial tree. Comparison with clinical data will be performed in a future work.
Nevertheless, some comparison with sphygmomanometry pressure measurements
obtained previously [52], with SphygmoCor Blood Pressure Analysis System, is
preformed (see Fig. 2). The SphygmoCor system is accompanied by a transfer
functions algorithm [9], that can synthesize the pressure in the aorta (open circles
in Fig. 2), from radial artery data (filled circles in Fig. 2). To ease the computations,
we assume that the pulse propagates with the same velocity, either in blood or in
the arterial wall, namely:

ub = ua or µeff
b = hPref σ0 tb/ (12R0γ) . (58)
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Figure 2. The arterial pressure pulse for one cardiac cycle. Aortic
(◦) and radial (•) pressure pulse measurements from [52]. Gray
line: The solitary pulse Ps(t) of Eq. (58). Solid line: The pressure
pulse, P (t, 〈u〉), of Eq. (21), with 〈u〉 the average flow pulse in the
expansion (60). Enclosed (upper right) the corresponding average
flow pulse, with the radial average flow pulse augmented 200 times,
to accent its attenuation.

We select Ps(t), approximately, as the convex hull of the aortic pressure pulse (gray
line in Fig. 2):

Ps(t) =
b1 t

t2 + t20
+ (b2 t+ b3 t

2) e−t/ts , (59)

where ts = 0.182 s, b1 = −6 mmHg s, b2 = 400 mmHg/s, b3 = 100 mmHg/s2, and t0
as ta in Table 1, due to Eq. (44).

4.1. Modeling wave reflections from arterial junctions. Essential elements
for decoding the peripheral distortion of the arterial waveform are reflected waves,
emanating from bifurcations in the arterial tree, or possible abnormalities in the
structure of the arterial vessel. For the blood flow in a single arterial vessel of Fig. 1
these factors seem not to be in the picture. However, our model is quasi-lump,
and the interference of forward and reflected propagating waves enter through,
either the eigenfunction expansion of the solution in Eqs. (28) and (47), or the
material parameters and geometric factors of the arterial segments, that vary from
one segment to the next. Moreover, segmentation methods like those developed
previously [52] can also be applied, but they will not be considered here.

In order to accent the adaptability of our an-harmonic approach to fit the pressure
waveform, we used up to three terms in the expansion of Eq. (28):

〈u〉 =

3∑
i=1

ci 〈u〉i = c1 〈u〉F + c2 〈u〉R1 + c3 〈u〉R2 , (60)

with 〈u〉F the forward flow pulse and 〈u〉Ri , i = 1, 2, the reflected flow pulses from
the arterial periphery. Every term in Eq. (60) has a clear physical meaning: 〈u〉F
is the initial forward flow pulse due to cardiac outflow and 〈u〉Ri , i = 1, 2, are
the reflected flow pulses which originate from bifurcations or stiffer parts of the
peripheral arterial network. Each one of the reflected waveforms stands for the
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Table 1. Material and geometrical parameters.

Units Aorta Radial
〈u〉F 〈u〉R1 〈u〉R2

κ 1 1 1 1
n 3 3 3 3
q 4 4 2.25 16
ci × 10−4 185.6 74.7 1.7 959566
σ0 0.3 0.3 0.3 0.3
γ × 10−5 101.3 50.6 50.6 7.7
t0 (s) 1 1 1 1
ta (s) 1 1 1 1
tb × 10−2 (s) 8 4 4 1.5
L (m) 1 2 2 2
h (mm) 0.5 0.5 0.5 0.5
z (cm) 5 40 40 40
ξm (mm) 1 1 1 1
R0 (mm) 10 4 4 4
Pref (mmHg) 99 99 99 99
ρb × 10−3 (Kgr/m) 1 1 1 1
uc (cm/s) 0.05 78.5 78.5 78.5

particular site of the arterial network from where it emerges, in terms of geometrical
or physiological parameters that are involved (see Table 1). It may represent a single
bifurcation, or the accumulative effect of a sub-network of the arterial tree.

