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Abstract. The influenza A (H1N1) pandemic 2009 posed an epidemiological

challenge in ascertaining all cases. Although the counting of all influenza cases

in real time is often not feasible, empirical observations always involve diagnos-
tic test procedures. This offers an opportunity to jointly quantify transmission

dynamics and diagnostic accuracy. We have developed a joint estimation proce-

dure that exploits parsimonious models to describe the epidemic dynamics and
that parameterizes the number of test positives and test negatives as a function

of time. Our analyses of simulated data and data from the empirical observa-

tion of interpandemic influenza A (H1N1) from 2007-08 in Japan indicate that
the proposed approach permits a more precise quantification of the transmis-

sion dynamics compared to methods that rely on test positive cases alone. The

analysis of entry screening data for the H1N1 pandemic 2009 at Tokyo-Narita
airport helped us quantify the very limited specificity of influenza-like illness

in detecting actual influenza cases in the passengers. The joint quantification
does not require us to condition diagnostic accuracy on any pre-defined study

population. Our study suggests that by consistently reporting both test pos-

itive and test negative cases, the usefulness of extractable information from
routine surveillance record of infectious diseases would be maximized.

1. Introduction. The pandemic influenza A (H1N1) 2009 virus has spread world-
wide. After it was first identified in early 2009, mathematical models have been
widely used to answer policy relevant questions [15, 37]. Although scientific ap-
proaches are not exclusively limited to epidemiological modeling, early modeling
efforts gave a critically important indication of the pandemic potential, namely, the
transmission potential and the severity of the disease. The transmission potential
was measured by estimating the reproduction number; the average number of sec-
ondary cases generated by a typical primary case [7, 27, 33, 40]. The severity of
the disease was assessed mainly from the case fatality ratio (CFR); the conditional
risk of death for patients with a disease or infection [7, 8, 23, 28, 33]. By combining
these two indicators a theoretical estimate of the magnitude of the pandemic, the
expected proportion of influenza-associated deaths among the total population, is
obtained [22].

However, there are two technical difficulties that prevent a precise estimation of
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the pandemic potential during the very early stages of the pandemic. One is the het-
erogeneity in transmission and in the conditional risk of death from the disease [9].
In one specific case with a high degree of assortative mixing, an epidemic starting
with school clusters greatly complicated early quantification of the next-generation
matrix [22] (the square matrix which describes within- and between-group transmis-
sion). The other technical issue is the unobservability of the infection event. Except
for humans infected with the highly pathogenic avian influenza virus, influenza is
generally a mild disease involving asymptomatic infections. Because of this, before
the 2009 pandemic, it was recognized that counting in real time all the individuals
infected with influenza was impractical [32]. Indeed, the difficulty in ascertaining
cases of influenza has had a profound impact on the statistical estimation of CFR
[18]. For H1N1-2009 infections, the CFR conditioned on confirmed cases was es-
timated to be 0.5% [7, 8, 23], but the estimate conditioned on all symptomatic
cases with medical attendance was approximately 0.05%, a tenth of the estimate
that relied on confirmatory diagnosis [28]. Because the above mentioned issues that
affect the estimation of CFR have been discussed elsewhere [13, 19], the present
study focuses on the difficulty in ascertaining cases and on the estimation of the
transmission potential.

A direct method to empirically observe the number (or the proportion) of all
infected individuals in a population is to conduct a serological survey. Such a
population-wide survey is expensive, and is not logistically feasible for epidemiolog-
ical assessment in real time (especially if the population size is large). The modeling
community has yet to develop a real-time method for indirectly estimating the total
number of infected individuals in a population.

Even provided that the real time counting of all infected individuals is not techni-
cally feasible, it should be remembered that the empirical observation of an epidemic
always involves diagnostic testing procedures. Even when an influenza case does
not undergo any laboratory testing, the case must still meet some clinical crite-
ria indicating possible influenza. For example, influenza-like illness (ILI) is usually
defined as fever > 38.0 ◦C and cough and/or sore throat. A more detailed surveil-
lance might be based on the notification of cases with positive test results from
rapid diagnostic testing (RDT). Although the diagnostic accuracy of ILI and RDT
is not sufficiently high to include all influenza cases and to exclude all other causes
[4, 12, 35], by using both positive and negative test results, diagnostic testing offers
an opportunity to maximize the usefulness of surveillance data to estimate the in-
cidence of cases among those that undergo testing.

