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Abstract. In this paper, we investigate a SEILR tuberculosis model incor-

porating the effect of seasonal fluctuation, where the loss of sight class is con-
sidered. The basic reproduction number R0 is defined. It is shown that the

disease-free equilibrium is globally asymptotically stable and the disease even-

tually disappears if R0 < 1, and there exists at least one positive periodic
solution and the disease is uniformly persistent if R0 > 1. Numerical simula-

tions are provided to illustrate analytical results.

1. Introduction. Tuberculosis (TB) is a bacterial disease caused by infection with
Mycobacterium tuberculosis, which most frequently affects the lungs (pulmonary
TB). It is estimated that one-third of the worlds population has been infected
with the M. tuberculosis, which is a major cause of illness and death worldwide[1].
There are about nine million new TB cases each year, which results in two million
deaths, mostly in developing countries. Thus, it is still a very important question
using mathematical method to study the transmission dynamics of TB in human
populations.

Mathematical models have played a significant role in understanding the com-
plexity of Tuberculosis transmission dynamics[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The
endemic nature of many communicable diseases is characterized by a wide range of
temporal oscillatory patterns: annual or poly-annual periodicity[12, 13]. This be-
havior depends on the effect of the seasonal fluctuations of the contact rate on the
incidence of the disease. Sources of seasonal variation in the contact rate have been
attributed to social behavior, such as the timing of the school year, the time series
of the incidence of childhood infectious diseases, and seasonal changes in weather
conditions. For these reasons, we need to consider possible seasonal patterns in
the incidence rate for pulmonary tuberculosis. Seasonal change in the incidence
of infectious diseases is a common phenomenon. One of the differences between
TB and other infectious diseases is that following primary infection, only a small
proportion (about 10%) of individuals develop the progressive disease (active TB).
To the best of author’s knowledge, the global analysis of tuberculosis models with
seasonal fluctuation and fast/slow progression is not well discussed in the literature.
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Our model, motivated by a TB model in the literature[9], incorporates peri-
odic transmission rate and periodic transferring rate from the exposed to the in-
fectious. We also introduce a new epidemiological class into our model based on
the literature[3]. We call the class of loss of sight, which means the infectious
that begin their effective therapy in the hospital and never return to the hospital
for the spuctrum examinations for many reasons. One reason to introduce this
new epidemiological class is that loss of sight usually occur in Sub-Saharan Africa.
For example, according to the National Program of Fight against Tuberculosis of
Cameroon, about 10% of infectious that begun their therapy treatment become loss
of sight. Therefore, this fact cannot be neglected in the TB modeling. The main
purpose of this paper is to investigate the basic reproduction number which gov-
erns whether the disease dies out or not, and further to examine the relationship
between the threshold value obtained here and that for the corresponding system
with constant coefficients.

The paper is structured as follows. In Section 2, we present a new TB model with
seasonal fluctuation and define the basic reproduction number R0. In Section 3, we
obtain the global properties of the proposed model. There is a unique disease-free
equilibrium and the disease always dies out if R0 < 1; while the disease uniformly
persists in the population and there is at least one positive periodic solution if
R0 > 1. Numerical simulation are provided to validate analytical results in section
4. In the final section, we give the brief conclusions.

2. Model formulation and basic reproductive number. In this section, we
formulate a TB model incorporating periodic coefficients based on epidemiological
status. The whole population is divided into five classes: the susceptible class, the
latent/exposed class, the infectious class, the loss of sight class, and the recovered
class. The fast and slow progression was considered earlier by some authors to
study the transmission of TB [2, 3, 8, 9]. In this paper, we also introduce the
fast and slow progression based on the real situation of tuberculosis disease. The
standard mass balance incidence expressions β1(t)SI and β2(t)SL to indicate suc-
cessful transmisssion TB due to nonlinear contacts dynamics in the population by
infectious and loss of sight, respectively. The model has the compartmental struc-
ture of the SEILR epidemic model, and is described by the following system of
nonautonomous differential equations

