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Abstract. A delayed vector-bias model for malaria transmission with incu-

bation period in mosquitoes is studied. The delay τ corresponds to the time
necessary for a latently infected vector to become an infectious vector. We

prove that the global stability is completely determined by the threshold pa-

rameter, R0(τ). If R0(τ) ≤ 1, the disease-free equilibrium is globally asympto-
tically stable. If R0(τ) > 1 a unique endemic equilibrium exists and is globally

asymptotically stable. We apply our results to Ross-MacDonald malaria mo-

dels with an incubation period (extrinsic or intrinsic).

1. Introduction. Historically the mathematical model first for malaria transmis-
sion is introduced by Ronald Ross [17] and further extended by George MacDonald
[14], it has influenced both the modelling and the application of control strategies
to vector-transmitted diseases.

The classic Ross-MacDonald model of malaria consists of an autonomous nonlin-
ear two-dimensional system describing changes in the proportion of infected humans
and mosquitoes. Subsequent contributions have been made to extend the Ross–
MacDonald malaria models, and of these extensions is the vector-bias model, first
proposed by Kingsolver [6]. It investigate the greater attractiveness of infectious
humans to mosquitoes. Empirical evidence suggests that mosquitoes show some
bias for humans infected with malaria [11]. Hosack and coauthors [2] incorporate
an implicit incubation period in mosquitoes, the vector-bias model to study the
dynamics of the disease in terms of a basic reproductive number.

Following Kingsolver [6] and Hosack and coauthors [2] works, Chamchod and
Britton [1] extended the vector-bias model and define the attractiveness in a differ-
ent way. The model assumes that the human and vector populations are divided
into classes or states containing susceptible, infectious individuals. At time t, there
are H(t) susceptible humans, I(t) infectious humans, S(t) susceptible mosquitoes
and V (t) infectious mosquitoes. In this model, it assumes a Susceptible-Infectious-
Susceptible model for the human population, under the assumption that the disease
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does not confer immunity to infected humans after recovery. For the mosquito popu-
lation, a Susceptible-Infectious model under the assumption that mosquitoes never
recover from infection. The compartmental model is described by the following
system of differential equations:

d
dtH(t) = µN − qβH(t)V (t)

pI(t)+qH(t) − µH(t) + δI(t),
d
dtI(t) = qβH(t)V (t)

pI(t)+qH(t) − (µ+ δ)I(t),
d
dtS(t) = ηM − pκS(t)I(t)

pI(t)+qH(t) − ηS(t),
d
dtV (t) = pκS(t)I(t)

pI(t)+qH(t) − ηV (t).

(1)

The system assumed that the total human population has constant size with a
birth and death rate constant equal to µ > 0 and thus N = H(t) + I(t) for all
time t. Similarly, M = S(t) + V (t) is total mosquito populations at time t, and
the natural death rate and birth rate are assumed to be equal, denoted by η > 0.
The infected humans recover at a constant rate δ > 0. The parameter β > 0 is
the transmission probability from vector to human, and κ > 0 is the transmission
probability from human to vector. The incidence terms for human population and
mosquitoes populations are given by

qβH(t)V (t)

pI(t) + qH(t)
and

pκS(t)I(t)

pI(t) + qH(t)
,

respectively. Where 0 < p < 1 is the probability that a mosquito arrives at a
human at random and picks that human if he is infectious, 0 < q < 1 if the human
is susceptible, where p > q. If p = q, the system is delayed Ross-MacDonald model
with incubation time in the vector population.

In the vector bias model (1) Chamchod and Britton [1] include explicitly the
incubation period and adds a third class to the population of mosquitoes: Exposed
class, E(t). The model is formulated by the following system of delay differential
equations:

d
dtH(t) = µN − qβH(t)V (t)

pI(t)+qH(t) − µH(t) + δI(t),
d
dtI(t) = qβH(t)V (t)

pI(t)+qH(t) − (µ+ δ)I(t),
d
dtS(t) = ηM − pκS(t)I(t)

pI(t)+qH(t) − ηS(t),
d
dtE(t) = pκS(t)I(t)

pI(t)+qH(t) −
pκS(t−τ)I(t−τ)
pI(t−τ)+qH(t−τ)e

−ητ − ηE(t),
d
dtV (t) = pκS(t−τ)I(t−τ)

pI(t−τ)+qH(t−τ)e
−ητ − ηV (t).

