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Abstract. We consider an alternative approach to the use of nonlinear sto-
chastic Markov processes (which have a Fokker-Planck or Forward Kolmogorov

representation for density) in modeling uncertainty in populations. These alter-

nate formulations, which involve imposing probabilistic structures on a family
of deterministic dynamical systems, are shown to yield pointwise equivalent

population densities. Moreover, these alternate formulations lead to fast effi-
cient calculations in inverse problems as well as in forward simulations. Here

we derive a class of stochastic formulations for which such an alternate repre-

sentation is readily found.

1. Introduction and motivation. In this paper we consider classes of nonlinear
stochastic differential equations (SDE) with corresponding stochastic process den-
sity described by Fokker-Planck (FP) or Forward Kolmogorov (FK) equations with
nonlinear drift (convective velocity or average transition rate) terms which dominate
the (possibly nonlinear) diffusion (variability in transition rate) terms. We develop
a general algorithmic approach for converting these computationally difficult non-
linear SDE to an equivalent (in a sense to be made precise below) probabilistic
formulation which is much more amenable to fast (and parallel) computations. A
major feature of our approach here is the bidirectional nature of our derivations.
That is, we show how to transform from a given SDE to the corresponding equiv-
alent probabilistic formulation, and from a given probabilistic formulation to the
corresponding SDE. Our results are presented in two distinct steps. First, we show
an equivalence for several classes of nonautonomous affine differential equations (in
both scalar and system forms). Then we extend theses equivalences to rather gen-
eral classes of nonlinear differential equations using invertible transformation tech-
niques between nonlinear differential equations and the class of affine differential
equations introduced in the first step. We illustrate the ideas with several different
nonlinear examples including two important examples with growth or transition
rates encountered frequently in modeling populations, label decay, tumor growth,

etc. These are the popular Verhulst-Pearl logistic growth rate g(x) = rx
(

1− x

κ

)
and the general transition rates g(x, t) = (a0(t)−a1(t) lnx)x of which the standard
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Gompertz growth rates g(x) = r ln
(κ
x

)
x = r(lnκ− lnx)x are special cases. Moti-

vating ideas and a brief recap of results from previous efforts on population models
are first summarized here and in the next section.

A fundamental modeling construction in many areas of science is the nonlinear
Markov process as characterized by discrete or continuous time with discrete (e.g.,
Poisson) or continuous (e.g., diffusion) state processes [2, 22, 24, 27, 31, 33]. Here
we focus on modeling with a general nonlinear Markov diffusion process with finite
mean and variance. Mathematically this leads to a stochastic differential equation
(SDE) of the form

dX(t) = g(X(t), t)dt+ σ(X(t), t)dW (t),

which in turn can be investigated with Fokker-Planck (FP) or Forward Kolmogorov
equations

∂u

∂t
(x, t) +

∂

∂x
(g(x, t)u(x, t)) =

1

2

∂2

∂x2
(σ2(x, t)u(x, t)), (1)

for the corresponding probability density u. These FP models are ubiquitous in
mathematics and physics (e.g., particle transport, filtering), biology (population
models), finance (e.g., Black-Scholes equations) among other areas of applications
[2, 22, 27, 29]. In many of these applications one has what is commonly referred
to as convection dominated diffusion which occurs when we have g >> σ. In this
case the Fokker-Planck equations are notoriously difficult to solve especially when
g depends on time. This is a serious drawback in forward simulations but can be
untenable in inverse problem calculations [20].

In these applications one begins with a stochastic Markov diffusion process X(t)
with realizations x(t) representing a structure variable (level) such as size (length,
weight, volume, etc.), label intensity, chronological or physiological age, spatial
location, etc., that changes according to a mean rate law g(x, t) with mean variance
σ2(x, t). Such models also arise in population biology with class structure [4, 5, 6, 7,
9, 10, 12, 14], complex nodal network models (in network security, social/insurgency
networks, logistic and production networks) [3, 16], fluorescence intensity of labeled
proliferating cell populations [17, 28] and general hyperbolic transport systems in
random or uncertain environments.

To incorporate uncertainty or variability into structured deterministic dynami-
cal models, several approaches have been considered in the literature. Of those of
interest to us here, one involves a stationary probabilistic structure on a family of
structured deterministic dynamical systems, while the other is constructed based on
the assumption that movement from one structure level to another can be described
by a stochastic diffusion process. As noted above, for computational purposes the
latter can be represented mathematically by a Fokker-Planck equation. Even though
these two formulations are conceptually quite different, in this paper we show for
a class of examples (both linear and nonlinear differential equations) that they are
equivalent in terms of corresponding probability density functions. Numerical meth-
ods for the probabilistic formulation are quite fast and lead to alternative methods
for solution of the Fokker-Planck or Forward Kolmogorov equation associated with
the stochastic diffusion process. Thus we establish that there are several classes of
Fokker-Planck inverse problems (which are computationally intensive) that can be
readily converted to inverse problems for probabilistic structures on deterministic
systems which can be solved efficiently.
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Because we are primarily interested in modeling transition uncertainty in this
paper, for simplicity, we will not consider either sink or source terms in our formu-
lations.

Unless otherwise indicated, a capital letter is used to denote a random variable
throughout the presentation, and a corresponding small letter to denote its realiza-
tion. We use N (µ, σ2) to denote a normal distribution with mean µ and variance
σ2, N (µ,Σ) for a multivariate normal distribution with mean vector µ and covari-
ance matrix Σ, and E(Z) for the expectation of random variable Z. We next give
careful detailed formulations of the two approaches we consider.

1.1. Stochastic formulation. A stochastic formulation can be motivated by rec-
ognizing that local factors (such as environmental or emotional fluctuations) can
have a significant influence on the individual transition or transfer rates from one
structure level to another. For example, in [5, 7, 9, 10, 20] the growth rate of
two different marine species (mosquitofish and shrimp) are affected by several en-
vironmental factors such as temperature, dissolved oxygen level and salinity. In
such examples, the stochastic formulation is constructed under the assumption that
movement from one structure level (size in these examples) to another can be de-
scribed by a stochastic diffusion process [2, 20, 24, 31]. Let {X(t) : t ≥ 0} be
a Markov diffusion process with X(t) representing structure level at time t (i.e.,
each process realization corresponds to the structure trajectory of an individual).
Then X(t) is described by the Ito stochastic differential equation (we refer to this
equation as the stochastic rate model (SRM))

dX(t) = g(X(t), t)dt+ σ(X(t), t)dW (t), (2)

where W (t) is the standard Wiener process [2, 24]. Here g(x, t) denotes the average
transition rate (the first moment of rate of change in structure level) of individuals
with structure level x at time t, and is given by

g(x, t) = lim
∆t→0+

1

∆t
E {∆X(t)|X(t) = x} . (3)

The function σ(x, t) represents the variability in the transition rate of individuals
(the second moment of rate of change in structure level) and is given by

σ2(x, t) = lim
∆t→0+

1

∆t
E
{

[∆X(t)]2|X(t) = x
}
. (4)

Hence, the transition process (growth in size in the marine examples cited above) of
each individual is stochastic, and each individual changes structure level according
to the stochastic rate model (2). Thus, for this formulation the transition uncer-
tainty is introduced into the entire population by the stochastic transition of each
individual. In addition, individuals with the same structure level at the same time
have the same uncertainty in transition, and individuals also have the possibility of
reducing their structure level during a transition period.

With this assumption on the transition process, we obtain the Fokker-Planck
(FP) or forward Kolmogorov model for the population density u, which was carefully
derived in [31] among numerous other places and subsequently studied in many
references (e.g., [2, 20, 24]). The equation and appropriate boundary conditions are
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given by

∂u

∂t
(x, t) +

∂

∂x
(g(x, t)u(x, t)) =

1

2

∂2

∂x2
(σ2(x, t)u(x, t)), x ∈ (0, L), t > 0,

g(0, t)u(0, t)− 1

2

∂

∂x
(σ2(x, t)u(x, t))|x=0 = 0,

g(L, t)u(L, t)− 1

2

∂

∂x
(σ2(x, t)u(x, t))|x=L = 0,

u(x, 0) = u0(x).