dS

dt
= Λ− β1(t)SI − β2(t)SL− µS,

dE

dt
= (1− p)β1(t)SI + (1− p)β2(t)SL+ θ1γI − (µ+ k(t))E,

dI

dt
= pβ1(t)SI + pβ2(t)SL+ k(t)E + rL− (µ+ d1 + γ)I,

dL

dt
= θ2γI − (µ+ d2 + r)L,

dR

dt
= θ3γI − µR,

N = S + E + I + L+R,

(1)

where S(t), E(t), I(t), L(t), and R(t) are the numbers of the susceptible, the
latent/exposed, the infectious, the loss of sight, and the recovered individuals at
time t, respectively. Λ is the recruitment rate, µ is the natural death rate, and 1/µ
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is the average lifetime. p is the fraction of fast developing infectious cases, d1 and d2

represent the disease-induced death rate in the infectious class and the loss of sight
class, respectively. γ is the treatment rate, θ1, θ2, and θ3 are the fractions of entering
the latent/exposed, the loss of sight and the recovered, respectively. r is the rate
of entering the infectious class from the loss of sight class, and these parameters
are positive constants and independent of time t, p < 1 and θ1 + θ2 + θ3 = 1.
We assume that reactivation rate k(t), infection rate β1(t) and β2(t) are periodic
positive continuous functions in t with period ω for some ω > 0.

From the fifth equation in (1), we have

R(t) = e−µt(

∫ t

0

θ3γI(t)eµtdt+R(0))

when I(t) attracts to zero, by using the theory of limits, we have R(t) attracts to
zero, as t→ +∞; when I(t) attracts to I∗(t), by using the theory of limits, we have
R(t) attracts to R∗(t), as t→ +∞, where I∗(t) is a periodic function, and R∗(t) is
periodic function. So we omit the fifth equation in (1), and consider the following
system: 

dS

dt
= Λ− β1(t)SI − β2(t)SL− µS,

dE

dt
= (1− p)β1(t)SI + (1− p)β2(t)SL+ θ1γI − (µ+ k(t))E,

dI

dt
= pβ1(t)SI + pβ2(t)SL+ k(t)E + rL− (µ+ d1 + γ)I,

dL

dt
= θ2γI − (µ+ d2 + r)L,

(2)

It is obvious that any solution of system (2) with nonnegative initial values is
unique and nonnegative.

From (1), we have

dN

dt
= Λ− d1I − d2L− µN≤Λ− µN.

where N(t) is the total number of the whole population at time t. It is easy to

see that the linear differential equation
dN̄

dt
= Λ − µN̄ has a unique equilibrium

N∗ = Λ/µ, which is globally asymptotically stable. The comparison principle [15,
Theorem B.1] implies that N(t) is ultimately bounded, and hence, the solutions of
system (2) exist globally on the interval [0,∞). We summarize these discussions in
the following theorem.

Theorem 2.1. System (2) has a unique and bounded solution with the initial value

(S0, E0, I0, L0)∈X := R4
+.

Further, the compact set

G := {(S,E, I, L)∈X : S + E + I + L≤Λ/µ}
is a positively invariant set, which attracts all positive orbits in X.

In what follows, we introduce the basic reproduction number R0 for system (2)
according to the general procedure presented in [16]. It is easy to see that system
(2) has exactly one disease-free equilibrium P0(S0, E0, I0, L0) = (Λ/µ, 0, 0, 0) and
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the equations for latent/exposed, infectious and loss of sight compartments of the
linearized system of model (2) at P0 are

dE

dt
= (1− p)β1(t)S0I + (1− p)β2(t)S0L+ θ1γI − (µ+ k(t))E,

dI

dt
= pβ1(t)S0I + pβ2(t)S0L+ k(t)E + rL− (µ+ d1 + γ)I.

dL

dt
= θ2γI − (µ+ d2 + r)L.

We obtain

F (t) =

 0 (1− p)β1(t)S0 (1− p)β2(t)S0

0 pβ1(t)S0 pβ2(t)S0

0 0 0

 ,

and

V (t) =

 µ+ k(t) −θ1γ 0
−k(t) µ+ d1 + γ −r

0 −θ2γ µ+ d2 + r

 .

