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Abstract. In the paper we propose a new methodology in modeling of an-

tiangiogenic treatment on the basis of well recognized model formulated by

Hahnfeldt et al. in 1999. On the basis of the Hahnfeldt et al. model, with
the usage of the optimal control theory, some protocols of antiangiogenic treat-

ment were proposed. However, in our opinion the formulation of that model is

valid only for the antivascular treatment, that is treatment that is focused on
destroying endothelial cells. Therefore, we propose a modification of the orig-

inal model which is valid in the case of the antiangiogenic treatment, that is

treatment which is focused on blocking angiogenic signaling. We analyze basic
mathematical properties of the proposed model and present some numerical

simulations.

1. Introduction. In 1971 Judah Folman in [15] wrote that growth of any tumor
is strongly dependent on the amount of blood vessels that it induces to grow. He
surmised that, if a tumor could be stopped from growing its own blood supply, it
would wither and die. In adults normal physiological role of angiogenesis – the
process of new vessels formation – is restricted to wound healing, the menstrual
cycle and pregnancy. In addition, angiogenesis is critical during fetal development.
Unfortunately, it is also essential for the successful growth and development of solid
tumors. After reaching avascular dormant state tumor can grow further only by
inducing vessels in host tissue to sprout capillary tubes which migrate towards and
ultimately penetrate the tumor, providing it with a circulating blood supply and,
therefore, an additional source of nutrients [22, 23].

Despite the essential role of angiogenesis in tumor growth, it has been discov-
ered that tumor angiogenesis is highly pathological. Incorrect structure and poor
efficiency of newly formed vessels are common tumour features [22, 23]. Some trials
which where developed to investigate tumor biology revealed that most of admin-
istrated dose of chemotherapy is not even absorbed by tumor. Moreover, absorbed
part of dose was not distributed evenly in particular tumor regions. It makes effec-
tive tumour treatment difficult, because cells which does not get sufficient amount of
drug can survive and even if they are only few repeated tumor growth is inevitable.
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The growth of tumor under angiogenic signalling was successfully mathematically
described by Hahnfeldt et al. in [21]. Confirmed by lab experiments, biological va-
lidity of the Hahnfeldt et. al model makes it probably the most important model
describing this aspect of tumor development. Several other studies have incorpo-
rated mathematical models for the development of tumor under angiogenic sig-
nalling: see [31] and references therein or [9], where also other processes connected
with tumor growth are presented. A family of models based on the Hahnfeldt et al.
model is an object of study of several groups of researchers. D’Onofrio and Gan-
dolfi [10, 11, 12] analysed these models from a dynamical systems point of view.

Świerniak, Świerniak et al. [36, 37, 38] and Ledzewicz and Schättler [28, 29, 30, 27]
studied these models as optimal control problems with the goal of designing optimal
and suboptimal antiangiogenic protocols. In the literature we can also find models
built on assumptions (see e.g. [3, 2]) and approaches to angiogenesis (see e.g. [6])
different from those of the Hahnfeldt et al. model.

The classical Hahnfeldt et al. model with antiangiogenic treatment reads

V̇ (t) = −λ1V (t) ln V (t)
K(t) ,

K̇(t) = −λ2K(t) + bV (t)− dK(t)
(
V (t)

)2/3 − γK(t)I(t),
(1)

where V reflects the tumor volume and K is its carrying capacity, that is maximal
tumor volume that current vasculature can support. The function I(t) describes
the concentration of drug which is typically referred as to antiangiogenic. However,
the term −γK(t)I(t) is formed in the same way as the first term in the equation