(5)

Here L is the maximum structure level that individuals may attain in any given time
period. Observe that the boundary conditions in (5) provide a conservation law for
the FP model. Because both sink (death) and reproduction (birth) rates are as-

sumed zero, the total number in the population is a constant given by

∫ L

0

u0(x)dx.

In addition, we observe that with the zero-flux boundary condition at zero (mini-
mum structure level) one can equivalently set X(t) = 0 if X(t) ≤ 0 for the stochastic
transition model (2) in the sense that both are used to keep individuals in the sys-
tem at the boundary levels. This means that if the structure level of an individual
is decreased to the minimum value, it remains in the system at that level with the
possibility to once again increase its level.

As we have already mentioned, the above equations present formidable compu-
tational challenges when drift (or convection) g dominates. While this is certainly
true for forward simulations, it is even more of a challenge in the inverse problems
considered in [20]. Thus it is of great interest to explore alternative formulations
that might lead to modeling representations which represent essentially the same
transport process at the density/distribution level and that involve a much more
efficient computational implementation. To this end in the next section we describe
an alternative, but in a certain sense (to be made more precise below) equivalent,
formulation for such dynamic processes with uncertainty in transition.

1.2. An alternative probabilistic formulation. To offer an alternative formu-
lation to stochastic Markov processes for populations with uncertainty in transition
rates, we turn to population models (labeled proliferating cells [17], mosquitofish
[7, 14], shrimp [5, 9, 10]) where we have used structured dynamical models with un-
certainty. The probabilistic formulation we present is motivated by the observation
that in populations, intrinsic variables (genetic differences or non-lethal infections
of some chronic disease) can have an effect on individual class transition rates. For
example, in many marine species such as mosquitofish, females grow faster than
males, which means that individuals with the same size may have different growth
rates. In labeled cell populations where label intensity is the structure variable, la-
bel decay rates may vary across individuals during cell proliferation due to variable
decay in cell cycle stages. The probabilistic formulation is constructed based on
the assumption that each individual does change according to a deterministic rate

model
dx

dt
(t) = g(x, t) as posited in the Sinko-Streifer [32] formulation, but that

different individuals may have different structure-dependent rates. Based on this
underlying assumption, one partitions the entire population into (possibly a con-
tinuum of) subpopulations where individuals in each subpopulation have the same
structure-dependent transition rates, and then assigns a probability distribution to
this partition of possible transition rates in the population.



MODELING UNCERTAINTY IN POPULATIONS 5

To be more precise here we can describe this construction in terms of population
growth models where size (length in mosquitofish, weight in shrimp) is the structure
variable. Then the growth process for individuals in a subpopulation with rate g is
assumed to be described by the dynamics

dx(t; g)

dt
= g(x(t; g), t), g ∈ G, (6)

where G is a collection of admissible rates. Model (6) combined with the probability
distribution imposed on G will be called the probabilistic rate distribution (PRD)
model in this paper. Hence, we can see that for the probabilistic formulation, the
rate uncertainty is introduced into the entire population by the variability of tran-
sition (growth) rates among subpopulations. In the literature for size-structured
population models, it is common to assume that growth rate is a nonnegative func-
tion, that is, no loss in size occurs. However, individuals may experience loss in
size due to disease or some other involuntary factors. Hence, we will permit these
situations in this formulation, but for simplicity we assume that growth rate in each
subpopulation is either a nonnegative function or a negative function, that is, the
size of each individual may be either nondecreasing or decreasing continuously in
its growth period.

With this assumption of a family of admissible transition rates and an associated
probability distribution (i.e., the PRD model), one can obtain a generalization of
the Sinko-Streifer model for densities as a function of time and structure variables.
(This was called the growth rate distribution or (GRD) model as formulated and
studied in [4, 6, 7, 12, 14].) The model, which here will be called the class rate
distribution-Sinko-Streifer (CRDSS) model, consists of solving

vt(x, t; g) + (g(x, t)v(x, t; g))x = 0, x ∈ (0, L), t > 0,

g(0, t)v(0, t; g) = 0 if g ≥ 0 or g(L, t)v(L, t; g) = 0 if g < 0,

v(x, 0; g) = v0(x; g),

(7)

for a given g ∈ G and then “summing” (with respect to the probability) the corre-
sponding solutions over all g ∈ G. If v(x, t; g) is the population density of individuals
with class structure value x at time t having transition rate g, the expectation of
the total population density for class x at time t is given by

u(x, t) =

∫
g∈G

v(x, t; g)dP(g), (8)

where P is a probability measure on G. Hence the CRDSS model consists of the
Sinko-Streifer equation (7) with (8) to compute the population density u(x, t). Thus,
this probabilistic formulation involves a stationary probabilistic structure on a family
of deterministic dynamical systems, and P is the fundamental “parameter” that is to
be estimated by either parametric or nonparametric methods (which depends on the
prior information known about the form for P). As detailed in [7, 12], this class rate
distribution model is sufficiently rich to exhibit a number of phenomena of interest,
for example, dispersion and development of two modes from one. Moreover, of
paramount importance to us here, this formulation offers tremendous computational
advantages in that it is what may be accurately termed embarrassingly parallel [14].

Observe that if all the subpopulations have nonnegative rate functions, then we
need to set g(L, t)v(L, t; g) = 0 for each g ∈ G in order to provide a conservation law
for the CRDSS model. Specifically if L denotes the maximum attainable class value
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of individuals in a life time, then it is reasonable to set g(L, t) = 0 (as commonly
done in the literature). However, if we just consider the model in a short time
period, then we may choose L sufficiently large so that v(L, t) is negligible or zero
if possible. We observe that if there exist some subpopulations whose rates are
negative, then we can not provide a conservation law for these subpopulations as
g(0, t) < 0. Hence, in this case, once the class value of an individual is decreased to
below the minimum value, then that individual will be removed from the system. In
other words, we exclude those individuals whose class value go below the minimum
size. This effectively serves as a sink for these subpopulations.

2. Summary of previous findings. We compare here the probabilistic formula-
tion approach to incorporating the class rate uncertainty into a structured popula-
tion model with the stochastic formulation of Section 1.1.

The discussions in Sections 1.1 and 1.2 indicate that these two formulations
are conceptually quite different. One entails imposing a probabilistic structure on
the set of possible transition rates permissible in the entire population while the
other involves formulating transition as a stochastic diffusion process. However, the
analysis in [9] reveals that in some cases the structure distribution (the probability
density function of X(t)) obtained from the stochastic rate model is exactly the
same as that obtained from the PRD model. For example, if we consider the two
models

stochastic formulation: dX(t) = b0(X(t) + c0)dt+
√

2tσ0(X(t) + c0)dW (t)

probabilistic formulation:
dx(t; b)

dt
= (b− σ2

0t)(x(t; b) + c0), b ∈ R,

B ∼ N (b0, σ
2
0),

(9)

and assume their initial structure distributions are the same, then we obtain at each
time t the same structure distribution from these two distinct formulations. Here
b0, σ0 and c0 are positive constants (for application purposes), and B is a normal
random variable with b a realization of B. Moreover, by using the same analysis as
in [9] we can show that if we compare

stochastic formulation: dX(t) = (b0 + σ2
0t)(X(t) + c0)dt

+
√

2tσ0(X(t) + c0)dW (t)

probabilistic formulation:
dx(t; b)

dt
= b(x(t; b) + c0), b ∈ R

B ∼ N (b0, σ
2
0)

(10)

with the same initial structure distributions, then we can also obtain at each time
t the same structure distribution for these two formulations. In addition, we see
that both the stochastic rate models and the probabilistic rate models in (9) and
(10) reduce to the same deterministic growth model ẋ = b0(x + c0) when there is
no uncertainty or variability in rate (i.e., σ0 = 0) even though both models in (10)
do not satisfy the mean rate dynamics

dE(X(t))

dt
= b0(E(X(t)) + c0) (11)

while both models in (9) do. This last observation was critical in the early efforts of
[9, 10] which were derived under the additional constraint that (11) must hold. This
was motivated by available shrimp data of longitudinal measurements of average
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shrimp weight (in gms), i.e., an observation of x̄(t) = E(X(t)). In this earlier work

it was found that an affine growth law
dx̄(t)

dt
= g(x̄(t)) = b0(x̄(t) + c0) yields a

good fit to this data for early shrimp growth. This led to a search for equivalent
mathematical representations which also satisfied this extra condition.