(2)

Here, the time delay τ is the extrinsic incubation period of parasites within the

vector. The term pκS(t−τ)I(t−τ)
pI(t−τ)+qH(t−τ)e

−ητ represents the mosquitoes who were exposed

at time t− τ and survive to time t (with the death rate η), that is, represents the
transformation of the exposed class, E(t), to the infectious class, V (t).

We now reduce system (2) to a three-dimensional system by eliminating E(t),
and H(t) using the relation I(t) = N −H(t). So in the rest of this paper, we will
study the following retarded nonlinear system

d
dtS(t) = ηM − κpS(t)I(t)

(p−q)I(t)+qN − ηS(t),
d
dtV (t) = κpS(t−τ)I(t−τ)

(p−q)I(t−τ)+qN e
−ητ − ηV (t),

d
dtI(t) = β

(
1− pI(t)

(p−q)I(t)+qN

)
V (t)− (µ+ δ)I(t).

(3)



DELAYED VECTOR-BIAS MODEL FOR MALARIA TRANSMISSION 167

The goal of this paper is study the global stability of delayed bias vector model
(3) with incubation time in mosquitoes. We present the construction of Lyapunov
functionals for this model.

The paper is organized as follows. In the next section, basic mathematical prop-
erties of the model are studied. The global asymptotic stability of the disease-free
equilibrium is established in Section 3. The global asymptotic stability of the en-
demic equilibrium is obtained in Section 3. In Section 4, we apply our results to
delayed Ross-MacDonald models.

2. Basic properties. We begin by presenting some notations that will be used
throughout this paper. Let C([−τ, 0],R3

+) be the Banach space of continuous func-
tions mapping the interval [−τ, 0] into R3

+ , where

R3
+ =

{
(S, V, I) ∈ R3 : S ≥ 0, V ≥ 0, I ≥ 0

}
It is biologically reasonable to consider the following initial conditions for (3):

S(θ) = ϕ1(θ), V (θ) = ϕ2(θ), I(θ) = ϕ3(θ), θ ∈ [−τ, 0], (4)

where ϕ = (ϕ1(0), ϕ2(0), ϕ3(0)) ∈ C.
For model (3) to be mathematically tractable and biologically meaningful, it is

important to prove that all the state variables (Susceptible mosquitoes, infectious
mosquitoes, and infectious humans) are nonnegative for all time. We prove that all
solutions of system (3) with positive initial data will remain positive for all time
t ≥ 0.

Theorem 2.1. Let (S(t), V (t), I(t))T be any solution of system (3). Then under the
initial conditions (4), all solutions (S(t), V (t), I(t))T are non-negative on [0,+∞)
and ultimately bounded.

Proof. If S(t) were to lose its non-negativity on some local existence interval [0, T )
for some constant T > 0, there would have to be a time at t1 > 0 such that
S(t1) = 0. By the first equation of (3) we have d

dtS(t1) = ηM > 0. That means
S(t) < 0 for t ∈ (t1 − ε, t1), where ε is an arbitrarily small positive constant. This
leads to a contradiction. It follows that S(t) is always positive. Further, form the
second and the third equations in (3), we have, respectively

V (t) = V (0)e−ηt +

∫ t

0

e−ητκpS(φ− τ)I(φ− τ)

(p− q)I(φ− τ) + qN
e−η(t−φ)dφ,

I(t) = I(0)e−(µ+δ)t +

∫ t

0

βq(N − I(φ))V (φ)

(p− q)I(φ) + qN
e−(µ+δ)(t−φ)dφ.

Then, it is easy to see that V (t) and I(t) are non-negative on [0, T ).
For t ∈ [0, T ), we have from (3) that d

dtS(t) ≤ ηM − ηS(t). Hence, well-
known comparison principle implies that S(t) is bounded on [0, T ), i.e., M1 =
supt∈[0,T ) S(t) < +∞. Therefore, we again have from (3) that on [0, T ),

• if p = q, then dV (t)
dt ≤

κe−ητM1I(t−τ)
N − ηV (t), and dI(t)

dt ≤ βV (t)− (µ+ δ)I(t),

• if p > q, then dV (t)
dt ≤

κe−ητpM1

(p−q) − ηV (t), and dI(t)
dt ≤ βV (t)− (µ+ δ)I(t).