Let ΦV (t) and r(ΦV (ω)) be the monodromy matrix of the linear ω-periodic system
dz

dt
= V (t)z and the spectral radius of ΦV (ω), respectively. Assume Y (t, s), t ≥ s,

is the matrix solution of the linear ω-periodic system

dy

dt
= −V (t)y. (3)

That is, for each s ∈ R, the 3× 3 matrix Y (t, s) satisfies

d

dt
Y (t, s) = −V (t)Y (t, s), ∀ t ≥ s, Y (s, s) = I,

where I is the 3 × 3 identity matrix. Thus, the monodromy matrix Φ−V (t) of (3)
is equal to Y (t, 0), t ≥ 0.

In view of the periodic environment, we assume that φ(s), ω-periodic in s, is
the initial distribution of infectious individuals. Then F (s)φ(s) is the rate of new
infections produced by the infected individuals who were introduced at time s.
Given t ≥ s, then Y (t, s)F (s)φ(s) gives the distribution of those infected individuals
who were newly infected at time s and remain in the infected compartments at time
t. It follows that

ψ(t) :=

∫ t

−∞
Y (t, s)F (s)φ(s)ds =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a)da

is the distribution of accumulative new infections at time t produced by all those
infected individuals φ(s) introduced at time previous to t.

Let Cω be the ordered Banach space of all ω-periodic functions from R to R3,
which is equipped with the maximum norm || · || and the positive cone
C+
ω := {φ∈Cω : φ(t) ≥ 0,∀ t ∈ R}. Then we can define a linear operator L :

Cω→Cω by

(Lφ)(t) =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a)da, ∀ t ∈ R, φ ∈ Cω. (4)

Following [16], we call L the next infection operator, and define the basic reproduc-
tion number as R0 := r(L), the spectral radius of L.
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In the special case of β1(t)≡β1,β2(t)≡β2 and k(t)≡k, ∀t≥0, we obtain F (t)≡F ,
and V (t)≡V , ∀t≥0. By [17] (see also [16, Lemma 2.2 (ii)]), we further have

R0 = r(FV −1) =
S0(pµ+ k)[β1(µ+ d2 + r) + β2θ2γ]

(µ+ d2 + r)[(µ+ d1 + γ)(µ+ k)− kθ1γ]− θ2γr(µ+ k)

It is easy to verify that system (2) satisfies assumptions (A1)-(A7) in [16]. Thus,
we have the following result, which will be used in the proof of our main result in
section 3.

Lemma 2.2. ([16, Theorem 2.2]) The following statements are valid:

(i) R0 = 1 if and only if r(ΦF−V (ω)) = 1.
(ii) R0 > 1 if and only if r(ΦF−V (ω)) > 1.

(iii) R0 < 1 if and only if r(ΦF−V (ω)) < 1.

Thus, the disease-free equilibrium P0 is locally asymptotically stable if R0 < 1, and
unstable if R0 > 1.

3. Threshold dynamics. In this section, we will use the method developed in
[16] to analyze the threshold dynamics of system (2).

Theorem 3.1. If the basic reproduction number R0 < 1, then the unique disease-
free equilibrium P0(Λ/µ, 0, 0, 0) is globally asymptotically stable and if R0 > 1, it is
unstable.

Proof. From Lemma 2.2, we know that if R0 < 1, then P0 is locally asymptotically
stable and if R0 > 1, P0 is unstable. We now prove the global attractivity of P0 for
R0 < 1.

If (S(t), E(t), I(t), L(t)) is a nonnegative solution of system (2) in X, then we
have 

dE

dt
≤(1− p)β1(t)S0I + (1− p)β2(t)S0L+ θ1γI − (µ+ k(t))E,

dI

dt
≤pβ1(t)S0I + pβ2(t)S0L+ k(t)E + rL− (µ+ d1 + γ)I.

dL

dt
=θ2γI − (µ+ d2 + r)I.