for K̇(t) which is assumed to describe the spontaneous loss of functional vascula-
ture [21]. Therefore, we claim that this kind of treatment modeling can be referred
only as to antivascular treatment, that is the treatment with the usage of vascular
targeting agents (VTAs) which are designed to cause a rapid and selective shutdown
of the blood vessels of tumors [39, 26]. In opposite to VTAs, antiangiogenic drugs
are designed to inhibit the formation of new vessels on the level of signaling and
therefore, in our opinion treatment with their usage needs another mathematical
description. In this paper we make such description by modifying the derivation of
the Hahnfeldt et. al model. We try to describe only those antiangiogenic agents
which are designed to bind and block the proteins that are responsible for inducing
growth of blood vessels (eg. VEGF — vascular endothelial growth factor [22, 23]).
An example of such agent is the widely used bevacizumab (trade name Avastin,
Genentech/Roche) which is a humanized monoclonal antibody that recognizes and
blocks vascular endothelial growth factor A (VEGF-A) [41]. We will refer further
as to antiangiogenic only to the treatment that is focused on blocking the signaling
of angiogenesis process.

2. Model derivation. The key element in introducing antiangiogenic treatment
to the Hahnfeldt et al. model is to modify the derivation of equation for carrying
capacity dynamics. Hahnfeldt et al. proposed at the beginning the following general
form of that equation

K̇ = −λ2K(t) + bS(V,K)− dI(V,K)− γK(t)I(t) ,

where the first term represents the spontaneous loss of functional vasculature; the
second term represents the stimulatory capacity of the tumor upon the inducible vas-
culature (through, e.g. angiogenic factors like vascular endothelial growth factor [22,
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23]); the third term reflects endogenous inhibition of previously generated vascu-
lature (through, e.g. endothelial cell death or disaggregation); and the last term
represents inhibition of tumor vasculature due to administered inhibitors. To ob-
tain the exact forms of both functions S(V,K) and I(V,K) the following diffusion–
consumption equation for the concentration n(t, x) of stimulators/inhibitors was
used

∂n(x, t)

∂t
= D2∆xn(x, t)− cn(x, t) + s1l[0,r0)(||x||) , (2)

where D2 denotes the diffusion coefficient, c is the stimulator/inhibitor clearance
rate, s is the rate of stimulator/inhibitor secretion and r0 is the radius of the tumor,
which is assumed to be a three dimensional spheroid.

We assume that administered drugs are proteins that bind and block angiogenic
stimulators and therefore, we propose a modification of Eq. (2) of the following form

∂n(x, t)

∂t
= D2∆xn(x, t)− (c+ f(x, I(t)))n(x, t) + s1l[0,r0)(||x||) , (3)

where n(x, t) is the concentration of stimulators and I(t) is the concentration of
drug in the normal tissue at time t. Due to the pathology of tumor angiogenesis we
assume that the concentration of drug inside the tumor is different than outside,
therefore we propose the following simple form of the function f(x, I(t))

f(x, I(t)) =

{
I(t) for ||x|| ∈ [r0,∞),
dI(t) for ||x|| < r0,

(4)

where the parameter d ∈ R+ describes the change in drug concentration caused
by the incorrect structure of vessels inside the tumor. Let us further assume that
the diffusion process is in a quasi-stationary state, namely that the growth rate of
the tumor and change rate of the drug concentration are are small relative to the

rate of distribution of stimulatory factor. Then
∂n(x, t)

∂t
= 0 and I(t) = const =

I. Following [21] we assume also that the concentration of stimulator is radially
symmetric: ||x|| = ||y|| ⇒ n(x) = n(y). Under those assumptions, Eq. (3) simplifies
to the following ordinary differential equation of the second order:

n′′(r) +
2

r
n′(r)− (c+ f(r, I))

D2
n(r) +

s1l[0,r0)(r)

D2
= 0 (5)

As in [21] we try further to obtain analytic solution to Eq. (5) formulated above.
As we are interested in radially symmetric, continuously differentiable and bounded
solutions, we need to have the following conditions fulfilled

n′(0) = 0 and sup
r∈[0,+∞)

|n(r)| < +∞ . (6)

