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Abstract. Control entropy (CE) is a complexity analysis suitable for dy-

namic, non-stationary conditions which allows the inference of the control ef-
fort of a dynamical system generating the signal [4]. These characteristics make

CE a highly relevant time varying quantity relevant to the dynamic physiolog-

ical responses associated with running. Using High Resolution Accelerometry
(HRA) signals we evaluate here constraints of running gait, from two different

groups of runners, highly trained collegiate and untrained runners. To this end,

we further develop the control entropy (CE) statistic to allow for group anal-
ysis to examine the non-linear characteristics of movement patterns in highly

trained runners with those of untrained runners, to gain insight regarding gaits

that are optimal for running. Specifically, CE develops response time series of
individuals descriptive of the control effort; a group analysis of these shapes

developed here uses Karhunen Loeve Analysis (KL) modes of these time se-
ries which are compared between groups by application of a Hotelling T 2 test

to these group response shapes. We find that differences in the shape of the

CE response exist within groups, between axes for untrained runners (vertical
vs anterior-posterior and mediolateral vs anterior-posterior) and trained run-

ners (mediolateral vs anterior-posterior). Also shape differences exist between

groups by axes (vertical vs mediolateral). Further, the CE, as a whole, was
higher in each axis in trained vs untrained runners. These results indicate that

the approach can provide unique insight regarding the differing constraints on

running gait in highly trained and untrained runners when running under dy-
namic conditions. Further, the final point indicates trained runners are less

constrained than untrained runners across all running speeds.
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1. Introduction. It has been estimated that approximately 10.5 million Ameri-
cans run at least 100 days/year [23]. In spite of this popularity, there is little data
with regard to the gait patterns of highly trained or elite runners, compared to un-
trained runners . It might be anticipated that highly trained runners would develop
an optimal pattern of movement, and corresponding variability of movement for
the activity of running through practice [8], [35], and therefore, comparisons with
untrained runners would be not only of performance, but clinical value. It has been
argued that a dynamical systems approach to gait analysis is more appropriate than
more traditional linear approaches, and as such, there has been increasing interest
in the variability of gait. It is not clear if higher or lower variability is optimal for
performance, nor if changes in variability of movement are dependent upon prac-
tice/training [8], [26]. This ambiguity may, in part, be due to the nature of the
variability that is identified (i.e. linear vs non-linear) and the differences that lie
therein. To add clarity to this area, if we compare the non-linear characteristics of
movement patterns in highly trained runners with those of untrained runners, we
may gain insight into aspects of gait that are optimal for running. This could be of
value for clinical comparisons or as models of optimization for the development of
robotic locomotion systems [6], [9].

Previously, various tools in the field of non-linear dynamical systems analysis
have been applied to human gait data [1],[5],[10],[16] , [17], [18], [19]. In particular,
regularity/complexity statistics such as Approximate Entropy (AE) and Sample
Entropy (SE) have been used to study complexity of gait [5],[10],[16],[17] , [19], [24],
but a problem with many of these tools is the requirement of stationarity, making
them ill suited for analysis of data collected under dynamic conditions. Recently,
we developed a novel tool for complexity analysis to be used under dynamic, non-
stationary conditions termed control entropy (CE)[4]. A central characteristic of CE
is that it allows the inference of the control effort of a dynamical system generating
the signal, while not requiring such a signal to be stationary [4].

We have also previously used high resolution accelerometers (HRA) to character-
ize differences between trained and untrained runners using linear approaches [21] .
Further, we have used high resolution accelerometers and CE to examine differences
in constraints between planes of movement during walking and running in highly
trained runners [22]. In this previous work, appropriate tools for rigorously testing
differences between groups were limited though. In the current study, we use high
resolution accelerometers and CE of the acceleration signal to compare complexity
of gait patterns while running in highly trained versus untrained runners. We hy-
pothesized that 1) differences would exist in CE of acceleration between axes in both
trained and untrained runners, 2) trained runners would exhibit higher CE values at
comparable speeds to untrained runners, and 3) decreases in CE from peak values
would occur at higher speeds in trained vs untrained runners. In order to test these
hypotheses between groups, we have applied statistical tools to complement the
CE analysis, which allow shape analysis of each group response in their CE profile
descriptive of the gait control complexity. Shape analysis here is by a Karhunen
Loeve Analysis (KL) analysis into dominant modes, and the group analysis of these
shapes is by a Hotellings T 2 test. We provide the details of development of this new
approach to group analysis of shapes of systems responses in the methods section.
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(V) vs (M) (V) vs (AP) (M) vs (AP)
n1 11 11 11
n2 11 11 11

Variables 2 2 2
T2 6.1313 17.0403 11.4059
F 2.7591 7.6682 5.1326

df1 2 2 2
df2 9 9 9
P 0.1163 0.0114 0.0326

Table 1. Statistical comparison of dominant modes of
CE response of accelerometry in untrained runners be-
tween axes.
We find mean vector results not significant when comparing ver-
tical(V) vs mediolateral(M), we find significance when comparing
both vertical(V) vs anterior-posterior(AP) and mediolateral(M)
vs anterior-posterior(AP).