(5)

Consider the following auxiliary system

dh(t)

dt
= (F (t)− V (t))h(t). (6)

By Lemma 2.2, we know that R0 < 1 if and only if r(ΦF−V (ω)) < 1. By [19,
Lemma 2.1], it follows that there exists a positive, ω-periodic function h̄(t) such

that h(t) = eθth̄(t) is a solution of system (6), where θ =
1

ω
ln r(ΦF−V (ω)). Since

r(ΦF−V (ω)) < 1, θ is a negative constant. Therefore, we have h(t)→0 as t→ +
∞. This implies that the zero solution of system (6) is globally asymptotically
stable. For any nonnegative initial value (E(0), I(0), L(0))T of system (5), there is a
sufficiently largeM∗ > 0 such that (E(0), I(0), L(0))T≤M∗h̄(0) holds. Applying the
comparison principle [15, Theorem B.1], we have (E(t), I(t), L(t))T≤M∗h(t), for all
t > 0, where M∗h(t) is also the solution of system (6). Therefore, we get E(t)→ 0,
I(t)→ 0, and L(t)→ 0 as t→+∞. By the theory of asymptotic autonomous systems
[18, Theorem 1.2], it then follows that S(t)→Λ/µ , as t→+∞.
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Theorem 3.2. If the basic reproduction number R0 > 1, then the system is uni-
formly persistent, i.e., there exists a δ > 0 such that any solution (S(t), E(t), I(t),
L(t)) of system (2) with initial value (S0, E0, I0, L0) ∈ {(S,E, I, L) ∈ X : E >
0, I > 0, L > 0} satisfies

lim inf
t→+∞

S(t) ≥ δ, lim inf
t→+∞

E(t) ≥ δ, lim inf
t→+∞

I(t) ≥ δ, and lim inf
t→+∞

L(t) ≥ δ,

and system (2) admits at least one positive periodic solution.

Proof. Define

X0 := {(S,E, I, L) ∈ X : E > 0, I > 0, L > 0}, ∂X0 := X\X0.

Let P : X→X be the Poincaré map associated with system (2), i.e.,

P (x0) = u(ω, x0), ∀ x0∈ X,
where u(t, x0) is the unique solution of system (2) with u(0, x0) = x0. It is easy to
see that

Pm(S0, E0, I0, L0) = u(mω, (S0, E0, I0, L0)), ∀m ≥ 0.

For any (S0, E0, I0, L0)∈X0, from the first equation of system (2), we have

S(t) =e−
∫ t
0
a(s1)ds1

(
S0 + Λ

∫ t

0

e
∫ s2
0 a(s1)ds1ds2

)
≥Λe−

∫ t
0
a(s1)ds1

∫ t

0

e
∫ s2
0 a(s1)ds1ds2 > 0, ∀t > 0,

(7)

where a(t) := µ + β1(t)I(t) + β2(t)L(t). By [14, Theorem 4.1.1] as generalized to
nonautonomous systems, the irreducibility of the cooperative matrix

M̃(t) =

 −(µ+ k(t)) (1− p)β1(t)S(t) + θ1γ (1− p)β2(t)S(t)
k(t) pβ1(t)S(t)− (µ+ d1 + γ) pβ2(t)S(t) + r

0 θ2γ −(µ+ d2 + r)


implies that (E(t), I(t), L(t))T�0,∀t > 0. Thus, both X and X0 are positively
invariant. Clearly, ∂X0 is relatively closed in X.

By Theorem 3.1, the discrete-time system P admits a global attractor in X.
Now we prove that P is uniformly persistent with respect to (X0, ∂X0). In the case
where R0 > 1, we have the following claim:

Claim:There exists a σ∗ > 0, such that for any (S0, E0, I0, L0)∈X0 with
||(S0, E0, I0, L0)− P0||≤σ∗, we have

lim sup
m→∞

d(Pm(S0, E0, I0, L0), P0) ≥ σ∗. (8)

If R0 > 1, Lemma 2.2 implies r(ΦF−V (ω)) > 1. We can choose η > 0 small
enough such that r(ΦF−V−ηM (ω)) > 1, where

M(t) =

 0 (1− p)β1(t) (1− p)β2(t)
0 pβ1(t) pβ2(t)
0 0 0

 .

Equation
dS

dt
= Λ − µS has a unique equilibrium S∗ = Λ/µ which is globally

attractive in R+. Note that the perturbed system

dSσ(t)

dt
= Λ− (β1(t)σ + β2(t)σ + µ)Sσ(t) (9)
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admits a unique periodic solution

S∗σ(t, σ) = e−
∫ t
0

(β1(s)σ+β2(s)σ+µ)ds

(
S∗σ(0, σ) + Λ

∫ t

0

e
∫ s
0

(β1(u)σ+β2(u)σ+µ)duds

)
,

where

S∗σ(0, σ) =
Λe−

∫ ω
0

(β1(s)σ+β2(s)σ+µ)ds
∫ ω

0
e
∫ s
0

(β1(u)σ+β2(u)σ+µ)duds

1− e−
∫ ω
0

(β1(s)σ+β2(s)σ+µ)ds
.