More specifically, one can prove that the formulations in (9) generate stochastic
processes X(t) which both satisfy the mean rate dynamics (11) and yield processes

X(t) = −c0 + (X0 + c0)Y (t),

where

YPRD(t) = exp(Bt− 1
2σ

2
0t

2), where B ∼ N (b0, σ
2
0), (12)

YSRM (t) = exp

(
(b0t− 1

2σ
2
0t

2) + σ0

∫ t

0

√
2τdW (τ)

)
. (13)

Moreover it was shown that for each time t, both YPRD(t) and YSRM (t) are nor-
mally distributed with identical means and variances. Thus under the additional
reasonable assumption (trivially true for non-random initial condition) that the
random variables X0 and each of YPRD(t) and YSRM (t) are independent we find
that each of the stochastic processes derived from (9) possess at each time t the
same distribution. That is, at each time t each of the processes X(t) have the same
probability density. Finally, the two stochastic processes are NOT the same. This
can be seen immediately from (12) and (13), but also from a direct calculation of
the covariances for YPRD and YSRM which we shall carry out below. In summary,
while the two formulations of (9) generally lead to different processes, one can argue
that they are equivalent in the sense that they possess the same probability density
at any time t. For the subsequent discussions in this presentation, we shall refer to
this as pointwise equivalence in density. This density must satisfy the correspond-
ing Fokker-Planck or Forward Kolmogorov equation for the stochastic formulation
in (9). Thus if one wishes to obtain a numerical solution of such a Fokker-Planck
equation, one possibility is to consider the numerical solution of the equivalent but
more readily solved CRDSS formulation of (9). For the particular forms of (9)
and (10), this approach was demonstrated to be a computationally advantageous
strategy in [11]. These findings lead to a natural research question: Are there gen-
eral classes of Fokker-Planck equations that can be converted to an equivalent (in
the distributional sense described above) CRDSS which can be efficiently solved
numerically for the desired probability density function? A positive answer to this
question is the primary focus of this paper and results are given in the next sections.
In particular in the next section we develop general techniques to show equivalence
for large classes of affine differential equations.

3. Equivalence between probabilistic and stochastic formulations with
affine dynamics. In this section, we turn to several class of examples with affine
dynamics for which one can establish the desired equivalence between the prob-
abilistic and stochastic formulations given above. The probabilistic formulations
we consider here involve a finite-dimensional parameter family of structure rates
of change. For example, if the probabilistic formulation is governed by scalar dif-
ferential equations, then we assume that all the subsystems have the same func-
tional form g(x, t; b) for the structure rates of change but the values of parameters
b = (b0, b1, . . . , bn−1)T vary across the system.
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In establishing our results (and to discuss corresponding covariances below), the
following relationship between normal distribution and log-normal distribution [21,
page 109] is heavily used.

Lemma 1. If lnZ ∼ N (µ, σ2), then Z is log-normally distributed, where its prob-
ability density function fZ(z) is defined by

fZ(z) =
1

z
√

2πσ
exp

(
− (ln z − µ)2

2σ2

)
,

and its mean and variance are given as follows

E(Z) = exp(µ+ 1
2σ

2), Var(Z) = [exp(σ2)− 1] exp(2µ+ σ2).

In our subsequent arguments we shall also need the following basic result on the
process generated by Ito integrals of Wiener processes that can be found in [27, Sec
4.3, Thm 4.11].

Lemma 2. Let T be any positive constant. Then for a non-random function

f ∈ L2(0, T ), the Ito integrals Q(t) =

∫ t

0

f(s)dW (s) for 0 < t ≤ T yield a Gauss-

ian stochastic process with pointwise distributions N
(

0,

∫ t

0

f2(s)ds

)
. Moreover,

Cov(Q(t), Q(t+ τ)) =

∫ t

0

f2(s)ds for all τ ≥ 0.

3.1. Scalar differential equations - Case I. In the first case we derive condi-
tions under which the probabilistic and stochastic formulations generate stochastic
processes with the same distributions (normal in the case the initial condition is a
fixed constant) at each time t.
Probabilistic formulation. The probabilistic formulation considered has the fol-
lowing form

dx(t; b)

dt
= α(t)x(t; b) + γ(t) + b · %(t), b = (b0, b1, . . . , bn−1)T ∈ Rn

Bj ∼ N (µj , σ
2
j ), j = 0, 1, 2, . . . , n− 1, which are mutually independent,

(14)

where α, γ and % = (%0, %1, . . . , %n−1)T are non-random functions of t, and b is
chosen as realizations of B = (B0, B1, . . . , Bn−1)T . Hence, the dynamics of an
individual with initial condition x0 in a subsystem with its rates of change having
parameter values b is described by the deterministic model

dx(t; b)

dt
= α(t)x(t; b) + γ(t) + b · %(t), x(0) = x0.

Multiplying both sides of the above equation by exp

(
−
∫ t

0

α(s)ds

)
we find that

d

dt

[
x exp

(
−
∫ t

0

α(s)ds

)]
= γ(t) exp

(
−
∫ t

0

α(s)ds

)
+b·%(t) exp

(
−
∫ t

0

α(s)ds

)
.
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We then integrate both sides of the above equation to obtain

x(t;x0,b) = x0 exp

(∫ t

0

α(s)ds

)
+

∫ t

0

γ(s) exp

(∫ t

s

α(τ)dτ

)
ds

+b ·
∫ t

0

%(s) exp

(∫ t

s

α(τ)dτ

)
ds.

(15)

We assume that all the subsystems have the same probability density function
for initial condition X0, which is independent of Bj , j = 0, 1, 2, . . . , n − 1. Let
X(t) = x(t;X0,B) and

Y (t) =

∫ t

0

γ(s) exp

(∫ t

s

α(τ)dτ

)
ds+ B ·

∫ t

0

%(s) exp

(∫ t

s

α(τ)dτ

)
ds.

Then we have that

X(t) = X0 exp

(∫ t

0

α(s)ds

)
+ Y (t). (16)

Note that Bj ∼ N (µj , σ
2
j ), and Bj , j = 0, 1, 2, . . . , n−1, are mutually independent.

Hence, we find that for any fixed t, Y (t) is normally distributed with mean defined
by ∫ t

0

(γ(s) + µ · %(s)) exp

(∫ t

s

α(τ)dτ

)
ds, (17)

where µ = (µ0, µ1, . . . , µn−1)T , and variance defined by

n−1∑
j=0

σ2
j

[∫ t

0

%j(s) exp

(∫ t

s

α(τ)dτ

)
ds

]2

. (18)

Stochastic formulation. Based on the above discussions of the probabilistic for-
mulation (14) we see that if all the individuals in the entire system have the same
fixed initial condition x0, then X(t) is also normally distributed for any fixed time
t. Based on this piece of information, the stochastic model is chosen to have the
form

dX(t) = [α(t)X(t) + ξ(t)]dt+ η(t)dW (t), X(0) = X0, (19)

where α, ξ and η are non-random functions of t, and X0 is independent of W (t).