All geometrical parameters, like: (i) the thickness of the arterial wall, h, (ii) the
length L, and (iii) the reference radius, R0, of the vessel, (iv) the axial position of the
pulse, z, (v) the mean radial displacement, ξm, and all material parameters, like: (i)
the viscoelastic time constants, tb, ta, for blood and the arterial wall, respectively,
(ii) the Poisson’s ratio, σ0, (iii) the density of blood, ρb, (iv) the reference pressure,
Pref and (v) the mean axial blood velocity, uc, have regular values in Table 1, for a
Maxwell type blood flow in a Kelvin-Voigt viscoelastic arterial vessel. Nevertheless,
the dimensionless parameter γ is in fact an effective parameter that satisfies Eq. (58),
and therefore violates the constrain γ � 1, of Eq. (39), in Table 1. Moreover, ξm
is not really a geometrical parameter at all, since in a more rigorous calculation is
derived from the mean value of deformations (57), that meet the expansion (60).

Since related flow data are not available to us, the forward flow pulse, 〈u〉F , was
enough to fit the pressure pulse for the aorta (the fitting curve is almost covered
from the open circles in Fig. 2), while for the radial artery sufficed two additional
flow pulses, 〈u〉Ri , i = 1, 2, that originate, from reflection in the periphery. The time
shift t ∼ 0.15 s to the right, for the systolic peak in the aorta, compared to that
of the radial artery, does not correspond to a pure wave propagation phenomenon
and is usually attributed to the interference of the forward pressure pulse with a
reflected one from the arterial periphery, that boosts pressure in early diastole [30].
This distortion of the pressure pulse of the aorta results in an inflection point at
t ∼ 0.15 s (see Fig. 2), which is interrelated with a measure of the distortion, the
augmentation index [30].

According to measurements [24], the pulse wave velocity, ua, increases in the ar-
terial periphery about two times the values for the aorta (∼ 5 m/sec). It is confirmed
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Table 2. Derived effective material parameters.

Units Aorta Radial
〈u〉F 〈u〉R1 〈u〉R2

µb (Kgr/(m s)) 1300 3250 3250 8000
C1 (N/m) 325 650 650 4267
uref (cm/s) 10 1.6 1.6 0.7
ua (m/s) 4 9 9 23

from the tabulated values in Table 2, except the third term in Eq. (60). However,
such deviations are justified, since, as we mentioned previously, the reflected waves
may represent the accumulative effects of one or even more arterial branches in our
quasi-lumped model analysis. Notice that uc ∼ 0 for the aorta, in Table 1 and in all
cases uc < ua. The tb values of Table 1 correspond to a viscoelastic fluid with Deb-
orah’s number, between that of industrial oil (Deb ∼ 10−3), and polymer solution
(Deb ∼ 1) [48]. The reference blood velocity, uref, in Table 2 has typical values for,
either large arteries (aorta) and arterioles (the forward and first reflected pulse), or
capillaries (the second reflected pulse). The flow pulse (60) still retains properties
that appeared and in previous studies [52, 54], namely it is a relatively undistorted
waveform (a quasi-solitary wave), since it maintains its shape although it attenuates
(due to viscous dissipation), as it propagates away from the heart (increasing z).

4.2. Velocity profiles and modeling disfunction in terms of uc. Velocity
profiles are given in Fig. 3. The parameter κ remains arbitrary. Hence, it may serve
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Figure 3. Axial velocity profiles for varying κ, at the systolic peak
(Ψ(t, z) = Ψmax = 2 × 10−3). All other parameters are the same
with those in Tables 1 and 2 for the radial artery. In the enclosed
figure a magnification of the region for κ = 3 and 5 is given.

as a fitting parameter for related recorded profiles. For values of uc intermediate to
the aortic (uc = 5 cm/s) and the radial (uc = 8 m/s) pressure pulse, the diastolic
peak may disappear, as it is evident from Fig. 4. This is the case for patients with
hypertension and arteriosclerosis, but with a higher systolic peak than that of the
uc = 5 m/s curve in Fig. 4, due to an additional reflection from a stiffer part of the
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Figure 4. The pressure pulse for varying mean axial blood veloc-
ity constant uc. All other material parameters are the same with
those in Fig. 2 and Tables 1and 2, for the radial artery. The dias-
tolic peak disappears for uc = 5 m/s.

arterial network (higher pulse wave velocity, or smaller tb in the enclosed figure in
Fig. 2), that boosts pressure in late systole [34].