Results.

Control entropy responses in untrained and trained runners by axis.
Results of Karhunen Loeve Analysis of CE of accelerations for individual axes in
untrained runners can be seen in Figure 1. For each axis, a dominant mode was
identified and its likelihood determined and presented as a power spectrum. Our
analysis indicates a significant difference in shape of the CE response in untrained
runners for vertical (V) vs anterior-posterior (AP) and mediolateral (M) vs anterior-
posterior (Figure 1, Table 1). A non-significant trend was also observed between
vertical and anterior-posterior (Table 1).

In Figure 1, it can be seen that the CE response in vertical (blue) appears
to remain more consistently higher than mediolateral (red) and anterior-posterior
(green), which start higher than vertical at 8 kph, but decline below vertical by
the 16 kph stage. The results of Karhunen Loeve Analysis of CE of accelerations
for individual axes in trained runners can be seen in Figure 2. Similar to un-
trained runners, a dominant mode was identified for each axis and its likelihood
presented as a power spectrum. In Figure 2, it can be seen that the CE response in
anterior-posterior (green) appears to remain more consistently higher than vertical
(blue) and mediolateral (red). In contrast to untrained runners, in trained runners,
anterior-posterior started lower than vertical and mediolateral at 8 kph, and in-
creased slightly until declining late in the test, but remaining higher than vertical
and mediolateral (Figure 2).

Control entropy response of trained versus untrained runners by axis.
When untrained runners were compared to trained runners using the developed
shape analysis, it was determined that the shape of the CE response was significantly
different in vertical plane between groups (Figure 3), but not in the mediolateral
(Figure 4). There was a non significant trend for the CE response to be different in
the anterior-posterior axis between groups (Figure 5).
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Figure 1. Dominant modes of control entropy responses
for untrained runners by axis
Control entropy (CE) of accelerations collected in high resolution at
the approximate center of mass from untrained runners during an
incremental test. Karhunen-Loeve transformation was performed
to generate a dominant mode for the CE response in each of three
axes (vertical = blue; mediolateral = Red, anterior-posterior =
green). Like symbols (*, ±) indicate significantly different shapes
of dominant modes between axes.

Analysis of scatter plots. In [21] we brought some of the techniques of proper
orthogonal decomposition, into our work. If we take the time series CE data as

(V) vs (M) (V) vs (AP) (M) vs (AP)
n1 11 11 11
n2 11 11 11

Variables 2 2 2
T2 9.21 6.3909 16.0559
F 4.1445 2.8759 7.2252

df1 2 2 2
df2 9 9 9
P 0.0053 0.1082 0.0134

Table 2. Statistical comparison of dominant modes of
CE response of accelerometry in trained runners between
axes.
We find significance of mean vector results when comparing medi-
olateral versus anterior-posterior. No significance for mean vector
results is found for vertical versus anterior-posterior, but a non-
significant trend for vertical vs. mediolateral is observed.
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Figure 2. Dominant modes of control entropy responses
for trained runners by axis
Control entropy (CE) of accelerations collected in high resolution
at the approximate center of mass from trained runners during an
incremental test. Karhunen-Loeve transformation was performed
to generate a dominant mode for the CE response in each of three
axes (vertical = blue; mediolateral = Red, anterior-posterior =
green). Like symbols (*, ±) indicate significantly different shapes
of dominant modes between axes.

U vs T (V) U vs T (M) U vs T (AP)
n1 11 11 11
n2 11 11 11

Variables 2 2 2
T2 17.0403 3.9803 6.3909
F 7.6682 1.7912 2.8759

df1 2 2 2
df2 9 9 9
P 0.0114 0.2214 0.1082

Table 3. Statistical comparison of CE responses of ac-
celerometry in trained(T) vs untrained runners(UT), com-
pared by axis.
We find mean vector results significant when comparing untrained
vs trained runners in vertical, we find no significance when compar-
ing both untrained vs trained runners in mediolateral and untrained
vs trained in anterior-posterior.
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Figure 3. Dominant modes of Karhunen-Loeve transfor-
mations generated from control entropy (CE) responses
of accelerations compared between trained and untrained
runners in the vertical axis.
Accelerations were collected in high resolution at the approximate
center of mass from trained (T = blue) and untrained (UT = red)
runners during an incremental test, and CE of accelerations were
compared between groups in the vertical axis at equivalent speeds.
* indicates significantly different shape of dominant modes between
T and UT runners.