Multiplying both sides of the above equation by exp

(
−
∫ t

0

α(s)ds

)
we find that

d

[
X(t) exp

(
−
∫ t

0

α(s)ds

)]
= ξ(t) exp

(
−
∫ t

0

α(s)ds

)
dt+ η(t) exp

(
−
∫ t

0

α(s)ds

)
dW (t).

Integrating both sides of the above equation we obtain that

X(t) = X0 exp

(∫ t

0

α(s)ds

)
+ Y (t), (20)

where Y (t) is defined by

Y (t) =

∫ t

0

ξ(s) exp

(∫ t

s

α(τ)dτ

)
ds

+ exp

(∫ t

0

α(τ)dτ

)∫ t

0

η(s) exp

(
−
∫ s

0

α(τ)dτ

)
dW (s).
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By Lemma 2, for any fixed t we have that∫ t

0

η(s) exp

(
−
∫ s

0

α(τ)dτ

)
dW (s) ∼ N

(
0,

∫ t

0

[
η(s) exp

(
−
∫ s

0

α(τ)dτ

)]2

ds

)
.

Thus, we find that

Y (t) ∼ N

(∫ t

0

ξ(s) exp

(∫ t

s

α(τ)dτ

)
ds,

∫ t

0

[
η(s) exp

(∫ t

s

α(τ)dτ

)]2

ds

)
. (21)

Equivalent conditions. By (16), (17), (18), (20) and (21), we know that if func-
tions ξ, η and %j , and constants µj , σj and n satisfy the following two equalities∫ t

0

ξ(s) exp

(∫ t

s

α(τ)dτ

)
ds =

∫ t

0

[γ(s) + µ · %(s)] exp

(∫ t

s

α(τ)dτ

)
ds (22)

and∫ t

0

[
η(s) exp

(∫ t

s

α(τ)dτ

)]2

ds =

n−1∑
j=0

σ2
j

[∫ t

0

%j(s) exp

(∫ t

s

α(τ)dτ

)
ds

]2

, (23)

then the probabilistic formulation (14) and the stochastic formulation (19) yield
stochastic processes that are pointwise equivalent in density.

Based on the equivalent conditions (22) and (23), we will derive the specific
forms of the functional parameters and/or values of the parameters of the corre-
sponding pointwise equivalent (stochastic/probabilistic) formulation in terms of the
functional parameters and/or parameters of the known (probabilistic/stochastic)
formulation.

3.1.1. Probabilistic formulation to stochastic formulation. Here we assume that prob-
abilistic formulation (14) is known, and we want to determine its corresponding
stochastic formulation. In other words, we need to determine functions ξ and η in
terms of functions γ and %j , and constants µj , σj and n. By (22), it is obvious that
if function ξ is chosen to be

ξ(t) = γ(t) + µ · %(t),

then (22) holds. Differentiating both sides of (23) with respect to t yields that

η2(t) + 2α(t)

n−1∑
j=0

σ2
j

[∫ t

0

%j(s) exp

(∫ t

s

α(τ)dτ

)
ds

]2

= 2

n−1∑
j=0

σ2
j%j(t)

∫ t

0

%j(s) exp

(∫ t

s

α(τ)dτ

)
ds

+2

n−1∑
j=0

σ2
jα(t)

[∫ t

0

%j(s) exp

(∫ t

s

α(τ)dτ

)
ds

]2

,

which can be simplified as follows

η2(t) = 2

n−1∑
j=0

σ2
j%j(t)

∫ t

0

%j(s) exp

(∫ t

s

α(τ)dτ

)
ds.



MODELING UNCERTAINTY IN POPULATIONS 11

Hence, if % is assumed to have the property that the right-hand-side of the above
equation is nonnegative for any t ≥ 0, then we can choose η to be

η(t) =

2

n−1∑
j=0

σ2
j%j(t)

∫ t

0

%j(s) exp

(∫ t

s

α(τ)dτ

)
ds


1
2

so that (23) holds.

3.1.2. Stochastic formulation to probabilistic formulation. Next we assume that sto-
chastic formulation (19) is known, and we wish to determine its corresponding prob-
abilistic formulation. In other words, we need to determine functions γ and ρj , and
constants µj , σj and n in terms of functions ξ and η . By (22) and (23) we know
that we have numerous different choices for the probabilistic formulation. Here
we choose one of the simple formulations (for other possible forms, the interested
readers can refer to [13] for more details). It is obvious that if we set

γ(t) + µ · %(t) = ξ(t), (24)

then (22) holds. Note that ρ also needs to be properly chosen so that (23) holds.
Hence, for simplicity, we choose

n = 1, γ(t) = ξ(t), µ0 = 0, σ0 = 1.

Thus, by the above equalities and (23) we find∫ t

0

%0(s) exp

(∫ t

s

α(τ)dτ

)
ds =

(∫ t

0

η2(s) exp

(
2

∫ t

s

α(τ)dτ

)
ds

) 1
2

. (25)

Differentiating both sides of the above equation with respect to t we have that

%0(t) =
d

dt

(∫ t

0

η2(s) exp

(
2

∫ t

s

α(τ)dτ

)
ds

) 1
2


−α(t)

[∫ t

0

η2(s) exp

(
2

∫ t

s

α(τ)dτ

)] 1
2

.

(26)

Based on the above discussions we see that one of the simple choices of the corre-
sponding pointwise equivalent probabilistic formulation for (19) is as follows

dx(t; b)

dt
= α(t)x(t; b) + ξ(t) + b%0(t), b ∈ R,

B ∼ N (0, 1),

where %0 is defined by (26).

3.2. Scalar differential equations - Case II. In this section, we consider exam-
ples where the probabilistic and stochastic formulations lead to processes that have
pointwise equivalent densities (either log-normal or shifted log-normal, depending
on the value of the parameter (see details below), when the initial condition is a
fixed constant).
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Probabilistic formulation. The probabilistic formulation considered has the form

dx(t; b)

dt
= (b · ρ(t) + γ(t))(x(t; b) + c), b = (b0, b1, . . . , bn−1)T ∈ Rn

Bj ∼ N (µj , σ
2
j ), j = 0, 1, 2, . . . , n− 1, which are mutually independent,

(27)

where b is a realization of B = (B0, B1, . . . , Bn−1)T , ρ = (ρ0, ρ1, . . . , ρn−1)T is a
non-random vector functions of t, γ is a non-random function of t, and c is a given
constant. Hence, it is easy to see that the solution to the first equation of (27) with
initial condition x(0) = x0 is given by

x(t;x0,b) = −c+ (x0 + c) exp

(
b ·
∫ t

0

ρ(s)ds+

∫ t

0

γ(s)ds

)
. (28)

Assume that all the subsystems have the same probability density function for
initial condition X0, which is independent of Bj , j = 0, 1, 2, . . . , n− 1. Let X(t) =
x(t;X0,B) and

Y (t) = B ·
∫ t

0

ρ(s)ds+

∫ t

0

γ(s)ds.

Then we have
X(t) = −c+ (X0 + c) exp(Y (t)). (29)

Since Bj ∼ N (µj , σ
2
j ), and Bj , j = 0, 1, 2, . . . , n− 1, are mutually independent, we

find that

Y (t) ∼ N

∫ t

0

(µ · ρ(s) + γ(s)) ds,

n−1∑
j=0

σ2
j

(∫ t

0

ρj(s)ds

)2
 . (30)

Stochastic formulation. By the above discussions on the probabilistic formulation
(27), we see that if all the individuals in the entire system have the same fixed initial
condition x0, then for any fixed t, X(t) has a log-normal distribution when c = 0,
and a shifted log-normal distribution when c is nonzero. Based on this information,
the stochastic model is chosen to have the form

dX(t) = ξ(t)(X(t) + c)dt+ η(t)(X(t) + c)dW (t), X(0) = X0, (31)

where both ξ and η are non-random functions of t, and X0 is independent of W (t).
Let h(x, t) = ln(x+ c). Then we have

ht(x, t) = 0, hx(x, t) =
1

x+ c
, hxx(x, t) = − 1

(x+ c)2
.