Hence, we also have from comparison principle that V (t) and I(t) are bounded
on [0, T ). Boundedness of the solution (S(t), V (t), I(t))T implies that the local
existence interval [0, T ) can be continued to T = +∞. This proves that the solution
(S(t), V (t), I(t))T is existent and non-negative on [0,+∞).
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We define a function

U(t) = e−ητS(t− τ) + V (t) +
η

2β
I(t).

The time derivative of U(t) computed along solutions of (3) is

dU(t)

dt
= e−ητηM − e−ητηS(t− τ)− η

2
V (t)− η(µ+ δ)

2β
I(t)− ηp

2

V (t)I(t)

(p− q)I(t) + qN

≤ e−ητηM − e−ητηS(t− τ)− η

2
V (t)− η

2β
µI(t).

By non-negativity of the solution, it follows that

d

dt
U(t) + σU(t) ≤ e−ητηM.

where σ = min{η2 , µ}. This implies that U(t) is ultimately bounded, and so are
S(t), V (t) and I(t). This completes the proof.

The system (3) has two possible equilibria and they must satisfy the following
algebraic equations:

0 = ηM − κ pI
(p−q)I+qN S − ηS,

0 = κ pI
(p−q)I+qN Se

−ητ − ηV,
0 = β

(
1− pI

(p−q)I+qN

)
V − (µ+ δ)I.

(5)

We have the following result.

Theorem 2.2. System (3) always has the disease-free equilibrium E◦(M, 0, 0). If
p > q and R0(τ) > 1, there is a unique endemic equilibrium E∗(S∗, V ∗, I∗) where

S∗ =
ηM((p− q)I∗ + qN)

(κp+ (p− q)η)I∗ + qηN
, V ∗ =

κpMe−ητI∗

(κp+ (p− q)η)I∗ + qηN
,

I∗ =
−qNc+ qN

√
c2 + 4η(p− q)(κp+ (p− q)η) (R0(τ)− 1)

2(p− q)(κp+ (p− q)η)
,

whit c = κp+ qηR0(τ) + 2η(p− q).

For the case p = q, the endemic equilibrium state is shown in Section 4.

The threshold parameter for system (3) is

R0(τ) =
κβMpe−ητ

qNη(µ+ δ)
. (6)

For vector-transmitted diseases, the basic reproductive number is more often

reported as the square root of the threshold parameter, R̂0(τ) =
√
R0(τ). The

basic reproductive number of the disease, since it represents the average number of
secondary infections caused by an infectious vector or infectious human.

Remark 1. Note that the basic reproductive number R̂0(τ) is a decreasing function
on time delay τ .
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3. Global asymptotic stability analysis. In this section, we discuss the global
stability of the disease-free equilibrium and the endemic equilibrium of system (3),
respectively. The technique of proofs is the method of Lyapunov functionals. For
simplicity, we will use the following notation in the proof S = S(t), V = V (t),

I = I(t), g(I) = pI(t)
(p−q)I(t)+qN , Si = S(t−i), Ii = I(t−i) and g(Ii) = pI(t−i)

(p−q)I(t−i)+qN ,

where i = ω, τ .
The following result shows that if R0(τ) ≤ 1 the disease-free equilibrium E◦ is

stable globally.

Theorem 3.1. If p ≥ q and R0(τ) ≤ 1, then the disease-free equilibrium E◦ of (3)
is globally asymptotically stable.

Proof. Define the global Lyapunov functional

W (t) = e−ητ
∫ S

M

(
1− M

σ

)
dσ + V +

η

β
I + κe−ητ

∫ τ

0

g(Iω)Sωdω.