Clearly, |Sσ(t, σ) − S∗σ(t, σ)|→ 0, as t→∞. Thus, S∗σ(t, σ) is globally attractive
on R+. From the expression of S∗σ(0, σ), it is easy to see that S∗σ(0, σ) is con-
tinuous in σ. The continuous dependence of the solution S∗σ(t, σ) on the initial
condition and parameter value implies that S∗σ(t, σ) > S∗ − η holds for sufficiently
small σ, and all t ∈ [0, ω]. By the periodicity of S∗σ(t, σ) and constant S∗ − η, we
see that S∗σ(t, σ) > S∗ − η holds for sufficiently small σ, and all t ≥ 0. By the
continuity of the solutions with respect to the initial values, there exists a σ∗ > 0
such that for all (S0, E0, I0, L0) ∈ X0 with ||(S0, E0, I0, L0)−P0|| ≤ σ∗, there holds
||u(t, (S0, E0, I0, L0))− u(t, P0)|| < σ,∀ t ∈ [0, ω]. We further claim that

lim sup
m→∞

d(Pm(S0, E0, I0, L0), P0) ≥ σ∗. (10)

Assume, by contradiction, that (10) does not hold. Then we have

lim sup
m→∞

d(Pm(S0, E0, I0, L0), P0) < σ∗

for some (S0, E0, I0, L0) ∈ X0. Without loss of generality, we assume that
d(Pm(S0, E0, I0, L0), P0) < σ∗, for all m ≥ 0. It follows that

||u(t, Pm(S0, E0, I0, L0))− u(t, P0)|| < σ, ∀ m ≥ 0,∀ t ∈ [0, ω].

For any t ≥ 0, let t = mω + t′, where t′∈ [0, ω), and m is the largest integer less

than or equal to
t

ω
. Therefore, we have

||u(t, (S0, E0, I0, L0))− u(t, P0)||
= ||u(t′, Pm(S0, E0, I0, L0))− u(t′, P0)|| < σ,∀ t ≥ 0.

Note that (S(t), E(t), I(t), L(t)) = u(t, (S0, E0, I0, L0)). It then follows that E(t) <
σ, I(t) < σ,L(t) < σ, ∀ t ≥ 0. From the first equations of system (2), we have{

dS

dt
≥ Λ− (β1(t)σ + β2(t)σ + µ)S, (11)

Since the periodic solution S∗σ(t, σ) of equation (9) is globally attractive on R+ and
S∗σ(t, σ) > S∗−η, we have S(t) ≥ S∗−η, for sufficiently large t. From the last three
equations of system (2), for sufficiently large t, we obtain

dE

dt
≥(1− p)β1(t)(S∗ − η)I + (1− p)β2(t)(S∗ − η)L− (µ+ k(t))E,

dI

dt
≥pβ1(t)(S∗ − η)I + pβ2(t)(S∗ − η)L+ k(t)E − (µ+ d1 + γ)I.

dL

dt
=θ2γI − (µ+ d2 + r)L.

(12)
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We then consider the following auxiliary system

dẼ

dt
=(1− p)β1(t)(S∗ − η)Ĩ + (1− p)β2(t)(S∗ − η)L̃− (µ+ k(t))Ẽ,

dĨ

dt
=pβ1(t)(S∗ − η)Ĩ + pβ2(t)(S∗ − η)L̃+ k(t)Ẽ − (µ+ d1 + γ)Ĩ .

dL̃

dt
=θ2γĨ − (µ+ d2 + r)L̃.