4.3. Wall shear stress and radius pulses. One of the principal factors, related
with arterial disease, is the wall shear stress [22]:

τ (b)
s = µb

∂uz
∂r

, on S(t) : r = R0 + ξ(t, z), (61)

where uz = u0 αz(r) Ψ(b)(t, z). The wall shear stress pulse is depicted in Fig. 5 for
varying the mean axial blood velocity, uc, related to convection effects. It is of the
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Figure 5. The arterial wall shear stress pulse τ
(b)
s for varying uc,

where νeff = 4.6 × 10−6m2/s and uh = 50 cm/s. All other param-
eters, except Ψ, are the same with those in Fig. 2, for the radial
artery.
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correct order and shape found in the literature [12]. The radius displacement pulse
is shown in Fig. 6 also for varying uc, calculated using Eqs. (34) and (57). Higher
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Figure 6. The radius displacement pulse for varying uc. All other
parameters (except uh which is the same with that in Fig. 2) are
the same with those in Fig. 5.

uc values result in steepening of the “systolic” peak in both the wall shear stress
and the radius pulses, as expected. Notice that for uc = 16 m/s, the “diastolic”
valley (0.15 s ≤ t ≤ 0.4 s) of the the wall shear stress pulse in Fig. (5), deforms
dramatically. Moreover, for uc = 4 m/s in Fig. 6 (close to uc = 5 m/s in Fig. 4,
which corresponds to the disappearance of the diastolic peak), there is an equili-
bration of the “systolic” and “diastolic” peaks. Such theoretical estimates require
close inspection and await confirmation from real data, for patients with vascular
disease (hypertension, atherosclerosis, etc.).

5. Discussion. The promising but insufficient results of our previous work [52]
and the enlightening review on arterial fluid dynamics by Pedley [36], exhorted us
to read the pulse propagation theory, by the eminent fluid dynamist Lighthill [24].
Therein, Sir James Lighthill remarks: (a) “Almost all the pressure gradient goes
into acceleration, that is, into combating the inertia of the fluid” [chapter 10, page
206] and (b) “This means that we are not forced to look towards nonlinear effects
to explain this waveform change” [chapter 12, page 250]. Both of them motivated
and formed the present analysis.

One-dimensional wave [15], and wave like equations [6], are frequently used to
describe the peripheral distortion of the arterial pulse. However, they originate
from qualitative postulates and they are not based on a firm constitutive frame-
work. In contrary, in this work, even though the three-dimensional Klein-Gordon
telegraph wave Eq. (20) is analogous to the one-dimensional one [6], it emanates
from an appropriately constructed viscoelastic, fluid-structure constitutive model.
Caflisch et al. [6] neglected the inertial convective term (9). In contrary, herein,
the Oseen type approximation in Eq. (9) includes all types for inertial effects and
results in the analytical pressure-flow relation (21), which plays a decisive role on
the interpretation of the peripheral distortion of the arterial pulse. Lately, Roper
and Brenner [42] discussed the usefullness of the linearized Navier-Stokes equations,
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according to the Oseen approximation (9), in fluid dynamics. Besides, the analyt-
ical, an-harmonic solutions of Eqs. (28)-(31) and Eq. (35) satisfy recent existence
[23] and time-decay [25] theorems for general three-dimensional viscoelastic flows.