Making the substitutions (u, z) for (r, n), where u = r
√
c+ dI/D, z = r1/2(n −

s/(c + dI)) for r < r0 and u = r
√
c+ I/D, z = r1/2n for r ≥ r0 we obtain in

both cases the modified Bessel equation in z(u) of order 1/2, from which under the
assumptions (6) we obtain the following form of the solution n(r)

n(r) =


b1
D exp

(
−r
√
c+ I/D

)
r
√
c+ I

for r ∈ [r0,∞),

s

c+ dI
+ b2

D sinh(r
√
c+ dI/D)

r
√
c+ dI

for r < r0,
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where b1, b2 are some constants. We obtain the exact expressions for b1, b2 by
making sure that

lim
r→r−0

n(r) = lim
r→r+0

n(r) and lim
r→r−0

n′(r) = lim
r→r+0

n′(r) .

Conditions above yield

b1 =
s
√
c2 exp

(√
c2r0
D

)(√
c1r0 cosh

(√
c1r0
D

)
−D sinh

(√
c1r0
D

))
c1D

(√
c1 cosh

(√
c1r0
D

)
+
√
c2 sinh

(√
c1r0
D

)) ,

b2 = −
(
D +

√
c2r0

)
s

c1D cosh
(√

c1r0
D

)
+
√
c1c2D sinh

(√
c1r0
D

) ,
where c1 = c+dI and c2 = c+I. In [21] it was assumed that c (stimulator clearance
rate) is large and the exact solution n(r) was approximated. In our derivation we
have proposed that the stimulator clearance rate is also monotonically increasing
function of the drug concentration and it is always grater that the clearance rate c
in the absence of treatment. Therefore, we can make similar approximation from
which we obtain

n(r) ≈

{ s

c+ dI
for r < r0,

0 for r ∈ [r0,∞).

Our main goal is to propose the form of the function S(V,K) using the expressions
above. Therefore, we calculate the total amount of stimulators inside the tumor

L(r0, I) = γ

∫ r0

0

n(r)r2dr ≈ γ s

c+ dI
r3
0,

where γ is some constant. We see that L depends on r3
0 and V = 4

3πr
3
0 which yields

L(r0, I) = L(V, I) ≈ α

c+ dI
V, α = 3

4πγs. (7)

We shall now formulate the law governing the change in drug concentration inside
the tumor. We propose that it should be proportional to a bounded and decreasing
function of tumor volume V , i.e. we assume that d ∼ 1/(β + V p), p ≥ 0, as the
pathology increases during tumor growth and decreases due its reduction during
the treatment. Under the obtained approximation (7) and the assumption about
the form of the change of drug concentration we formulate the following system
describing angiogenesis process with antiangiogenic treatment

V̇ = −λ1V ln
V

K
,

K̇ = −λ2K + b
(β + V p)V

a(β + V p) + I(t)
− dKV 2/3 ,

(8)

where all parameters are non-negative. Under the assumption that the same amount
A of antiangiogenic drug is administered as bolus at moments t1, ..., tn and under
usual pharmacokinetic assumptions we propose the following form of the function
I(t)

I(t) = D

n∑
i=1

e−g(t−ti)l{t≥ti} , (9)

where g is the parameter describing the clearance rate of the drug.
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3. Analysis of the model dynamics for constant treatment. In this section
we study the behavior of the system

V̇ = −λ1V ln
V

K
,

K̇ = b
β + V p

a(β + V p) + I
V − dKV 2/3,

(10)

where we assume that λ2 ≡ 0 (compare the fitting of the Hahnfeldt et al. model to
the experimental data [21]) and I(t) = const = I.

The right-hand side of Eqs. (10) is properly defined in D = (R+)2. Moreover,
it is of class C1 in D which yields the existence of unique solution for every initial
data from D.

Proposition 1. The set D is invariant for Eqs. (10).