Hence, by Ito’s formula, we have

dh(X(t), t) = (ξ(t)− 1
2η

2(t))dt+ η(t)dW (t).

Integrating both sides we have

X(t) = −c+ (X0 + c) exp(Y (t)). (32)

where Y (t) =

∫ t

0

(ξ(s) − 1
2η

2(s))ds +

∫ t

0

η(s)dW (s). By Lemma 2, for any fixed t

we have that ∫ t

0

η(s)dW (s) ∼ N
(

0,

∫ t

0

η2(s)ds

)
.

Hence, we find that for any fixed t we have

Y (t) ∼ N
(∫ t

0

(ξ(s)− 1
2η

2(s))ds,

∫ t

0

η2(s)ds

)
. (33)
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Equivalent conditions. By (29), (30), (32), and (33), we see that if functions ξ,
η and ρj , and constants µj , σj and n satisfy the following two equalities∫ t

0

(ξ(s)− 1
2η

2(s))ds =

∫ t

0

(µ · ρ(s) + γ(s)) ds (34)

and ∫ t

0

η2(s)ds =

n−1∑
j=0

σ2
j

(∫ t

0

ρj(s)ds

)2

, (35)

then probabilistic formulation (27) and stochastic formulation (31) yield processes
that are pointwise equivalent in density.

Based on the above equivalent conditions, we next derive the specific forms of the
functional parameters and/or values of the parameters of the corresponding point-
wise equivalent (stochastic/probabilistic) formulation in terms of the functional pa-
rameters and/or parameters of the known (probabilistic/stochastic) formulation.

3.2.1. Probabilistic formulation to stochastic formulation. Here we assume that prob-
abilistic formulation (27) is known, and we wish to determine its corresponding
pointwise equivalent stochastic formulation. Differentiating both sides of (35) with
respect to t we have

η2(t) = 2

n−1∑
j=0

σ2
jρj(t)

(∫ t

0

ρj(s)ds

)
.

Hence, if we assume that ρj(t), j = 0, 1, 2, . . . , n − 1 have the property that the
right-hand-side of the above equation is nonnegative for any t ≥ 0, then we can
always find η such that (35) holds, and it is given by

η(t) =

2

n−1∑
j=0

σ2
jρj(t)

(∫ t

0

ρj(s)ds

)
1
2

. (36)

By (34) and (35) we find that∫ t

0

ξ(s)ds =

∫ t

0

(µ · ρ(s) + γ(s)) ds+
1

2

n−1∑
j=0

σ2
j

(∫ t

0

ρj(s)ds

)2

.

Differentiating both sides of the above equation with respect to t yields

ξ(t) = µ · ρ(t) + γ(t) +

n−1∑
j=0

σ2
jρj(t)

(∫ t

0

ρj(s)ds

)
. (37)

Thus, if ξ and η are chosen as those in (37) and (36), then both (34) and (35) hold.

3.2.2. Stochastic formulation to probabilistic formulation. Now we assume that sto-
chastic formulation (31) is known, and we wish to determine its corresponding
probabilistic formulation. By (34) and (35) we know that we have lots of different
choices for the probabilistic formulation. Here we choose one of the simple formu-
lations (for other possible forms, the interested readers can refer to [13] for more
details). It is obvious that if we set

µ · ρ(t) + γ(t) = ξ(t)− 1
2η

2(t), (38)
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then (34) holds. Note that ρ also needs to be properly chosen to satisfy (35). Hence,
for simplicity, we choose

n = 1, γ(t) = ξ(t)− 1
2η

2(t), µ0 = 0, σ0 = 1.

Then by the above equalities and (35) we obtain that∫ t

0

ρ0(s)ds =

(∫ t

0

η2(s)ds

) 1
2

. (39)

Hence, if we set

ρ0(t) =
d

dt

(∫ t

0

η2(s)ds

) 1
2

 , (40)

then (39) holds. Thus, one of the simple choices of the corresponding pointwise
equivalent probabilistic formulation for the stochastic formulation (31) is as follows

dx(t; b)

dt
=
(
bρ0(t) + ξ(t)− 1

2η
2(t)

)
(x(t; b) + c), b ∈ R,

B ∼ N (0, 1),

where function ρ0 is defined by (40).

3.3. System of differential equations. In this section, we derive the conditions
for the systems under which the probabilistic and stochastic formulations have the
same distribution (multivariate normal in the case the initial condition is a constant
vector) at each time t.
Probabilistic formulation. The probabilistic formulation considered has the fol-
lowing form

dx(t; b)

dt
= A(t)x(t; b) + γ(t) +H(t)b, b ∈ Rn,

B ∼ N (µB,ΣB),

(41)

where A is a non-random m×m matrix functions of t, γ is a non-random m vector
functions of t, H is a non-random m×n matrix functions of t, and b is a realization
of B. The solution to the first equation of (41) with initial conditions x(0) = x0 is
given by

x(t; x0,b) = Φ(t)x0 + Φ(t)

[∫ t

0

Φ−1(s)γ(s)ds+

∫ t

0

Φ−1(s)H(s)bds

]
. (42)

Here Φ(t) is the solution of deterministic initial value problem

dΦ(t)

dt
= A(t)Φ(t), Φ(0) = Im, (43)

where Im is m×m identity matrix. Assume that all the subsystems have the same
probability density function for initial condition X0, which is independent of B, and
let X(t) = x(t; X0,B) and

Y(t) = Φ(t)

[∫ t

0

Φ−1(s)γ(s)ds+

∫ t

0

Φ−1(s)H(s)Bds

]
.

Then we have that

X(t) = Φ(t)X0 + Y(t). (44)
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Note that B ∼ N (µB,ΣB). Hence, we find that for any fixed t we have

Y(t) ∼ N
(

Φ(t)

∫ t

0

Φ−1(s) (γ(s) +H(s)µB) ds,Φ(t)Πp(t)(Φ(t))T
)
, (45)

where

Πp(t) =

[∫ t

0

Φ−1(s)H(s)ds

]
ΣB

[∫ t

0

Φ−1(s)H(s)ds

]T
.

Stochastic formulation. By the above discussions on the probabilistic formulation
(41), we see that if all the individuals in the entire system have the same fixed
initial condition x0, then X(t) is multivariate normal distributed for any fixed time
t. Based on this piece of information, the stochastic model is chosen to have the
following form:

dX(t) = [A(t)X(t) + ξ(t)]dt+ F(t)dW(t), X(0) = X0, (46)

where ξ is a non-random m vector functions of t, F is a non-random m× l matrix
function of t, and W(t) = (W1(t),W2(t), . . . ,Wl(t))

T is a l-vector standard Wiener
process independent of initial vector X0. Then the solution to (46) is given by (e.g.,
see [26, Section 5.6])

X(t) = Φ(t)X0 + Y(t), (47)

where Y(t) is defined by

Y(t) = Φ(t)

[∫ t

0

Φ−1(s)ξ(s)ds+

∫ t

0

Φ−1(s)F(s)dW(s)

]
.

In addition, for any fixed t we have (e.g., see [26, Section 5.6])

Y(t) ∼ N
(

Φ(t)

∫ t

0

Φ−1(s)ξ(s)ds, Φ(t)Πs(t)(Φ(t))T
)
, (48)

where

Πs(t) =

∫ t

0

Φ−1(s)F(s)
(
Φ−1(s)F(s)

)T
ds.

Equivalent conditions. By (44), (45), (47) and (48), we know that if functions ξ,
F , γ, H, µB and ΣB satisfy the following two equalities∫ t

0

Φ−1(s) (γ(s) +H(s)µB) ds =

∫ t

0

Φ−1(s)ξ(s)ds, (49)

and Πp(t) = Πs(t), that is,[∫ t

0

Φ−1(s)H(s)ds

]
ΣB

[∫ t

0

Φ−1(s)H(s)ds

]T
=

∫ t

0

Φ−1(s)F(s)
(
Φ−1(s)F(s)

)T
ds,

(50)

then probabilistic formulation (41) and stochastic formulation (46) are pointwise
equivalent in density.