(13)

From [19, Lemma 2.1], we know that there exists a positive, ω-periodic function

(Ē(t), Ī(t), L̄(t))T such that (Ẽ(t), Ĩ(t), L̃(t))T = eζt(Ē(t), Ī(t), L̄(t))T is a solution

of system (13), where ζ =
1

ω
ln r(ΦF−V−ηM (ω)). Since r(ΦF−V−ηM (ω)) > 1, ζ is a

positive constant. Let t = nω and n be nonnegative integer, and we get

(Ẽ(nω), Ĩ(nω), L̃(nω))T = eζnω(Ē(nω), Ī(nω), L̄(nω))T→(∞,∞,∞)T ,

as n→∞, since ωζ > 0 and (Ē(t), Ī(t), L̄(t))T > 0. For any nonnegative initial
condition (E(0), I(0), L(0))T of system (12), there exists a sufficiently small m∗ > 0
such that

(E(0), I(0), L(0))T≥m∗(Ē(0), Ī(0), L̄(0))T . By the comparison principle [15, The-
orem B.1], we have

(E(t), I(t), L(t))T≥m∗(Ẽ(t), Ĩ(t), L̃(t))T , for all t > 0. Thus, we obtain E(nω)→
∞, I(nω)→∞, and L(nω)→∞ as n→∞. This leads to a contradiction.

Set

M∂ := {(S0, E0, I0, L0) ∈ ∂X0 : Pm(S0, E0, I0, L0) ∈ ∂X0,∀ m ≥ 0}.
We now show that

M∂ = {(S, 0, 0, 0) ∈ X : S ≥ 0}. (14)

It suffices to prove that for any (S0, E0, I0, L0) ∈M∂ , we have E(mω) = I(mω) =
L(mω) = 0,∀m≥0. If it is not true, there exists an m1≥0 such that

(E(m1ω), I(m1ω), L(m1ω))T > 0.

Thus, (7) implies
S(t) > 0,∀t > m1ω,

by replacing the initial time 0 with m1ω. Similarly, by [14, Theorem 4.1.1] as
generalized to nonautonomous systems, it follows that (E(t), I(t), L(t))T�0, ∀t >
m1ω, where the initial value (E(m1ω), I(m1ω), L(m1ω))T > 0. Thus, we have

(S(t), E(t), I(t), L(t))∈X0, ∀t > m1ω,

which implies that (14) holds. Clearly, there is exactly one fixed point P0 =
(Λ/µ, 0, 0, 0) of P in M∂ . The above claim implies that P0(Λ/µ, 0, 0, 0) is isolated
invariant set in X and W s(P0)∩X0 = φ. Note that every orbit in M∂ approaches
to P0, and P0 is acyclic in M∂ . By [20, Theorem 1.3.1], it follows that P is uni-
formly persistent with respect to (X0, ∂X0). By [20, Theorem 3.1.1], the solutions
of system (2) are uniformly persistent with respect to (X0, ∂X0), that is, there ex-
ists a δ > 0 such that any solution (S(t), E(t), I(t), L(t)) of system (2) with initial
value (S0, E0, I0, L0) ∈ X0 satisfies lim inf

t→+∞
S(t) ≥ δ, lim inf

t→+∞
E(t) ≥ δ, lim inf

t→+∞
I(t) ≥ δ

and lim inf
t→+∞

L(t) ≥ δ . Furthermore, [20, theorem 1.3.6] implies that P has a fixed

point (S∗(0), E∗(0), I∗(0), L∗(0)) ∈ X0. Then S∗(0) ≥ 0, E∗(0) > 0, I∗(0) > 0, and
L∗(0) > 0. We further claim that there exists some t̄ ∈ [0, ω] such that S∗(t̄) > 0.
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If it is not the case, S∗(t)≡0, for all t ≥ 0, due to the periodicity of S∗(t). From
the first equation of system (2), we get a contradiction. Then we obtain

S∗(t) = exp

(∫ t

t̄

(µ+ β1(ξ)I(ξ) + β2(ξ)L(ξ)) dξ

)
×(

S∗(t̄) + Λ

∫ t

t̄

exp

(∫ ξ

t̄

(µ+ β1(ζ)I(ζ) + β2(ζ)L(ζ)) dζ

)
dξ

)
> 0, ∀ t ∈ [t̄, t̄+ ω],

The periodicity of S∗(t) implies S∗(t) > 0, for all t ≥ 0. By the last three equations
of system (2) and the irreducibility of the cooperative matrix −(µ+ k(t)) (1− p)β1(t)S∗(t) + θ1γ (1− p)β2(t)S∗(t)

k(t) pβ1(t)S∗(t)− (µ+ d1 + γ) pβ2(t)S∗(t) + r
0 θ2γ −(µ+ d2 + r)


It follows (E∗(t), I∗(t), L∗(t)) ∈ Int(R3

+),∀ t ≥ 0. Therefore, (S∗(t), E∗(t), I∗(t),
L∗(t)) is a positive ω-periodic solution of system (2).