Proof. Notice, that the right-hand side of Eqs. (10) can be extended to the boundary
of D. Indeed, for every arbitrary K > 0 defining

F1(V ) =

{
−λ1V ln V

K for V > 0,

0 for V = 0

one gets a continuous function of V . Similarly,

F2(K) = b
β + V p

I + aβ + aV p
V − dKV 2/3

is a continuous function of K for every K ∈ R and arbitrary V ≥ 0.
Let (V0,K0) ∈ D be the initial point for t0 = 0. We know that the unique

solution exists on some time interval [0, t∗). If D is not invariant, then there exists
such initial data and time t1 > 0 for which the solution reaches the boundary of
D. Therefore, either limt→t−1

V (t) = 0 or limt→t−1
K(t) = 0. However, the extended

functions F1 and F2 of the right-hand side show that if V (t1) = 0, then V̇ (t1) = 0

and if K(t1) = 0, then K̇(t1) ≥ 0. Therefore, the solution to Eqs. (10) cannot leave
the set D.

The general behavior of solutions to Eqs. (10) can be analyzed through the phase-
space portrait. Analyzing the phase-space portrait we calculate the null-clines for
Eqs. (10), that is

1. for V the null-cline in D is V = K;

2. for K the null-cline in D is K =
b

d

β + V p

aβ + I + aV p
V 1/3.

The dynamics of Eqs. (10) depends on the shape of the null-cline K(V ). We see
that

K(V ) ∼ CV 1/3 , as V →∞ , as well as V → 0 ,

where for p > 0 there is C = b
ad for V →∞ and C = bβ

d(aβ+I) for V → 0, while for

p = 0 there is K = b
d

β+1
a(β+1)+IV

1/3.

Thus, we can deduce that the null-cline for V is below the null-cline for K for
small V and above this null-cline for large V . Therefore, to determine the dynamics
of Eqs. (10) we have to determine the number of intersections between both null-
clines in D, this is to calculate the number of steady states. The equality K(V ) = V
yields

αV p+2/3 + α (β + ϑ)V 2/3 − V p − β = 0 , (11)
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where α = ad
b and ϑ = I/a. To determine a number of positive solutions to

Eq. (11) we use Descartes’ rule of signs. Although the rule can be applied only for
polynomials it can be used for Eq. (11) for any p = k/(3n), k, n ∈ N, since then
the left-hand side of Eq. (11) is a polynomial of x = V 1/(3n), and by a continuity
argument the result can be extended for any p ≥ 0. For p = 0 the coefficients have
signs: + + − and for p ∈ (0, 2/3): + + −−, thus Descartes’ rule of signs implies
that there exists exactly one positive solution to Eq. (11). If p > 2/3, then we
have to change the places of the second and the third term in the left-hand side of
Eq. (11) and therefore, the sings are as follows: +−+−. This implies that Eq. (11)
can have either three or one positive solution. In the case p = 2/3, the signs can
be + + − (if β + ϑ > 1) or + − − (if β + ϑ < 1), but this means one change of
sings of the coefficients and therefore there exists exactly one positive solution to
Eq. (11). Now, we consider p > 2/3 and give a sufficient condition for the existence
of a unique positive solution to Eq. (11). This condition guarantees monotonicity
of the left-hand side of Eq. (11). Differentiating with respect to V one gets

α

(
p+

2

3

)
V p−1/3 +

2α

3
(β + ϑ)V −1/3 − pV p−1 (12)

Positivity of the derivative (12) for V > 0 is equivalent to the inequality

g(V ) = α

(
p+

2

3

)
V 2/3 +

2α

3
(β + ϑ)V 2/3−p > p , V > 0 .

Now, we find the minimum of the function g. Calculating the derivative of g and
letting it to be zero we find the point V0 at which g reaches its minimum

V0 =

((
p− 2

3

)
(β + ϑ)(

p+ 2
3

) )1/p

The condition g(V0) > p guarantees the monotonicity of the left-hand side of
Eq. (11) and thus existence of a unique positive solution to Eq. (11). We can
rewrite the inequality g(V0) > p and formulate

Lemma 3.1. If p ∈ [0, 2
3 ] or p > 2

3 and the inequality

I > a

( b

ad

) 3p
2
(
p− 2

3

p+ 2
3

)1− 3p
2

− β

 (13)

holds, then there exists a unique steady state of Eqs. (10) in D.