Next we will derive the specific forms of the functional parameters and/or values
of the parameters of the corresponding pointwise equivalent (stochastic/
probabilistic) formulation in terms of the functional parameters and/or parame-
ters of the known (probabilistic/stochastic) formulation based on the equivalent
conditions (49) and (50).
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3.3.1. Probabilistic formulation to stochastic formulation. Here we assume that prob-
abilistic formulation (41) is known, and we want to determine its corresponding
pointwise stochastic formulation. By (49), it is obvious that if function ξ is chosen
to be

ξ(t) = γ(t) +H(t)µB,

then (49) holds. Differentiating both sides of (50) with respect to t we find that

F(t)FT (t) = Φ(t)Π̇p(t)(Φ(t))T . (51)

Hence, if we assume Πp have the property that Φ(t)Π̇p(t)(Φ(t))T is a positive-
semidefinite matrix for any t ≥ 0, then we can always find F such that (51) holds.

3.3.2. Stochastic formulation to probabilistic formulation. Now we assume that sto-
chastic formulation (46) is known, and we want to determine its corresponding
pointwise equivalent probabilistic formulation. It is obvious if γ, H and µB are
chosen such that

γ(t) +H(t)µB = ξ(t),

then (49) holds. Note that H also needs to be properly chosen to satisfy (50).
Hence, for simplicity, we choose

γ(t) = ξ(t), µB = 0. (52)

Note that for any t ≥ 0, Πs(t) is a positive-semidefinite matrix. Hence, there exists
a m×m matrix function Λ(t) such that

Πs(t) = Λ(t)(Λ(t))T .

Thus, if we choose

n = m, ΣB = Im, H(t) = Φ(t)Λ̇(t), (53)

then (50) holds. Therefore, one of the simple choices of the corresponding pointwise
equivalent probabilistic formulation for the stochastic formulation (46) is as follows

dx(t; b)

dt
= A(t)x(t; b) + ξ(t) + Φ(t)Λ̇(t)b, b ∈ Rm,

B ∼ N (0, Im).

(54)

4. Computing covariances. As we have already stated, the procedures above
lead to pointwise equivalent in density systems that are not described by the same
stochastic processes. We revisit the examples of (9) to illustrate this by comparing
covariances of the two processes. We proceed to use the Lemmas 1 and 2 to find
the covariance function of the stochastic processes YPRD(t) in the probabilistic
formulation (12) and YSRM (t) in the stochastic formulations (13).
Probabilistic formulation. Note that for this case YPRD is given by

YPRD(t) = exp(Bt− 1
2σ

2
0t

2), where B ∼ N (b0, σ
2
0).

Hence, by Lemma 1 we find immediately

E(YPRD(t)) = exp(b0t). (55)
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Then using Lemma 1 and (55) we find the covariance function for the process
{Y (t)} = {YPRD(t)} given by

Cov(Y (t), Y (s))

= E(Y (t)Y (s))− E(Y (t))E(Y (s))

= E
{

exp
(
B(t+ s)− 1

2σ
2
0(t2 + s2)

)}
− exp(b0(t+ s))

= exp
(
b0(t+ s)− 1

2σ
2
0(t2 + s2) + 1

2σ
2
0(t+ s)2

)
− exp(b0(t+ s))

= exp
(
b0(t+ s) + stσ2

0

)
− exp(b0(t+ s))

= exp(b0(t+ s))
[
exp

(
stσ2

0

)
− 1
]
.

Stochastic formulation. In this case we have

YSRM (t) = exp

(
(b0t− 1

2σ
2
0t

2) + σ0

∫ t

0

√
2τdW (τ)

)
.

Let Q(t) = σ0

∫ t

0

√
2τdW (τ). Then by Lemma 2, we have that {Q(t)} is a Gaussian

process with zero mean and covariance function given by

Cov(Q(t), Q(s)) = σ2
0 min{t2, s2}. (56)

Using Lemma 1 and (56) we find that

E(YSRM (t)) = exp(b0t). (57)

By Lemma 2 we know that {Q(t)} is a Gaussian process. Hence, Q(t) + Q(s) has
a Gaussian distribution with zero mean and variance defined by

Var(Q(t) +Q(s)) = Var(Q(t)) + Var(Q(s)) + 2Cov(Q(t), Q(s))

= σ2
0

(
t2 + s2 + 2 min{t2, s2}

)
.

(58)

Now we use Lemma 1, along with equations (57) and (58) to find the covariance
function of {Y (t)} = {YSRM (t)}.

Cov(Y (t), Y (s))

= E(Y (t)Y (s))− E(Y (t))E(Y (s))

= E
{

exp
(
b0(t+ s)− 1

2σ
2
0(t2 + s2) +Q(t) +Q(s)

)}
− exp(b0(t+ s))

= exp
(
b0(t+ s)− 1

2σ
2
0(t2 + s2) + 1

2σ
2
0

(
t2 + s2 + 2 min{t2, s2}

))
− exp(b0(t+ s))

= exp
(
b0(t+ s) + σ2

0 min{t2, s2}
)
− exp(b0(t+ s))

= exp(b0(t+ s))
[
exp

(
σ2

0 min{t2, s2}
)
− 1
]
.

Thus we see that {YPRD(t)} and {YSRM (t)} have different covariance functions
and hence are not the same stochastic process.

5. Equivalence between probabilistic and stochastic formulations with
nonlinear dynamics. In this section we turn to nonlinear stochastic differential
equations which can be shown equivalent to a PRD formulation with nonlinear
dynamics. In summary of our results to date, based on the discussions in Sections 3.1
and 3.2, we see that we can find the corresponding pointwise equivalent probabilistic
formulation for two types of scalar stochastic differential equations:

dX(t) = [α(t)X(t) + ξ(t)]dt+ η(t)dW (t),
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and

dX(t) = ξ(t)(X(t) + c)dt+ η(t)(X(t) + c)dW (t),

where ξ, η, and α are all deterministic functions of t, and c is a given constant. In
addition, we can find the corresponding pointwise equivalent probabilistic formula-
tion for the following linear system of stochastic differential equations (see Section
3.3)

dX(t) = [A(t)X(t) + ξ(t)]dt+ F(t)dW(t),

where A is a non-random m ×m matrix functions of t, ξ is a non-random m vec-
tor functions of t, F is a non-random m × l matrix function of t, and W(t) =
(W1(t),W2(t), . . . ,Wl(t))

T is a l-vector standard Wiener process. Hence, if a non-
linear stochastic differential equation (or system of stochastic differential equations)
can be reduced to one of the above forms by some invertible transformation, then
one can find its corresponding probabilistic formulation. The same thing is true for
the probabilistic formulation.

5.1. Reducible nonlinear stochastic differential equations. First we will con-
sider several special cases of nonlinear stochastic differential equations that can be
reduced to linear stochastic differential equations after some invertible transforma-
tion. Proofs are given in [24, Section 4.1].

Theorem 3. Consider the stochastic differential equation

dX(t) = g(X(t), t)dt+ σ(X(t), t)dW (t), (59)

where g and σ are non-random functions of x and t. If the equality

∂

∂x

{
σ(x, t)

[
1

σ2(x, t)

∂σ

∂t
(x, t)− ∂

∂x

( g
σ

)
(x, t) +

1

2

∂2σ

∂x2
(x, t)

]}
= 0

holds, then the nonzero deterministic function σ̄(t) can be determined from

σ̄′(t) = σ̄(t)σ(x, t)

[
1

σ2(x, t)

∂σ

∂t
(x, t)− ∂

∂x

( g
σ

)
(x, t) +

1

2

∂2σ

∂x2
(x, t)

]
,

and some smooth invertible function h(x, t) can be computed from

∂h

∂x
(x, t) =

σ̄(t)

σ(x, t)
.