Recently, time-domain models have been proposed, to account for the distortion
of the pulse in systemic arteries [1, 2]. Usually, the initial increase of the systolic
peak of the pressure pulse, far away from the heart, is attributed to close type of
wave reflections in small peripheral vessels [30]. This observation can be integrated
in our quasi-lumped model, if we moreover permit to the mean axial flow velocity
parameter uc to represent and such factors (as we mention in Appendix A). How-
ever, the theoretical analysis of section 4 interprets this initial increase through the
pure inertial origin of uc : it is related with the convection of vorticity and therefore
with possible associated disturbances, even turbulence, in blood flow. In particular,
when 2uc � u, the Bernoulli pressure, Pb (changes in the magnitude, u, of the flow
pulse), dominates the shape of the pulse in Eq. (21) and the pressure pulse for the
aorta is given as:

Paorta ' Ps(t)− Pb, Pb = 1
2
ρb u

2 . (62)

Otherwise, when 2uc � u, the convective pressure, Pc, prevails and the pressure
pulse for a peripheral arterial vessel (radial artery, etc.), is given as:

Pradial ' Ps(t) + Pc, Pc = ρb uc · u . (63)

The inner product in the above equality for Pc denotes the deviation of the blood
flow velocity u from the mean axial flow velocity uc and therefore the convection
of vorticity. The form of the pressure pulse, computed from Eqs. (62-63), depends
always on the shape, as well as the amplitude, the width and the shift of the flow
pulse, with respect to Ps. Notice the minus and plus signs in front of the Bernoulli
pressure, Pb, and the convective pressure, Pc, in Eqs. (62) and (63), respectively,
which have the dramatic effect on the shape of the pressure pulse in Fig. 2.

Whereas the agreement of the theory (Eqs. (62-63)) with sphygmomanometry
pressure measurements is quantitative in Fig. 2, the estimated average aortic flow
pulse (in the enclosed figure in Fig. 2) does not necessarily match similar velocimetry
recordings. This is because, as we mentioned earlier, we fitted pressure data without
having available simultaneous flow recordings. Therefore, in order to stress the
flexibility of our analytical, an-harmonic methodology we selected just one term in
the eigenfunction expansion (28) for the aorta. This can easily be improved with
suitable, even more, terms in the eigenfunction expansion (28) or (60). In a future
work, where we will validate our theory against simultaneous in-vivo pressure-flow
pulse monitoring, for patients under pharmacological treatment, more terms in the
expansion (28) or (60) will be required.

Nevertheless, the flow pulse, either of the correct (radial artery) or of the ap-
proximate form (aorta) of the enclosed figure in Fig. 2, can be very advantageous
on interpreting useful features of the pressure pulse, like: the diastolic and systolic
peak, the augmentation index, the dicrotic notch, etc., from a quite different per-
spective. More precisely, in the case of the aortic pressure pulse, the square of the
systolic peak of the flow pulse is proportional to the augmentation index, since we
selected Ps as the convex hull of the aortic pressure pulse, due to the positive definite
character of the Bernoulli’s pressure Pb and the minus sign in Eq. (62). Similarly,
for the radial artery (or any other peripheral vessel with similar waveform), the
peak of the total (forward and reflected) flow pulse is proportional to the systolic
peak of the pressure pulse. In this case the pressure pulse is approximately given
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by Eq. (63) and the convective pressure Pc depends on the sign of the flow pulse
u, since uc is defined as a positive constant. Then, the plus sign in Eq. (63) results
either in the initial increase of the systolic peak in Fig. 2 or the appearance (or
disappearance, for a suitable value of uc) of the diastolic peak in Fig. 4, although
the flow pulse suffers viscous dissipation (see Fig. 8.1 in [30] and [52, 54]).