U vs T (V) U vs T (M) U vs T (AP)
0.018 0 0

Table 4. Means Comparison for untrained vs trained.
We find mean vector results significant in vertical, mediolateral
and anterior-posterior. In the event that no significant differences
are observed for Hotelling T2 test, it is appropriate to perform a
simple means comparison between groups to determine the average
difference in CE. P values of simple means comparisons are shown.
In the case of untrained vs trained for mediolateral and anterior-
posterior axes, p values were immeasurable and therefore reported
as 0. It should be noted that in the case of the vertical axis, a
significant Hotelling T2 test result was observed (Table 3), and
simple mean differences in this case should be viewed with caution.

a statistically sampled ensemble with standard assumptions regarding normally
distributed i.i.d. data, Singular Value Decomposition (SVD) yields the least squares
solution to a parametric fit descriptive of how each individual signal is a linear
combination of the singular vectors by an equation which describes level curves of
the χ2 distribution, [20],
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Figure 4. Dominant mode of trained (blue) vs untrained
(red) runners for mediolateral axis
In Figure 4 , # indicates significantly different mean CE values
between dominant modes for trained and untrained runners.

Figure 5. Dominant mode of trained (blue) vs untrained
(red) runners for anterior-posterior axis
In Figure 5, # indicates significantly different mean CE values
between dominant modes for trained and untrained runners.

∆χ2 = s2
1(v1 · δa) + s2

2(v2 · δa)....s2
p(vp · δa) (1)
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where δa describes the projection of a particular data point (a new sampled exper-
imental and processed CE time series in this case) onto the singular vectors. Now
a fast decaying average power spectrum implies that only a few singular vectors
describe dominant modes, we provide figures (Figures 6-11) of scatters of δa1 and
δa2, of the first two modes. We will consider a direct description of points as they
may reside in a simple region. That is, considering a distribution ρ(δa1, δa2) and a
box shaped region,

B(δa1, δa2) = {(δa1, δa2) : −400 ≤ δa1 ≤ −100,−100 ≤ δa1 ≤ 100} (2)

then the probability that a single sample will reside in the box is,

p =

∫
Ω=B(δa1,δa2)

ρ(x, y)dΩ (3)

In any case, 0 ≤ p ≤ 1 so if we ask what is the probability that of n independently
sampled experiments landing in the box, that is

B(δa1, δa2) = 1− (1− p)n (4)

while this quantity approaches 1 as n → ∞. Rather we may ask what is the
probability that a sample of n trials has m ≤ n. This becomes a Bernoulli trials
experiment.

P (m successes in n trials) =

(
n
m

)
pmqn−m, q = 1− p. (5)

Without dealing here with the straightforward specific statistic to hypothesis test
confidence in a given number k or less of failures of the sample to occupy a chosen
box, we will present the result of our two groups based on using the same box in
each group (Figure 6-11). That each and every sample of n = 11 of the trained
group (Figures 9-11) lands in the box shown suggests that p is rather large and
close to 1. However, in contrast comparing to the untrained group (Figures 6-8),
we see several and often many lying outside the box contrasts that this sample is
from a similar distribution ρ leading to the same larger p.

In all axes, the untrained runners are more scattered than the trained runners.
The trained runners scatter plots are quite tightly clustered. In the anterior-
posterior axis in particular, we don’t see a significant difference between trained
runners and untrained runners in the Karhunen Loeve Analysis. There is a large
variance in the untrained runners. The responses appear quite different though,we
decide to proceed with a more rigorous statistical hypothesis. We also provide fig-
ures (Figures 6-11) of the scatter plots of these modes of the runners by axis. This
is seen via the Karhunen Loeve Analysis followed by the singular value decomposi-
tion. Some details behind the theory of the Karhunen Loeve Analysis as applicable
in this context are provided in the methods section. For complete details the reader
is referred to [4], [21].

Discussion. We present results of a comparison of non-linear dynamics of running
gait between trained and untrained runners; in particular, under non-stationary
conditions, using the regularity statistic Control Entropy. We hypothesized that
1) Differences would exist for CE of acceleration between axes in both trained and
untrained runners.
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Figure 6. The scatter plots for untrained runners, in the
vertical channel.
Scatter plot presentation of clustering in untrained runners (Figure
6-8) versus trained runners (Figure 9-11) in vertical, mediolateral,
and anterior posterior channels is shown. According to discussion in
equations (2)- (5), tight clustering within the boxes shown is indica-
tive of a strongly homogeneous group, here as measured within the
singular value decomposition dominant modal description in the
first two modes δa1 and δa2 of the CE response profile of the corre-
sponding accelerometry axis labelled. Notice that in this presenta-
tion, it is immediately apparent that the trained group presents a
highly homogeneous response, where the untrained group is quite
the contrary.

2) Trained runners would exhibit higher CE values at comparable speeds to un-
trained runners.
3) Decreases in CE from peak values would occur at higher speeds in trained vs
untrained runners.

In order to test these hypotheses, it was necessary to develop new statistical
tools to complement the CE analysis. A unique, beneficial characteristic of CE
versus other regularity statistics is the mitigation of the requirement for station-
arity [4]. That being said, due to the dynamically changing characteristics of the
non-stationary systems examined in this study, traditional statistical approaches to
means comparisons were not appropriate. Therefore, we developed code to apply
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Figure 7. The scatter plots for untrained runners, in the
mediolateral channel.

the Hotelling T 2 test, to the multivariate data, appropriate in our setting. This was
used to rigorously test the similarity of the shapes of Karhunen Loeve transforms
to determine if the dynamics of the systems are behaving similarly or differently.
With these tools we identified within group and between group differences in pat-
terns of regularity/complexity in untrained and trained runners. It was anticipated
that differences would be observed in CE profiles between axes in both trained and
untrained runners.