Moreover, (59) can be reduced to the linear stochastic differential equation

dZ(t) = ḡ(t)dt+ σ̄(t)dW (t),

where Z(t) = h(X(t), t) and the deterministic function ḡ(t) can be computed from

ḡ(t) =
∂h

∂t
(x, t) +

∂h

∂x
(x, t)g(x, t) +

1

2

∂2h

∂x2
(x, t)σ2(x, t).

Theorem 4. The autonomous stochastic differential equation

dX(t) = g(X(t))dt+ σ(X(t))dW (t)

can be reduced to the linear stochastic differential equation

dZ(t) = (λ0 + λ1Z(t))dt+ (ν0 + ν1Z(t))dW (t)

if and only if

ψ′(x) = 0 or

(
(σψ′)′

ψ′

)′
(x) = 0. (60)
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Here g and σ are non-random functions of x, λ0, λ1, ν0 and ν1 are some con-

stants, ψ(x) =
g(x)

σ(x)
− 1

2
σ′(x), and Z(t) = h(X(t)), where h is some invertible

transformation.

If the latter part of (60) is satisfied, then we set ν1 = − (σψ′)′

ψ′
. If ν1 6= 0, then

we can choose

h(x) = c exp

(
ν1

∫ x

a

1

σ(τ)
dτ

)
,

where c is some constant. If ν1 = 0, then we can choose

h(x) = ν0

∫ x

a

1

σ(τ)
dτ + c.

Remark 1. For a general nonlinear system of stochastic differential equations, it is
difficult to obtain the explicit form for the invertible transformation (as it strongly
depends on the specific form of the system). Hence, we do not pursue this effort in
this paper.

5.2. Examples. We next use several examples to illustrate this transformation
method to find the corresponding equivalent probabilistic/stochastic formulations
for stochastic/probabilistic formulations.

Example 1. (Exponential Modulated Growth in the Drift)

In this example, we use the transformation method to find the equivalent prob-
abilistic formulation for the following nonlinear stochastic differential equation

dX =

[
1− 1

2
exp(−2X)

]
dt+ exp(−X)dW.

Note here that g(x) = 1− 1

2
exp (−2x). Let Z = exp(X). Then by Ito’s formula we

find that

dZ = exp(X)

{[
1− 1

2
exp(−2X)

]
dt+ exp(−X)dW

}
+

1

2
exp(X) exp(−2X)dt

= Zdt+ dW.

By the discussions in Section 3.1.2 we find the equivalent probabilistic formulation
for the above linear stochastic differential equation is

dz(t; b)

dt
= z(t; b) + bρ(t), b ∈ R; B ∼ N (0, 1),

where ρ(t) =
exp(2t)√

2[exp(2t)− 1]
−
√

exp(2t)− 1

2
. Let x = ln(z). Then we have

dx

dt
=

1

z
(z + bρ(t)) = 1 + bρ(t) exp(−x).

Thus, the following two formulations

dX =

[
1− 1

2
exp(−2X)

]
dt+ exp(−X)dW



20 H. THOMAS BANKS AND SHUHUA HU

and

dx(t; b)

dt
= 1 + b

[
exp(2t)√

2[exp(2t)− 1]
−
√

exp(2t)− 1

2

]
exp(−x(t; b)), b ∈ R,

B ∼ N (0, 1)

are pointwise equivalent in density.

Example 2. (Logistics Growth Dynamics with Uncertainty)

We begin with logistic growth in the probabilistic formulation and derive its
equivalent stochastic formulation. Consider the deterministic logistic equation

dx

dt
= bx

(
1− x

κ

)
, x(0) = x0, (61)

where b is some constant representing the intrinsic growth rate, and κ is a given

constant representing the carrying capacity. Let z =
1

x
. Then it is easy to find that

dz

dt
= −b

(
z − 1

κ

)
.

By the discussions in Section 3.2.1, we know that for probabilistic formulation

dz(t; b)

dt
= −b

(
z(t; b)− 1

κ

)
, b ∈ R; B ∼ N (µ0, σ

2
0),

its equivalent form of stochastic formulation is given by

dZ(t) = (−µ0 + σ2
0t)

(
Z − 1

κ

)
dt+

√
2tσ0

(
Z − 1

κ

)
dW (t).

Let X(t) =
1

Z(t)
. Then by Ito’s formula we find that

dX(t) = − 1

Z2(t)

[
(−µ0 + σ2

0t)

(
Z − 1

κ

)
dt+

√
2tσ0

(
Z − 1

κ

)
dW (t)

]
+

1

Z3(t)

[√
2tσ0

(
Z − 1

κ

)]2

dt

= X

[
(µ0 − σ2

0t)

(
1− X

κ

)
+ 2tσ2

0

(
1− X

κ

)2
]
dt

−
√

2tσ0X

(
1− X

κ

)
dW (t).

Thus, the probabilistic formulation

dx(t; b)

dt
= bx(t; b)

(
1− x(t; b)

κ

)
, b ∈ R; B ∼ N (µ0, σ

2
0) (62)

and the stochastic formulation

dX(t) = X

[
(µ0 − σ2

0t)

(
1− X

κ

)
+ 2tσ2

0

(
1− X

κ

)2
]
dt

−
√

2tσ0X

(
1− X

κ

)
dW (t)

(63)

are pointwise equivalent in density. Figure 1 depicts the probability density function
p(x, t) at different times t for the probabilistic formulation (62) and the stochastic
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formulation (63) with κ = 100, x0 = 10, µ0 = 1 and σ0 = 0.1, where p(x, t)
is obtained by simulating 105 sample paths for each formulation. Here for the
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Figure 1. Probability density function p(x, t) are obtained by sim-
ulating 105 sample paths for probabilistic formulation (62) and sto-
chastic formulation (63) at t = 1, 2, 3 and 4, where ∆t = 0.004 is
used in (64), and T = 4.

probabilistic formulation (62), we analytically solve each deterministic differential
equation (61) with b being a realization of B, which follows a normal distribution
N (1, 0.01). This solution is given by

x(t; b) =
x0κ exp(bt)

κ+ x0(exp(bt)− 1)
.

Thus implementation of the probabilistic formulation (PRD) is extremely rapid
(essentially a function evaluation). This is not true for the SRM and hence the PRD
formulation requires much less (orders of magnitude) implementation time than does
the SRM. Even in examples where both methods require numerical integration, the
PRD is highly preferred to the SRM in implementation of inverse problems (e.g.,
see [11, 14, 20]). We use an Euler explicit method (crude but sufficient for our
purposes here since our main objective is to demonstrate our theoretical equivalence
results with a numerical example) to numerically approximate the sample paths
for the stochastic differential equation (63). Let T denote the final time, and m
be the number of mesh points interval. Then the mesh time points are given by
tk = k∆t, k = 0, 1, 2, . . . ,m, where ∆t = T/m. Denote by Xk the numerical
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solution for X(tk); then we have the following numerical scheme:

Xk+1 = Xk +Xk

[
(µ0 − σ2

0tk)

(
1− Xk

κ

)
+ 2tkσ

2
0

(
1− Xk

κ

)2
]

∆t

−
√

2tkσ0X
k

(
1− Xk

κ

)
Ek, k = 1, 2, . . . ,m− 1.

(64)

where Ek is a random variable following a normal distribution N (0,∆t). From
Figure 1 we see that we obtain the same probability density function for the proba-
bilistic formulation (62) and the stochastic formulation (63), which nicely illustrates
our earlier theoretical results.