Computing the derivative of W along the solutions of system (3), we obtain

dW

dt
= e−ητ

(
1− M

S

)
dS

dt
+
dV

dt
+
η

β

dI

dt
+ κe−ητg(I)S − κe−ητg(Iτ )Sτ ,

= ηMe−ητ
(

2− M

S
− S

M

)
+

(
κe−ητMp

(p− q)I + qN
− η(µ+ δ)

β

)
I − ηg(I)V,

= −ηMe−ητ

(√
M

S
−
√

S

M

)2

− qNη(µ+ δ)

pβ

(
1− κβMpe−ητ

qNη(µ+ δ)

)
g(I)

− η
(

(µ+ δ)(p− q)
βp

I + V

)
g(I).

Rewritten dW
dt in terms of threshold parameter (6), we have

dW

dt
= −ηMe−ητ

(√
M

S
−
√

S

M

)2

− qNη(µ+ δ)

pβ
(1−R0(τ)) g(I)

− η
(

(µ+ δ)(p− q)
βp

I + V

)
g(I).

If p ≥ q and R0(τ) ≤ 1, then dW
dt ≤ 0 any solution is also bounded on [0,+∞).

If R0(τ) < 1, from Corollary 5.2 of [10], E◦ is globally asymptotically stable. Also,
for R0(τ) = 1, dW

dt = 0 implies that S(t) = M and V (t) = I(t) = 0. It is easy to

show that E◦(M, 0, 0) is the largest invariant set in
{

(S(t), V (t), I(t)) : dWdt = 0
}

.
By the classical Lyapunov-LaSalle invariance principle (Theorem 5.3 of [10]), E◦ is
globally asymptotically stable.

Remark 2. Korobeinikov constructed families of Lyapunov functions in [7],[8],[9]
to prove global stability of the equilibrium states of infectious disease models and
viral infection models. Recently, McCluskey and other authors studied the global
stability of the equilibrium states of epidemiological models with delay [3], [5], [15],
[16], [19], and in [4], [13], [18] analyzed virus dynamics models with intracellular
delay, using a novel family of Lyapunov functionals.
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In the following, we consider the global asymptotic stability of a unique endemic
equilibrium E∗. Inspired by the works of Korobeinikov [7],[8],[9] and McCluskey
[15], [16], in this paper, we construct a Lyapunov functional for endemic equilibrium.

Theorem 3.2. If p ≥ q and R0(τ) > 1, then the endemic equilibrium E∗ of (3) is
globally asymptotically stable.

Proof. Define the global Lyapunov functional for E∗,

L(t) = L̃(t) + κg(I∗)S∗e−ητL+(t)

where

L̃(t) = e−ητ
∫ S

S∗

(
1− S∗

σ

)
dσ +

∫ V

V ∗

(
1− V ∗

σ

)
dσ

+
κg(I∗)S∗e−ητ

(µ+ δ)I∗

∫ I

I∗

(
1− g(I∗)

g(σ)

)
dσ,

and

L+(t) =

∫ τ

0

(
g(Iω)Sω
g(I∗)S∗

− 1− ln
g(Iω)Sω
g(I∗)S∗

)
dω.

At endemic equilibrium, we have

ηM = ηS∗ + κg(I∗)S∗, (7)

η = κ
g(I∗)S∗

V ∗
e−ητ , (8)

β = βg(I∗) + (µ+ δ)
I∗

V ∗
. (9)

The time derivative of L computed along solutions of (3) is

dL̃

dt
= e−ητ

(
1− S∗

S

)
(ηM − κg(I)S − ηS)

+

(
1− V ∗

V

)(
κg(Iτ )Sτe

−ητ − ηV
)

+
κg(I∗)S∗e−ητ

(µ+ δ)I∗

(
1− g(I∗)

g(I)

)
(βV − βg(I)V − (µ+ δ)I) ,

Using (7)–(9), we obtain
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dL̃

dt
= e−ητ

(
1− S∗

S

)(
η (S∗ − S) + κg(I∗)S∗

(
1− g(I)S

g(I∗)S∗

))
+ κg(I∗)S∗e−ητ

(
1− V ∗

V

)(
g(Iτ )Sτ
g(I∗)S∗

− V

V ∗

)
+
κg(I∗)S∗e−ητ

(µ+ δ)I∗

(
1− g(I∗)

g(I)

)(
βg(I∗)

(
1− g(I)

g(I∗)

)
V

)
+ κg(I∗)S∗e−ητ

(
1− g(I∗)

g(I)