In our previous work [22], we determined differences in CE profile existed be-
tween axes in highly trained runners. In the current study, this was confirmed
in both trained and untrained runners. It has been proposed that constraints of
human motion can be categorized as either organismic, environmental or task ori-
ented [27]. It is likely that the predominant constraints in the vertical axis are due
to gravity (environmental) and, to some extent, the energy required to overcome
it (organismic). Support for this may come from the apparent association between
the reduction in RMS of accelerations in the vertical versus speed, particularly in
untrained runners [21]. In this previous work, we observed that RMS of acceler-
ations in vertical were lower for trained versus untrained runners. In the current
study, the CE response in vertical was significantly different between trained and
untrained runners (Fig 3). Since CE is indicative of control constraints, and trained
runners exhibit lower accelerations in vertical plane[21], it appears as though CE
can distinguish the reduced constraints in trained versus untrained runners in this
parameter. Constraints in the anterior-posterior axis, on the other hand, are likely
more organismic or possibly task oriented in nature. When running on a treadmill,
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Figure 8. The scatter plots for untrained runners, in the
anterior posterior channel.

environmental constraints in the anterior-posterior axis are minimal as there is no
wind. Therefore, it is more plausible that the ability to increase stride length and/or
frequency proportionally to speed are constrained [11]. Such constraints could be
biomechanical and/or metabolic in nature. For example, the decline in CE in the
anterior-posterior axis appears to occur much later, and at higher speeds in the
trained compared to the untrained runner (Fig 5). This apparent difference was
not statistically significant by virtue of the Hotelling T 2 test, but it is intriguing to
consider that this decline in CE in this axis might be related to the lactate threshold,
and important metabolic determinant of performance in trained endurance athletes
[37]. Since we did not investigate the lactate threshold in this study, further work
will be necessary to determine this with certainty.

In the current study , metabolic fitness levels were significantly different between
trained and untrained runners as indicated by RER (lower in trained vs untrained
runners) at given speed, aside from cardiorespiratory fitness represented by V O2

max (Table 5), this discrepancy could suggest differences in metabolic constraints
between groups. To that end, we have also examined highly trained runners com-
pared to triathletes who are lesser trained at running, yet have equivalent metabolic
fitness. In these populations, accelerations in the anterior-posterior axis are still sig-
nificantly different (McGregor et al., unpublished data), which argues against meta-
bolic constraints to accelerations in the plane of progression. Therefore, it may be
that there are neuromuscular recruitment patterns that are learned in highly trained
runners through practice that reduce accelerations in the plane of progression and
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Figure 9. The scatter plots for trained runners, in the
vertical channel.

allow such runners to run faster than lesser trained runners despite comparable
fitness. In the current study, although the CE response in the anterior-posterior
axis appeared to be qualitatively different between trained and untrained runners,
this difference did not reach statistical significance (p=0.1; Table 3). Still, a means
comparison revealed CE was higher in trained than in untrained runners, again in-
dicating reduced constraints in trained runners. The apparently different response
of CE in the plane of progression, and significantly higher CE on average in trained
runners supports the notion that constraints in the anterior-posterior axis are lower
in trained compared to untrained runners, and this contributes to the ability to run
faster. Further work in comparably fit populations will be required to answer this
point unequivocally.

An alternate explanation relates to the role of executive function (EF) in gait.
Although much attention has been applied to the role of executive function in walk-
ing (reviewed in [36]), there is a paucity of data in this regard for running, in trained
or untrained individuals. When walking though, numerous investigators have re-
ported altered gait characteristics (e.g. stride frequency/length, speed) with the
addition of a cognitive task during walking [2], [3], [33]. Since untrained runners
are less practiced at the activity of running, it may be that the trained runners are
more skilled at the task of running, and devote less executive function to the task.
This also agrees with the view of Davids et al. [8] who have argued that individuals
who are skilled at a given task generally exhibit higher levels of variability (both
linear and non-linear), as they are freer to explore options to the solution of Bern-
stein’s problem, that being reducing the degrees of freedom in a highly complex
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Figure 10. The scatter plots for trained runners, in the
mediolateral channel.

system. So, in this current work, since trained are highly trained or practiced at
the task of running, they are less constrained, in general, and exhibit higher CE
as a result. In contrast, as Davids et al. point out [8] unskilled practitioners solve
Bernstein’s problem of reducing degrees of freedom by rigidly restricting segmental
movements. This results in less variability in general, and also lower CE due to the
increased constraints of this approach. Hence, trained are less constrained and ex-
hibit higher CE, in general, than untrained runners. Recently, Nakayama et al. [39]
have investigated the variability of stride interval in trained vs untrained runners.
In this work, when compared at equivalent speeds, trained exhibited significantly
lower coefficient of variation, and apparently, but not statistically significant, lower
alpha (α) exponent of detrended fluctuation analysis (DFA). It is difficult to directly
compare these results due to the different technical approaches, but the tendency
for trained to exhibit lower α across all speeds is conceptually similar to our results
as α indicates long range correlations, and a lower α would be associated with re-
duced constraints as α is lowest for running at preferred running speed [40]. More
work, possibly adding cognitive tasks while running, will be required to more clearly
elucidate the nature of the constraints in the anterior-posterior axis, but it appears
as though trained are less constrained than untrained runners in this parameter.