Example 3. (Gompertz Growth in the Drift)

In this example, we consider the following nonlinear stochastic differential equa-
tion

dX(t) = [a0(t)− a1(t) ln(X(t))]X(t)dt+
√

2d0(t)X(t)dW (t), (65)

where a0, a1 and d0 are some deterministic functions of t, and a1 and d0 are assumed
to be positive. This equation is a stochastic version of the generalized Gompertz
model ẋ = (a0(t) − a1(t) lnx)x, which has been extensively used in biological and
medical research to describe population dynamics such as tumor growth in humans
and animals either with or without treatment (e.g., [1, 23] and the references therein)
as well in cell proliferations models [18]. Next we use the transformation method
to find an equivalent probabilistic formulation for (65). Let Z = ln(X). Then by
Ito’s formula and (65) we have

dZ(t) =
1

X(t)

{
[a0(t)− a1(t) ln(X(t))]X(t)dt+

√
2d0(t)X(t)dW (t)

}
− 1

2X2(t)

[
2d0(t)X2(t)

]
dt

= [−a1(t)Z(t) + (a0(t)− d0(t))] dt+
√

2d0(t)dW (t).

By the discussions in Section 3.1.2 we find that a pointwise equivalent probabilistic
formulation for the above linear stochastic differential equation is given by

dz(t; b)

dt
= −a1(t)z(t; b) + a0(t)− d0(t) + bρ(t), b ∈ R,

B ∼ N (0, 1).

(66)

Here b is a realization of B, and ρ is given by

ρ(t) =
d

dt

(√
ϕ(t)

)
+ a1(t)

√
ϕ(t).

where

ϕ(t) =

∫ t

0

2d0(s) exp

(
−2

∫ t

s

a1(τ)dτ

)
ds.

Let x = exp(z). Then by (66) we find

dx(t; b)

dt
= exp(z(t; b)) [−a1(t)z(t; b) + a0(t)− d0(t) + bρ(t)]

= x(t; b) [−a1(t) ln(x(t; b)) + a0(t)− d0(t) + bρ(t)] .

Thus, the following two formulations

dX(t) = [a0(t)− a1(t) ln(X(t))]X(t)dt+
√

2d0(t)X(t)dW (t)
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and

dx(t; b)

dt
= x(t; b) [−a1(t) ln(x(t; b)) + a0(t)− d0(t) + bρ(t)] , b ∈ R

B ∼ N (0, 1)

are pointwise equivalent in density.

6. Concluding remarks. In summary, we have derived several classes of examples
with affine dynamics for which we can establish pointwise equivalence in density for
the corresponding probabilistic and stochastic formulations. We then argue that a
large class of nonlinear SDE can be reduced by invertible transformation to one of
the affine cases. We presented several examples of nonlinear SDE arising frequently
in applications that can be transformed to the more readily computed probabilistic
formulation. It has been well documented (e.g., see [20, 25] and references therein)
that difficulties arise in numerically solving Fokker-Planck equations such as (1)
when the drift g dominates the diffusion σ2. This motivated our efforts and the re-
sults here lead to alternative methods that can be fast and efficient in numerically
solving (1) by employing its pointwise equivalent in density probabilistic formula-
tion. Future efforts include investigation of the approximate equivalent probabilistic
formulations for non-reducible nonlinear stochastic differential equations by the lin-
earization method as well investigation of applications of our methodology to the
control of systems with uncertainty.

Acknowledgments. This research was supported in part by grant number R01AI07
1915-07 from the National Institute of Allergy and Infectious Diseases and in part by
the Air Force Office of Scientific Research under grant number FA9550-09-1-0226.
The authors are also grateful to several referees whose comments and questions led
to improvements in the presentation of this paper.

REFERENCES

[1] G. Albano, V. Giorno, P. Roman-Roman and F. Torres-Ruiz, Inferring the effect of therapy on

tumors showing stochastic Gompertzian growth, Journal of Theoretical Biology, 276 (2011),
67–77.

[2] L. J. S. Allen, “An Introduction to Stochastic Processes with Applications to Biology,” Second

edition, CRC Press, Boca Raton, FL, 2011.
[3] P. Bai, H. T. Banks, S. Dediu, A. Y. Govan, M. Last, A. Loyd, H. K. Nguyen, M. S. Olufsen, G.

Rempala and B. D. Slenning, Stochastic and deterministic models for agricultural production

networks, Math. Biosci. and Engr., 4 (2007), 373–402.
[4] H. T. Banks and K. L. Bihari, Modelling and estimating uncertainty in parameter estimation,

Inverse Problems, 17 (2001), 95–111.

[5] H. T. Banks, V. A. Bokil, S. Hu, A. K. Dhar, R. A. Bullis, C. L. Browdy and F. C. T. Allnutt,
Modeling shrimp biomass and viral infection for production of biological countermeasures,
Mathematical Biosciences and Engineering, 3 (2006), 635–660.

[6] H. T. Banks, D. M. Bortz, G. A. Pinter and L. K. Potter, Modeling and imaging techniques
with potential for application in bioterrorism, in “Bioterrorism” (eds. H. T. Banks and C.

Castillo-Chavez), Frontiers in Applied Math., 28, SIAM, Philadelphia, PA, (2003), 129–154.
[7] H. T. Banks, L. W. Botsford, F. Kappel and C. Wang, Modeling and estimation in size

structured population models, in “Mathematical Ecology” (Trieste, 1986), World Sci. Publ.,
Teaneck, NJ, (1988), 521–541.

[8] H. T. Banks and J. L. Davis, Quantifying uncertainty in the estimation of probability distri-
butions, Math. Biosci. Engr., 5 (2008), 647–667.

[9] H. T. Banks, J. L. Davis, S. L. Ernstberger, S. Hu, E. Artimovich, A. K. Dhar and C.
L. Browdy, A comparison of probabilistic and stochastic formulations in modeling growth
uncertainty and variability, Journal of Biological Dynamics, 3 (2009), 130–148.

http://dx.doi.org/10.1016/j.jtbi.2011.01.040
http://dx.doi.org/10.1016/j.jtbi.2011.01.040
http://www.ams.org/mathscinet-getitem?mr=2560499&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2328090&return=pdf
http://dx.doi.org/10.3934/mbe.2007.4.373
http://dx.doi.org/10.3934/mbe.2007.4.373
http://www.ams.org/mathscinet-getitem?mr=1818494&return=pdf
http://dx.doi.org/10.1088/0266-5611/17/1/308
http://www.ams.org/mathscinet-getitem?mr=2249893&return=pdf
http://dx.doi.org/10.3934/mbe.2006.3.635
http://www.ams.org/mathscinet-getitem?mr=2036544&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1040350&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2478979&return=pdf
http://dx.doi.org/10.3934/mbe.2008.5.647
http://dx.doi.org/10.3934/mbe.2008.5.647
http://www.ams.org/mathscinet-getitem?mr=2573998&return=pdf
http://dx.doi.org/10.1080/17513750802304877
http://dx.doi.org/10.1080/17513750802304877


24 H. THOMAS BANKS AND SHUHUA HU

[10] H. T. Banks, J. L. Davis, S. L. Ernstberger, S. Hu, E. Artimovich and A. K. Dhar, Experimen-
tal design and estimation of growth rate distributions in size-structured shrimp populations,

Inverse Problems, 25 (2009), 095003, 28 pp.

[11] H. T. Banks, J. L. Davis and S. Hu, A computational comparison of alternatives to including
uncertainty in structured population models, in “Three Decades of Progress in Systems and

Control” (eds. X. Hu, U. Jonsson, B. Wahlberg and B. Ghosh), Springer, 2010.
[12] H. T. Banks and B. G. Fitzpatrick, Estimation of growth rate distributions in size structured

population models, Quarterly of Applied Mathematics, 49 (1991), 215–235.

[13] H. T. Banks and S. Hu, “Nonlinear Stochastic Markov Processes and Modeling Uncertainty in
Populations,” Center for Research in Scientific Computation, North Carolina State University,

January, 2011.

[14] H. T. Banks, B. G. Fitzpatrick, L. K. Potter and Y. Zhang, Estimation of probability dis-
tributions for individual parameters using aggregate population data, in “Stochastic Analy-

sis, Control, Optimization and Applications” (eds. W. McEneaney, G. Yin and Q. Zhang),
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