We want to emphasize that Ineq. (13) is only the sufficient condition for the
existence of a unique positive steady state. If this condition is not fulfilled it can
also happen that the positive steady state is unique. It should be also marked
that to have Ineq. (13) satisfied the positivity of the expression in the brackets is
necessary and it depends on the parameter values. Consider the simplified case
a = β = 1. Then there should be(

b

ad

) 3p
2
(
p− 2

3

p+ 2
3

)1− 3p
2

> 1

and this can be satisfied only for b > ad.
From the treatment point of view it is also of great interest to know the de-

pendence of steady state values on the magnitude of drug dosage I. We obviously
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Figure 1. Dependence of the steady state tumor volume V on I
for different values of the Hill coeffcient: p = 0 in the left, p = 4 in
the middle and p = 10 in the right-hand graph.

have V̄ = K̄ at the steady state (V̄ , K̄). Therefore, we can consider only the de-
pendence V̄ (I). Rewriting Eq. (11) one gets

(
αV 2/3 − 1

)
(V p + β) + α IaV

2/3 = 0

which yields V̄ (I) < V̄ (0) = α−3/2. If there exists unique steady state V̄ we expect
that it decreases with increasing I, while for three steady states we expect that the
smallest and the largest one decrease and the middle steady state increases with I.
In Fig. 1 we present the dependence of the tumour volume V̄ on the magnitude of
drug dosage for the parameter values from Hahnfeldt et al [21] and a = β = 1. We
see that the shape of graphs confirms our expectations.

V

K

A

V

K
A

B

C

Figure 2. A sketch of the phase space portrait of Eqs. (10). On
the left-hand side the case with one positive steady state, and on
the right-hand side the case when three steady states exist.

From the phase space portrait (see Fig. 2) it can be deduced that the largest
positive steady state (A) is always a stable node and so the smallest positive steady
state (C), if it exists. The middle steady state, if exists, is a saddle point.

Moreover, we can formulate the following

Theorem 3.2. If the positive steady state for Eqs. (10) is unique in D, then it is
globally stable in D.

Proof. In fact, studying the phase-space portraits for Eqs. (10) we see that every
solution is bounded. Therefore, according to the Poincare – Bendixson theorem any
solution tends to either a steady state or to a closed orbit. However, due to the Dulac
– Bendixson criterion there is no close orbit in D. Indeed, taking B(V,K) = 1

V K
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Figure 3. Comparison of solutions to the Hahnfeldt et al.
model (1) and the modified model (8) for daily dose 0.05. Solid
line — the solution for a dose is applied once a week, dotted line
— a dose is applied every hour.

one gets

∂

∂V

(
−λ1

K
ln
V

K

)
+

∂

∂K

(
b

K

β + V p

I + a(β + V p)
− dV −1/3

)
=

= − λ1

KV
− b(β + V p)

K2(I + a(β + V p))
< 0

which implies that there is no closed orbit in D.

At the end of this section we would like to mark that Eqs. (8) and (10) have been
proposed and studied for the general form of the treatment. However, if we require
in the absence of treatment that Eqs. (8) becomes the Hahnfeldt et al. model, then

the number of parameters descreases, because the identity b (β+V p)
a(β+V p)+I(t)

∣∣∣
I≡0

= b

must hold. This yields a = 1.

4. Numerical simulations. To illustrate the behavior of solutions to Eqs. (8)
with the pharmacokinetic function I given by Eq. (9) we perform some numerical
simulation. We have taken the model parameters from Hahnfeldt et al. [21] rescaled
as in [7]. Thus, we use the following values of parameters:

λ1 = 0.192 , λ2 = 0 , b = 5.85 , d = 4.052 , a = 1 , g = 0.1 , β = 1 γ = 1 .