Another novel aspect of this study which provides intriguing insight regarding
differences in variability between trained and untrained runners can be found in
the scatter plots of the dominant modes of Karhunen Loeve analysis in Figure
3. In the untrained runners (Figures 6-8), the dominant modes exhibited quite
a broad scatter, particularly in the mediolateral and anterior-posterior axes. In
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Figure 11. The scatter plots for trained runners, in the
anterior posterior channel.

contrast, the trained runners ( Figures 9-11) exhibit a much tighter scatter in all
axes. In particular, the contrast in scatter between untrained and trained runners
in the mediolateral (Figures 7 and 10, respectively) and anterior-posterior axes
(Figures 9 and 11, respectively) is quite striking. The reason for this observation
is not clear, but may be a contributing factor to the lack of statistical significance
between trained and untrained runners in the anterior-posterior axis (Figure 5). For
example, the dominant modes of the Karhunen Loeve transforms in the anterior-
posterior axis appear quite distinctive, more so than the other axes, but the T 2

test was not significantly different between groups. The large spread of the scatter
for untrained runners in Figure 8 indicates a high variance that would confound
the statistical test. This was not apparent in trained for the same axis (Figure
11). This may provide an interesting avenue of investigation in future studies as,
if this is indicative of heterogeneity (untrained runners) or conversely, homogeneity
(trained) in CE responses within groups, this may provide additional insight with
experimental interventions or comparison between different clinical groups.

The observation of differing CE responses between individual axes of accelera-
tions at the same time/speed may be of value. Because CE is a measure of system
constraint and the systems controllers effort to maintain a current state of the sys-
tem or respond to perturbations to the system [4], this tool may prove useful in
the clinical context. If certain pathologies impart constraints on gait, these may be
more apparent when contrasting the CE of accelerations in individual axes within
an individual, or when compared against putative normative data. This could
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Mass(kg) Height(cm) Age(yr) VO2max (ml/kg/min)
UT 69.9 ± 11.8 177 ± 5.7 31.6 ± 9.5 49.3 ± 5
T 65.5 ± 5.7 181.8 ± 4.1 21.4 ± 1.7 70.1 ± 6.2

Table 5. Physical characteristics of subjects.
Trained collegiate runners (n = 7), untrained runners (n = 7).
Values are mean ± SD

be used as a prospective diagnostic tool to identify pathologies that may not be
apparent by using other approaches (e.g. variability of stride interval etc.) Typi-
cally, in contrast to some other biological parameters (e.g. cardiovascular), greater
non-linear measures of variability with respect to gait patterns are associated with
diseased states or poor health outcomes [14]. The reason for this discrepancy is
not clear, but it will be necessary to perform studies in clinical populations, in
contrast to healthy and/or highly trained individuals, under similar experimental
conditions to determine if this generalization applies to CE analysis of gait param-
eters. This study is the first to compare the CE of accelerations of running gait
between trained and untrained runners under non-stationary conditions. Further,
we also apply the Hotelling T 2 test, which we used to rigorously test the similarity
of the shapes of Karhunen Loeve transforms to determine if the dynamics of the
systems are behaving similarly or differently. Using this approach, differences were
observed between axes within groups, as well as by axis between groups. These dif-
ferences could be used to identify characteristic constraints in clinical populations
and assist in treatment/rehabilitation. Additionally, these distinctions could also
be used to determine optimized patterns of complexity that could serve as models
for development of robotic locomotor systems.

Materials and methods.

Ethics statement. Subjects gave written informed consent to take part in this
study, which was approved by the Eastern Michigan University, College of Health
and Human Services - Human Subjects Review Committee. All procedures were
conducted in accordance with the principles expressed in the Declaration of Helsinki.

Subjects. Fourteen subjects consisting of seven male NCAA Intercollegiate Divi-
sion 1 distance runners (trained) and seven recreationally active, college students
considered untrained (untrained runners) for running (Table 5) gave written in-
formed consent to take part in this study, which was approved by the Eastern
Michigan University College of Health and Human Services - Human Subjects Re-
view Committee. Criteria to be considered untrained runners was running less than
four times per week and an estimated 10 km performance time of greater than 45
min.