)(
V

V ∗
− I

I∗

)
,

= ηS∗e−ητ
(

2− S∗

S
− S

S∗

)
+ κe−ητ (g(Iτ )Sτ − g(I)S)

+ κg(I∗)S∗e−ητ
(
g(I)

g(I∗)
− I

I∗

)(
1− g(I∗)

g(I)

)
+
κβg2(I∗)S∗e−ητ

(µ+ δ)I∗

(
2− g(I∗)

g(I)
− g(I)

g(I∗)

)
V

+ κg(I∗)S∗e−ητ
(

3− g(Iτ )SτV
∗

g(I∗)S∗V
− g(I∗)V

g(I)V ∗
− S∗

S

)
.

It is easy to see that

dL+

dt
=

d

dt

∫ τ

0

(
g(Iω)Sω
g(I∗)S∗

− 1− ln
g(Iω)Sω
g(I∗)S∗

)
dω,

=

∫ τ

0

d

dt

(
g(Iω)Sω
g(I∗)S∗

− 1− ln
g(Iω)Sω
g(I∗)S∗

)
dω,

= −
∫ τ

0

d

dω

(
g(Iω)Sω
g(I∗)S∗

− 1− ln
g(Iω)Sω
g(I∗)S∗

)
dω,

= −
[
g(Iω)Sω
g(I∗)S∗

− 1− ln
g(Iω)Sω
g(I∗)S∗

]τ
ω=0

,

= − g(Iτ )Sτ
g(I∗)S∗

+
g(I)S

g(I∗)S∗
+ ln

g(Iτ )Sτ
g(I∗)S∗

− ln
g(I)S

g(I∗)S∗
,

= − g(Iτ )Sτ
g(I∗)S∗

+
g(I)S

g(I∗)S∗
+ ln

g(Iτ )SτV
∗

g(I∗)S∗V
+ ln

g(I∗)V

g(I)V ∗
+ ln

S∗

S
.

Since

dL

dt
=
dL̃

dt
+ κg(I∗)S∗e−ητ

dL+

dt
,

we obtain
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dL

dt
= ηS∗e−ητ

(
2− S∗

S
− S

S∗

)
+ κg(I∗)S∗e−ητ

(
g(I)

g(I∗)
− I

I∗

)(
1− g(I∗)

g(I)

)
+
κβg2(I∗)S∗e−ητ

(µ+ δ)I∗

(
2− g(I∗)

g(I)
− g(I)

g(I∗)

)
V

− κg(I∗)S∗e−ητ
(
g(Iτ )SτV

∗

g(I∗)S∗V
− 1− ln

g(Iτ )SτV
∗

g(I∗)S∗V

)
− κg(I∗)S∗e−ητ

(
g(I∗)V

g(I)V ∗
− 1− ln

g(I∗)V

g(I)V ∗

)
− κg(I∗)S∗e−ητ

(
S∗

S
− 1− ln

S∗

S

)
.

Notice that

(
g(I)

g(I∗)
− I

I∗

)(
1− g(I∗)

g(I)

)
= − (p− q)qN(I − I∗)2

I∗((p− q)I∗ + qN)((p− q)I + qN)
.

Thus,

dL

dt
= −ηS∗e−ητ

(√
S∗

S
−
√

S

S∗

)2

− κg(I∗)S∗e−ητ
(
S∗

S
− 1− ln

S∗

S

)
− κg(I∗)S∗e−ητ

(p− q)qN(I − I∗)2

I∗((p− q)I∗ + qN)((p− q)I + qN)

− κβg2(I∗)S∗e−ητ

(µ+ δ)I∗

(√
g(I∗)

g(I)
−

√
g(I)

g(I∗)

)2

V

− κg(I∗)S∗e−ητ
(
g(Iτ )SτV

∗

g(I∗)S∗V
− 1− ln

g(Iτ )SτV
∗

g(I∗)S∗V

)
− κg(I∗)S∗e−ητ

(
g(I∗)V

g(I)V ∗
− 1− ln

g(I∗)V

g(I)V ∗

)
.