Because recorded pulses are blood-borne mediators of energy transfer, a wave
pattern can inform us about all the mechanical factors that influence the pres-
sure or flow. As an example, in disease like hypertension, reflected waves are of
central importance, since they arrive early due to an increased pulse wave velocity.
Therefore, adjusting such parameters in our model will contribute to a better under-
standing of such cardiovascular diseases. Moreover, low wall shear stress is known
to lead to the development and progression of atherosclerotic plaque culminating
in high-risk vulnerable plaque likely to rupture and cause an acute embolic event.
The magnitude of the systolic peak of the wall shear stress, in combination with
systemic and or genetic risk factors, like hyperlipidemia, determines the natural
history of each plaque. Therefore, a methodical comparison between computed wall
shear stress and radius pulses like those in Figs. 5 and 6, respectively, and possible
available in vivo data is required. Only then the role of principal factors, like uc,
on altering the shape of the pulse will be evaluated and become a tool in clinical
practice for hypertension, atherosclerosis, coronary artery disease, diabetes, etc.

6. Conclusions. The primary goal of this work was to exploit the an-harmonic
function space introduced in our previous work, in order to interpret the peripheral
distortion of the arterial pressure, flow, radius and wall shear stress pulse. A proper
viscoelastic fluid-structure constitutive framework was developed, that resulted in a
wave like telegraph equation for the convection and diffusion of vorticity. With the
aid of an Ossen type approximation for the material derivative, that introduces a
mean axial velocity parameter, uc, the quasi-lumped model takes also into account
all types of inertial effects (temporal, transport and convective acceleration). The
reflected waves from the arterial periphery, enter in our analysis, either directly,
through specific terms in the eigenfunction expansion, or indirectly, through the
value of uc. We derived a generalized Bernoulli equation for the pressure-flow inter-
dependence. Close to the aorta the Bernoulli pressure, Pb, dominates the flow. At
larger distances from the heart, the convection of vorticity, Pc, related with higher
uc values, is responsible, either for the increase of the systolic peak, or for the emer-
gence of the diastolic peak. Far away from the heart, blood’s viscosity is responsible
either for the final, or the continuous attenuation of the pressure and flow (as well
as radius and wall shear stress) pulse, respectively. The interplay between the form
of the cardiac in origin solitary pulse Ps, the value of uc and physiological and
geometrical factors that act on the amplitude, the width and the shift of the flow
pulse with respect to Ps, account for irregularities in the shape of the pressure pulse.
Besides, the parameter uc, can serve and as a clinical indicator for cardiovascular
diseases.

A more detailed picture of the capabilities and limitations of the modeling ap-
proach will be provided only after solving the nonlinear optimization problem, cor-
responding to the kinematic boundary condition on the arterial wall. The proposed
fluid-structure model can also be coupled with Maxwell’s equations, in a complete
electro-hydro-elasto-dynamic framework, in order to interpret measured electrical
impedance cardiography waveforms on the thorax. A validation of the model against
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simultaneous invasive flow-pressure recordings, for patients under pharmacological
treatment is also under investigation.
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Appendix A. The generalized Bernoulli’s equation. Mathematically, Eq. (9)
implies that uc ∼ u. In our quasi-lumped model we will deviate from this approx-
imation. Although, from Eq.(9), uc takes into account the convection of vorticity
(the second term on the right hand side), we will additionally assume that uc,
indirectly, takes also into account physiological factors that are left out from a vis-
coelastic fluid flow in an infinite, viscoelastic thin shell of circular cross section, like:
the flow geometry (large and small vessels, bifurcations, etc.), cardiac or other cir-
culatory disfunctions in blood flow, the gradual taper of arteries with distance from
the heart (a term that encompasses both a reduction in cross sectional area and an
increase in stiffness), etc. Hence, uc serves as an effective parameter of the whole
arterial network. Note that reflected waves from arterial bifurcations are taken also
directly into account (not through uc), through the eigenfunction expansion (28) of
the flow pulse. An incompressible fluid (see Eq. (2)) satisfies the following identity:

∇ (uc · u) = uc · ∇u + uc × ω (64)

Then, using Eq. (64), substitution of Eq. (5) and the constitutive law (3) into Eq.
(1) results in:

µb∇2u− L (ρb u,t + ρb uc · ∇u−∇P∗ + fh) = 0, (65)
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with