Experimental design. Subjects completed two continuous, incremental exercise
tests on a motorized treadmill (True ZX-9, St. Louis, MO) with at least 6 days
separating each trial. Exercise tests were performed to volitional exhaustion while
high resolution triaxial acceleromety and open circuit spirometry was collected to
determine relationships between metabolic parameters (e.g. Ve, V O2, VCO2) high
resolution accelerometers, walking and running speed which are presented elsewhere
[22]. The subjects reported to the laboratory on the day of testing after having
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refrained from strenuous exercise, alcohol, and caffeine for 24 hours prior to the day
of testing and having fasted for 3 hr.

Incremental exercise tests to volitional exhaustion. All subjects performed
a standardized pre-run phase which consisted of walking initially at 2 km/h, and
increasing speed by 2 km/h every 2 min. Subjects began running at 8 km/h and
continued until volitional exhaustion. During tests, metabolic data was collected
on a breath-by-breath basis using portable open circuit spirometry (Jaeger Oxycon
Mobile, CA). V O2 max was determined as the highest 30s average of the test. From
this maximal aerobic speed (lowest speed eliciting V O2 max) and maximal speed
(maximal speed attained before exhaustion) were determined.

Metabolic measurements. Indirect calorimetry was used to collect breath-by-
breath measurements of V O2 and VCO2 using electrochemical oxygen measuring
cell (SBx) in an Oxycon Mobile (Cardinal Health, OH) and averaged over 5 sec. The
oxygen and carbon dioxide sensors were calibrated prior to each test for: ambient
conditions (temperature and barometric pressure), volume and gas content against
precision analyzed gas mixtures.

Accelerometry. The high resolution accelerometer device consisted of a triaxial
MEMS accelerometer model ADXL210 (G-link Wireless Accelerometer Node 10g,
Microstrain, Inc., vertical). The device was mounted to a semi-rigid strap and
placed, superficial to L3/L4 vertebrae on the posterior side of the body in order
to approximate the subjects center of mass [25]. It was additionally secured with
elastic athletic tape in order to remove extraneous movement of the device not
associated with locomotion. Accelerations in gs were streamed in real time using
telemetry to a base station at a frequency of 617 Hz. For the purposes of comparison
between groups, data was only compared for speeds between 8 km/h and 16 km/h,
stages which all individuals in both groups could complete.

Control entropy. We begin by describing some of the popular forms of entropy,
as found in the literature. From an information theory standpoint, the Shannon
entropy [7],[34] is defined as

SE = −
∑
i

pi ln(pi) (6)

where pi is the probability of being in a state i. This motivates the so called Renyi
entropy [30],

Kq = lim
r→0

lim
m→∞

=
1

1− q
ln(Iq(r)). (7)

Here

Iq(r) =
∑

(pj)
q. (8)

where m-dimensional partitions of uniformly sized hypercubes of side r-hypercubes
with relative occupancy probability pi , although in general, one must define the
supremum over all possible partitions and their refinements.

Of much importance in the current context is the Komolgorov-Sinai (KS) en-
tropy, often called measure theoretic entropy [13]. Due to difficulties in estimating
this we often consider the so-called correlation entropy [15]. This is often pre-
ferred in calculations regarding data due to its quick computation. Recently much
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attention has been drawn to the approximate entropy (AE) of Pincus [28], [29].
Recently a modification of this called sample entropy (SampE) designed to remove
self matching biases inherent in approximate entropy has also been considered [31].

An essential assumption in the aforementioned methods is an inherent assump-
tion of stationarity. Note estimators such as approximate entropy and sample en-
tropy may be a statistic of the finite sample, without requiring stationarity, but
even they require sufficient recurrence so that computed values can be interpreted
as estimates of transition probabilities. In [4] we developed a regularity statistic
and coined the phrase, control entropy (CE). Our aim is to construct a tool that
would be entropy like, but which we could apply to non-stationary time series data.
Non-stationarity is observed in a large number of real world processes, and thus
merits the usage of a tool, exactly like CE. Furthermore part of our goal was to
understand parameter changes within the system as a way of detecting developing
problems, or to serve as a warning before system failure. The CE tool is well suited
for this. We now recap certain essentials from [4].

Consider a data set {zi}Ni=1 to be a scalar time series from an ergodic pro-
cess sampled on a uniform time grid. Let an embedding dimension m by a delay
embedding,vi = (zi, zi−1, ..., zi−m+1), with unit index delay. The correlation sum is
defined as

C2(zi,m, r, T ) =
1

Npairs

N∑
i=M

N∑
j<i−T

Θ(r − ||vi − vj ||∞) (9)

Here Θ is the Heavy side function, r is a parameter which defines a neighbourhood
and Npairs is the total number of pairs of delay vectors. Integer parameter T ≥ 1 is
a Thieler window which is used to smooth effects of near time correlations in data.
We define

h(zi,m, r, T ))
C2(zi,m, r, T )

C2(zi,m+ 1, r, T )
(10)

This leads to the development of sample entropy. Thus define, [27]

SE(j + J,w, {zi}ni=1 ,m, r, T )) = h({zi}w+j
i=1+j ,m, r, T )), for 0 ≤ j ≤ n− w (11)

where J represents time offsets. Sample entropy, with these arguments, represents
an entropy assignment to each time window of dataset, and associated to each time
instant J. From the Sample entropy entropy of a signal zi, we define the control
entropy of the signal,