The daily dose of drug Dd is changing. In fact, we use D = Dd/n, where n is
the number of doses applied each day. If the drug is applied every k-th day, then
n = 1/k. For chosen parameters’ values there exists a unique positive steady state
of Eqs. (10).

In order to compare the treatment that is considered in [21] with the treatment
proposed in this paper we use exactly the same pharmacokinetic function. We have
compared the solution to the original Hahnfeldt et al. model with the modified
model for different values of p, that is for p = 1 (see Figs. 3, 5, 7), p = 2 and p = 0
(see Figs. 4, 6, 8).

If the treatment is applied rarely, oscillations due to application of the drug can
be observed (see Figs. 3, 4, 5, 6, 7, 8). If the daily dose is small, the size of tumor
in the steady state is smaller for the modified model than for the Hahnfeldt et al.
model and deceases with decreasing p (see Fig. 3, 4 and 9). If the daily dose is
larger, the size of tumor in the steady state becomes smaller with increasing p (see
Fig. 5, 6 and 9). For daily dose large enough (larger then 0.5), the size of tumor in
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Figure 4. Comparison of solutions to the modified model (8) for
daily dose 0.05 for different values of p. Solid line — the solution
for a dose applied once a week, dotted line — a dose applied every
hour.
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line — the solution for a dose applied once a week, dotted line —
a dose applied every hour.
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Figure 6. Comparison of solutions to the modified model (8) for
daily dose 0.2 for different values of p. Solid line — the solution for
a dose applied once a week, dotted line — a dose applied every
hour.

the steady state becomes smaller for the Hahnfeldt et al. model (see Fig. 7, 8 and
9).

We have not observed any significant difference in mean values of solutions for
different treatment regimes when mean values was calculated over the interval equal
to the time between doses’ applications.
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Figure 8. Comparison of solutions to the modified model (8) for
daily dose 0.7 for different values of p. Solid line — the solution for
a dose applied once a week, dotted line — a dose applied every
hour.
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Figure 9. Comparison of the mean values of solutions to the Hah-
nfeldt et al. model (1) (dotted line) and the modified model (8)
(solid line) in the steady state (after long time) depending on daily
dose

5. Summary. In the paper we have described a new approach to antiangiogenic
treatment. Typically, such treatment is described as a separate term in the equation
describing the dynamics of vessels’ volume, as in the case of the classical Hahnfeldt
et al. model [21]. In our opinion such term reflects antivascular treatment, while
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antiangiogenic treatment occurs on the level of the angiogenic signaling. We have
considered such type of drugs which acts on the stimulators of angiogenesis and
therefore, basing on the Hahnfeldt et al. ideas [21] we have modified the term
describing stimulation of angiogenesis.

As it can be expected, the dynamics of both considered models is completely
different. Starting the research on antiangiogenic treatment Folkman [15] believed
that this should lead to complete recovery from cancer disease. Therefore, there
were such requirements for the Hahnfeldt et al. model that it should reflect complete
recovery for sufficiently high drug dosage. Now, after many years of experiments we
know that generally it is not true. This is reflected in our modified model. We have
studied the dynamics of the modified model in the case of constant treatment. We
know that for the original Hahnfeldt et al. model the complete recovery is guaran-
teed under the assumption of sufficiently high drug dosage. For the modified model
we have shown that complete recovery is impossible independently of the magni-
tude of this dosage (this phenomenon was recently noticed in [11, 13]. This suggest
that using only antiangiogentic treatment we are not able to cure cancer. However,
using antiangiogenic treatment we are able to decrease both cancer and vessels’ vol-
ume and normalize vasculature such that chemotherapy can better penetrate tumor
mass. This is now the main goal of antiangiogenic treatment.

We have performed a series of numerical simulations using non-constant treat-
ment, described as an application of drug as boli. As for the constant treatment,
the application of the same doses of drugs give different results depending on the
Hill coefficient p. In our opinion, experiments with different doses of different drugs
should be performed in order to check which model is better for the description of
the specific drug.
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