Then dL
dt ≤ 0 for all S, V, I > 0. By Corollary 5.2 of [10], solutions limit to M, the

largest invariant subset of
{
dL
dt = 0

}
. Furthermore, dL

dt = 0 if and only if S(t) =
S(t− τ) = S∗, V (t) = V ∗ and I(t) = I(t− τ) = I∗. Therefore the largest compact
invariant set in M is the singleton {E∗}, where E∗ is the endemic equilibrium.
This shows that limt→∞(S(t), V (t), I(t)) = (S∗, V ∗, I∗). By the classical Lyapunov-
LaSalle invariance principle (Theorem 5.3 of [10]), then E∗ is globally asymptotically
stable.

Remark 3. Huang and coauthors, in [4] and [5] constructed Lyapunov functionals
and analyzed a class of viral infection and epidemic models in three dimensional with
a discrete delay, that incorporate a generalized nonlinear incidence rate. The model
(3) does not correspond to the structures of the equations of the study systems in
[4] and [5].
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4. Delayed Ross-MacDonald malaria models. Recently, Lou and Zhao [12]
proposed the following malaria model with incubation period in the vector popula-
tion:

d
dtS(t) = ηM − κ

N S(t)I(t)− ηS(t),
d
dtV (t) = κ

N S(t− τ)I(t− τ)e−ητ − ηV (t),
d
dtI(t) = β

N (N − I(t))V (t)− (µ+ δ)I(t).

(10)

When p = q the system (3) becomes a Ross-MacDonald model (10) with incuba-
tion period in mosquitoes. Hence, from Theorems 3.1 and 3.2, we obtain the global
dynamic behavior for system (10):

Theorem 4.1. Let the threshold parameter Rv0(τ) be defined by

Rv0(τ) =
κβMe−ητ

Nη(µ+ δ)
.

If Rv0(τ) ≤ 1, then the disease-free equilibrium E◦v (M, 0, 0) of (10) is globally asymp-
totically stable. If Rv0(τ) > 1, then the endemic equilibrium

E∗v
(
ηMN/(κI∗ + ηN), κMe−ητI∗/(κI∗ + ηN), ηN(Rv0(τ)− 1)/(ηRv0(τ) + κ)

)
of (10) is globally asymptotically stable.

We proposed the Ross-MacDonald model with incubation period in the human
population:

d
dtH(t) = µN − β

NH(t)V (t)− µH(t),
d
dtI(t) = β

NH(t− ν)V (t− ν)e−µν − µI(t),
d
dtV (t) = κ

N (M − V (t)) I(t)− ηV (t).

(11)

Here, the time delay ν is the intrinsic incubation period of malaria parasites in
humans, the system (11) leads to the threshold parameter into the following form:

Rh0 (ν) =
κβMe−µν

Nηµ
.

We exploit the “isomorphism” between system (11) and the delayed model (10),
and we prove the global properties of model (11). From Theorem 4.1, we obtain
the following corollary.

Corollary 1. If Rh0 (ν) ≤ 1, then the disease-free equilibrium E◦h(N, 0, 0) of (11) is
globally asymptotically stable. If Rh0 (ν) > 1, then the endemic equilibrium

E∗h
(
µN2/(βV ∗ + µN), βNV ∗/eµν(βV ∗ + µN), µηN(Rh0 (ν)− 1)/β(κe−µν + η)

)
of (11) is globally asymptotically stable.

5. Conclusion. Our main goal was to investigate the qualitative behavior of the
vector-bias model, this model incorporates the effect that infectious humans may
be more attractive to mosquitoes than susceptible humans.

It is known that the method of Lyapunov functionals plays a central role in the
study of the global stability of retarded nonlinear systems. However, it is generally
difficult to construct Lyapunov functionals that satisfy the condition required in
the stability theory.
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In this paper, by constructing two suitable Lyapunov functionals, we found the
sufficient and necessary conditions of the global stability for the disease-free equilib-
rium and endemic equilibrium of vector-bias model. The results show that, for the
vector-bias malaria model (3), the time delay has no effect on both global asymp-
totic properties of the disease-free equilibrium and global asymptotic properties of
the endemic equilibrium.

Our results solve the open problem of global stability of system (3) developed
in [1], and extended our result to delayed models with extrinsic incubation period
(10) or intrinsic incubation period (11).
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