CE(j + J,w, {zi}ni=1,m, r, T )) = SE(j + J,w, {zi − zi−1}ni=1,m, r, T )), (12)

for 0 ≤ j ≤ n− w
We adopt the SAX method, [38] here, b is chosen to consist of n symbols, and xi

is mapped to si according to an equipartition of Z-values from a normal model on the
data set. We shall use the SAX symbolization in computing CEb according to Eq.
(12), where n will be chosen to satisfy the saturation criterion which we described
in [4] that is if measured CEb becomes ln(n) at any time t, then it is assumed that
n is too small and the cause is that there is overloading of symbolization, [38].
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Karhunen Loeve analysis. We now focus our attention briefly on the develop-
ment of the KL analysis, to conduct a pattern analysis of the response profiles. This
is well detailed in [4]. Principle Component Analysis (PCA) also known as Prin-
ciple Orthogonal Decomposition (POD) or the Karhunen-Loeve Transform have a
long standing history in the field of partial differential equations or infinite dimen-
sional dynamical systems. The analysis of PDE’s most often involves making a
truncation of the equation under consideration and then making apriori estimates
on this truncation, followed by extracting the right sub sequences, to answer ques-
tions regarding well posedness and regularity. This follows via standard functional
analysis theory [32]. The analysis of many time series can also be cast into this
form. In [4] we brought some of these techniques into our work. We first dis-
cuss here the Singular Value Decomposition (SVD) [12]. Consider a population
of p members, each of which presents a signal, thus presenting theoretical data
set,{zi(t)} , 1 ≤ i ≤ p, which however in practice is discretely sampled in time,
{zi(tj)} , 1 ≤ j ≤ N, 1 ≤ i ≤ p may rather be considered as a data array, Zp,n ,

Zi,j = Zi(tj) (13)

While we have written this in general terms, here we shall always take each zi(t)
to be the CE time series signal processed from each of the ith member sampled.
Then considering subtracting the mean from the data. We denote this as

Ẑi,j = zi(tj)−
∑
j

zi(tj). (14)

To compare this to common spatio-temporal analysis notation, w(i, t) = Ẑi,t ,
where due to sampling, t is one of tj , 1 ≤ j ≤ N . Then, K-L eigen modes are the
eigenfunctions of the autocorrelation matrix,

Kj,j′ = 〈Ẑi,j , Ẑi,j′ 〉 =
1

p

∑
Ẑi,jẐi,j′ (15)

which denotes products at each time pairing tj and tj′ , averaged across sample
indexed by i, where the brackets < . > denotes integration across the sample set
indexed by i. The spectral decomposition theorem [12], tells us that the eigenfunc-
tions of K are orthogonal, since K must be positive semi-definite, and represent
an optimal basis in population average. Therefore, writing as in Karhunen Loeve
analysis, we write,

w(i, t) =

p∑
n=1

an(i)φn(t) (16)

Here, φn(t) denotes the eigenfunction, which is a function of time, and an(i) is
the coefficient of projection for each sample. The relevance of this modal analysis,
is that the modes φn(i), are known to be orthogonal, and optimal in average. That
is, the power spectrum is fastest decaying in time average, when compared to a
power spectrum as developed by any other basis set. See [12] for details. Note an
eigenvalue may be written as,

λn =
(φn,Kφ)

||φ||
= 〈|〈φn, w〉2|〉 (17)
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where round parahentesis (., .) denote an inner product with respect to integration in

time, (f(t), g(t)) =
∫ T

0
f(t)g(t)dt and < . > denotes the average across the samples.

Statistical hypothesis testing. The singular value decomposition method ex-
plained previously essentially assumes the sample of data as an ellipsoid cloud in
the parameter space. This is a normality assumption. Here the length of the major
and minor axis of the ellipsoid are inversely proportional to each s2

n. Also if we as-
sume that the data is normally distributed and i.i.d., singular value decomposition
yields the least squares solution to a parametric fit describing how an individual
signal is a linear combination of the singular vectors. This is given by an equation
which describes level curves of the χ2 distribution, [20],

∆χ2 = s2
1(v1 · δa) + s2

2(v2 · δa)....s2
p(vp · δa) (18)

Specifically interpreting Eq (18), projections onto the few major axis (in our case
this is the first two) when the data is tightly correlated, it is all contained within
the region bounded by an ellipse. Thus data points lying outside this ellipse are
identified as outliers. This method was adopted in [4].

Our current goal is to adopt a formal statistical approach to continue the agenda
of [4]. We would now like to construct something stronger than the “ellipsoid”
approach, which the proper orthogonal decomposition provides. Thus we want to
tell with a statistical confidence, how different two groups of runners might be. We
will resort to multivariate statistical analysis as we are considering the first two
modes.