P∗ = P + 1
2
ρb u

2 − ρb uc · u , (66)

the total pressure, where ( ),t ≡ ∂/∂t and similarly for higher derivatives. Eq.
(65) is quasi-linear, since the nonlinearities enter in P∗ from Eq. (66). In order to
facilitate further the analysis and without loosing any of the physical reasoning, we
neglect the second order spatiotemporal effects, namely Luc · ∇u ' uc · ∇u. This
differs from the more suitable approximation:

L (ρb u,t + ρb uc · ∇u−∇P∗ + fh) ' L (ρb u,t) + ρb uc · ∇u−∇P∗ + fh, (67)

only with respect to the definition, either of fh, or the arbitrary function Ps(t) in
Eq. (21) that satisfies the constraint (70) below. Then, due to (67), Eq. (65) reads:

µb∇2u− ρb tbu,tt − ρb u,t − ρb uc · ∇u−∇P∗ + fh = 0 . (68)

Lopez et al. [26] used Eq. (68) in linear studies of Maxwell fluids, and Quintanilla
and Rajagopal [40] in similar studies of Burgers fluids, when the convective accel-
eration vanishes (P∗ = P, uc = 0). Taking the curl of Eq. (68) yields the vorticity
equation:

µb∇2A− ρb tb A,tt − ρb A,t − ρb uc · ∇A + Ah = K , (69)

with K an arbitrary harmonic vector potential
(
∇2K = 0

)
. This rather simple form

of the vorticity equation emerges, since we selected the vector potentials A and Ah

to belong to the same gauge: ∇ ·A = 0, ∇ ·Ah = 0. We avoid harmonic effects, in
our an-harmonic analysis, by setting K = 0 in Eq. (69), which results in Eq. (20).
Thereupon, taking the curl of Eq. (20) and subtracting from Eq. (68) yields:

∇P∗ = 0. (70)

Eq. (70) reduces, using Eq. (66), to the generalized Bernoulli’s Eq. (21).

Appendix B. The radial displacement decomposition. Since the radial force,
Fb, that blood exerts on the endothelium, includes the solitary time pulse, ps(τa),
we can decompose the radial displacement, ξ̄, as:

ξ̄(τa, ηa) = ξ̄s(τa) +G(τa, ηa), (71)

G(τa, ηa) = Ψ(a)(τa, ηa) + Θ(τa, ηa). (72)

G(τa, ηa) is the Green’s function for of the inhomogeneous problem (41). The last
two Eqs. (19) apply to each term in Eqs. (71-72), which in dimensionless form read:

ξ̄i(τa = 0, ηa) = 0,
∂ξ̄i(τa = 0, ηa)

∂τa
= 0, i = {1, 2, 3}, (73)

where ξ̄1 ≡ ξ̄s, ξ̄2 ≡ Ψ̄, ξ̄3 ≡ Θ. Hence, due to the dimensionless parameters of Eqs.
(42) and with substitution of Eq. (71) into (41) we obtain the decomposed problem:

d2ξ̄s(τa)

dτ2
a

+
1

εaDea

dξ̄s(τa)

dτa
= ps(τa)− pref, (74)

∂2Ψ(a)

∂τ2
a

− ∂2Ψ(a)

∂η2
a

+
1

εaDea

∂Ψ(a)

∂τa
+

h̄

εa
Ψ(a) = 0, (75)

∂2Θ

∂τ2
a

− ∂2Θ

∂η2
a

+
1

εaDea

∂Θ

∂τa
+

h̄

εa
Θ =

Fd
ε2
a

. (76)
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Eq. (74) has the solution (46). Note that Eq. (46) satisfies the initial conditions
(73) for i = 1. Eq. (75), with the aid of the transformation:

Ψ(a) = e−τa/(2εa) Φ(a)(τa, ηa), (77)

and after lengthy, but straightforward calculations [44], admits a similar an-harmonic
solution to the flow problem in the form of (47)-(50). According to standard Green’s
function techniques [37], the solution of the Cauchy problem for Eq. (76), in
−∞ < ηa < ∞, with homogeneous, initial conditions (73) for i = 3, is of the
form (51-53).
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