4. Numerical simulations. From our theoretical results we see that R0 is a
threshold parameter to determine whether or not tuberculosis persists in the popu-
lation. Our numerical simulations in this section will demonstrate the asymptotical
behavior of (2) in different scenarios. We use the method from the reference [16] in
our numerical computation of R0.

In Figure 1, parameters values or functions are Λ = 4, µ = 0.05, p = 0.08, γ =
0.5, d1 = 0.05, d2 = 0.04, r = 0.01, θ1 = 0.6, θ2 = 0.2, and β1(t) = a0(1.1 +

sin πt
6 ), β2(t) = b0(1.1 + sin πt

6 ), k(t) = k0(1 + 0.8 sin π(t−1)
6 ), k0 = 0.001.

a0 and b0 are used in the simulation to demonstrate the asymptotical behavior
of the solutions. For the small a0 = 0.03 and b0 = 0.01 the basic reproductive
number is 0.6807. The simulation shows that the disease dies out (see Figure 1).
The simulation results are the same as what we got in Theorem 3.1.

For the large a0 = 0.05 and b0 = 0.04 the basic reproductive number is 1.7952.
The disease keeps persistent in the population and the simulation suggests that in
the case where R0 > 1, every solution with nontrivial initial data is asymptotic
to a periodic solution (see Figure 2 ). From the numerical point of view, there
exists a unique global attractive positive periodic solution. It is worth studying the
uniqueness and stability of positive periodic solution of model (2) in the case where
R0 > 1. We leave these challenging problems for further investigation.

In the following, let [R0] be the average basic reproduction number of system
(2). we take b0 = 0.03 and a0 varying or a0 = 0.03 and b0 varying, other parameter
values are the same as mentioned above, by numerical computations, we get the
curve of the basic reproduction number R0 and the curve of the average basic
reproduction number[R0] with respect to a0 and b0, respectively, in Figure 3. We
can see that the basic reproduction number R0 is always greater than the average
basic reproduction number [R0]. So the eradication policy on the basis of the basic
reproduction number of the time-averaged system may overestimate the infectious
risk of the periodic disease. From Figure 3, we can see that the average basic
reproduction number [R0] is linear about the parameters and the basic reproduction
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Figure 1. The global asymptotic stability of the disease-free
equilibrium P0 when R0 = 0.6807. We choose a0 = 0.03, b0 = 0.01.
Other parameter values are in the text.
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Figure 2. The existence of a periodic solution when R0 = 1.7952.
We choose a0 = 0.05, b0 = 0.04. Other parameter values are the
same as those in Figure 1.
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Figure 3. The curves of the basic reproduction number R0 and
the average basic reproduction number[R0] versus a0 and b0.

number R0 is nonlinear about the parameters. For parameters a0 and b0, R0 is more
sensitive for parameter a0. Maybe the loss of sight class transfer from the treatment
class and the treatment plays a more important role.

5. Conclusions. In this paper, we have formulated a compartmental SEILR model
with seasonality. The dynamics of the TB disease transmission are analyzed, and the
basic reproductive number R0 is determined. It is proved that R0 is the threshold
to distinguish the disease extinction or persistence. It shows that the disease-free
equilibrium is globally asymptotically stable if R0 < 1, while the disease persists if
R0 > 1 and the system has at least one positive periodic solution.

Numerical simulations have been done. First, the simulation results illustrate the
analytical results. Second, we compare the average basic reproduction number and
the average basic reproduction number. We see that the eradication policy on the
basis of the average basic reproduction number may underestimate the infectious
risk, so our model is more realistic than the model with constant coefficients. The
model and the results can help the public authority improve the national surveillance
of TB data. Furthermore, numerical simulations indicate that there may be a unique
positive periodic solution which is globally asymptotically stable. We leave these
challenging problems for further work.
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