A statistical hypothesis test is a means to make a statistical decision via data
from an experiment [20]. We say a result is statistically significant if it is unlikely to
have occurred by chance [20]. The method of all hypothesis testing is to formulate
a hypothesis, that is decide what we are trying to test for. In statistical language
this is the so called alternative hypothesis: H1. The antithesis of this is the
null hypothesis: H0. This is the hypothesis that our initial claim is wrong. The
outcome of a statistical test is a certain parameter value, which is commonly referred
to as the p-value. This value will have to be below a certain threshold if the null
hypothesis has to be rejected. If the p-value is above this critical level we say
nothing significant can be concluded from this test. Thus as modellers our role is to
formulate a hypothesis, devise the right test, and then carry out the aforementioned
procedure.

Under the assumption of normality, we are dealing with a projective data cloud,
and choose to use the Hotellings T 2 test. This is a multivariate version of the stu-
dents t test. The students t distribution is a continuous probability distribution
that arises when one wants to estimate the mean of a normally distributed pop-
ulation. It is used when the sample size is small [20]. The distribution has the
following density function

f(t) =
γ
(
ν+1

2

)
√
νπγ

(
ν
2

) (1 +
t2

ν

)− ν+1
2

(19)

Here ν are the number of degrees of freedom, and γ is the standard gamma
function.
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Recall that the univariate t-test for the mean of a sample X = x1, x2, ...xi. The
variable t given by

t =
x̄− µ
s
√
n

(20)

has a t distribution if X is normally distributed. If we want to test a hypothesis
that the mean between two groups is equal or if µ = µ0, then we would have

t =
x̄− µ
s/
√
n

(21)

so that we would obtain

t2 = n(x̄− µ)(s2)−1(x̄− µ) (22)

In the event that we generalise to p variables we obtain

T 2 = n(x̄− µ)(S)−1(x̄− µ) (23)

Here S is the sample covariance matrix, and

x̄ =


x̄1

x̄2

.
x̄p

 µ0 =


µ0

1

µ0
2

.
µ0
p

 (24)

It is known that when µ = µ0 we have

T 2 =
p(n− 1)

n− p
F(p(n−p)) (25)

Where F is the standard F distribution. Thus, if we specify µ = µ0, this could
indeed be tested by taking a single p-variate sample, which would be of size n. We
would then compute T 2 and compare this to

T 2 =
p(n− 1)

n− p
Fα(p(n−p)) (26)

For a suitable choice of α. In our case we have to extend this to the multivariate
case. We now clarify the methodology. Instead of single observations x, we now
have vector observations, as a result of the proper orthogonal decomposition routine
applied to the CE signal of the raw data from the runners.

X1i =

(
x11

x12

)
Y1i =

(
y11

y12

)
(27)

Here X1i represents a particular runner in say the first group with x11 and x12

representing his first two modes. Similarly there are X2i, X3i, ..Xni and Y2i, Y3i,
..Yni, for the two different groups under consideration. The scalar population means
are replaced by vector population mean vectors. Thus we have that µ1 is the popu-
lation mean vector for the first group and µ2 is the population mean vector for the
second group. We will formulate our goal as follows:

Goal: We are interested in testing the null hypothesis that the population mean
vectors for the two groups of runners are equal, against the alternative hypothesis
that these mean vectors are not equal
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Thus we are testing

H0 : µ1 = µ2 against H1 : µ1 6= µ2 (28)

This can be carried out via the following procedure. Under the null hypothesis
the two mean vectors are equal element by element. Thus we will look at the
differences between the observations. We define

Zi = X1i − Y1i (29)

We also define the vector

µZ = µ1 − µ2 (30)

Thus we have now converted our original problem into a problem of testing the
null hypothesis that the population mean vector µZ = 0. This formulation reads

H0 : µZ = 0 against Ha : µZ 6= 0 (31)

This hypothesis is tested using the paired Hotelling’s T 2 test. We define

z =

n∑
i=1

Zi. (32)

We also define SZ to denote the sample variance-covariance matrix of the vectors
Zi.

Sz =
1

n− 1

n∑
i=1

(Zi − z)(Zi − z)
′
. (33)

Various assumptions are made for the Hotelling’s T 2 test to be carried out We
assume normality and independence, that is the Yi’z are independently multivariate
normally distributed.

Paired Hotelling’s T 2 test statistic is given by

T 2 = nzSZ · z
′

(34)

This is a function of the sample size n, the sample mean vectors, z, and also the
inverse of the variance-covariance matrix SZ .

We next define an F-statistic :

F =
n− p
p(n− 1)

T 2 ∼ Fp,n−p (35)

We will reject the null hypothesis at level α if the F-value exceeds the value
with p and n-p degrees of freedom, evaluated at level α, which for our purposes
(as well as in most cases) is set at 0.05. The computations for the above were
carried out in MATLAB. We developed code to symbolise the raw data, from which
firts the CE is calculated. This is passed into a second routine which performs
the proper orthogonal decomposition, and yields the dominant modes, for runners
for the groups in question. This is finally passed pairwise, into a routine which
carries out the multivariate Hotelling T test, yielding the statistics of interest, which
essentially allows us to compare the groups.
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