Here we propose a way to maximize the use of the extractable information by
jointly quantifying both the transmission dynamics and diagnostic accuracy. The
present study offers a method for the joint estimation procedure with particular
emphasis on parsimonious modeling approaches. In the next section, we discuss
the epidemiological concept of clinical diagnosis with a binary outcome. In Section
3, the estimation framework is illustrated with simulated data. Subsequently, the
proposed methods are applied to two empirical influenza datasets.

2. The epidemiological concept of a diagnostic test. While clinical perfor-
mance of diagnostic tests is often assessed by several epidemiological measurements,
e.g., accuracy, precision and reliability, in the present study we focus on the diag-
nostic accuracy because that is what determines the data generating process of our
empirical data. Table 1 illustrates a two-by-two table of diagnostic test results with
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Table 1. Data generating process for an infectious disease
following a diagnostic test procedure.

True positives True negatives Total
Test positives αct (1 − β)kt Pt

Test negatives (1 − α)ct βkt Nt

ct and kt are the incidence (true positives) and true negatives on day t, respectively.
α and β denote sensitivity and specificity, respectively.
Pt and Nt are the observed counts of test positives and test negatives on day t, respectively.

a binary classification (infection or non-infection). Diagnostic accuracy is expressed
as sensitivity α and specificity β. Sensitivity is defined as the proportion of actual
test positives among the total number of true positive individuals ct on day t, while
specificity is defined as the proportion of test negatives among the total number of
true negative individuals, kt on day t. The test can be anything that determines
the presence of infection (e.g., ILI and RDT). Prior to the test, ct and kt, defined
as true positives and true negatives respectively, are usually unknown. Rather, em-
pirical data give the total numbers of test positives Pt and test negatives Nt on day
t. Because we are considering epidemic dynamics, we assume that ct, Pt and Nt

depend on calendar time t, and that the measures of diagnostic accuracy, α and β,
are independent of time.

If epidemic data rely on a diagnostic testing procedure, a simple and commonly
used estimate of the incidence (or prevalence in the case of endemic equilibrium)
is the number of test positive results, Pt. However, Pt depends not only on the
actual incidence (true positives), but also on the diagnostic accuracy of the test.
An improvement in incidence estimations is achieved by correcting Pt to account
for α and β [30]. Table 1 gives

αct + (1 − β)kt = Pt, (1)

which can be rearranged as

ĉt =
Pt + β̂ − 1

α̂+ β̂ − 1
. (2)

Equation (2) suggests that the estimate of incidence (true positives) is obtained
when α and β are known (prior to the surveillance).

However, the equation (2) is only applicable to observations on clearly defined
populations that undergo diagnostic testing. In the literature, α and β are esti-
mated for various diagnostic testing procedures, but the published estimates have
often been conditioned on a pre-defined study population. For example, a study in
Saudi Arabia which assessed the diagnostic accuracy of ILI in correctly diagnosing
actual influenza estimated α = 0.67 and β = 0.64. However, because the study pop-
ulation was limited to 555 pilgrims with upper respiratory symptoms who presented
at the authors’ clinics during the Hajj [29], the estimates are not strictly applicable
to other settings. We, therefore, consider a way to jointly estimate α and β along
with ct and kt by parameterizing ct and kt using the theoretical support derived
from epidemic modeling.

It should be noted that our data are for individuals that have undergone diag-
nostic testing only once. For a more precise estimation of the incidence, we would
ideally need test results from repeated measurements of a cohort population [39].
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Figure 1. Simulated data for early epidemic growth that
account for the result of a diagnostic testing procedure. A.
The temporal distribution of infected and non-infected individuals.
True positives represent the incidence (the number of new infections
on day t) with exponential growth. True negatives are treated as
noise. B. The time evolution of the observable empirical data.
Cases testing positive and negative are readily observed on each
day.

However, the most widely available data (routine surveillance based on passive no-
tifications) do not include multiple (i.e. repeated) diagnostic test results for a single
individual. Therefore, the present study also differs from the series of studies that
employed a capture-recapture method to estimate the completeness of ascertain-
ment of cases [38].

3. An illustration of joint estimation. The simulated data for the daily counts
of true positives ct and true negatives kt are shown in Figure 1A. Because the
simulated data are only for the first 1 month of an epidemic, we assume that the
incidence (true positives) grows exponentially with an intrinsic growth rate r = 0.2
per day during this period. If the number of cases on day 0 is assumed to be c0 = 5
cases, the expected value of the incidence on day t, E(ct) is

E(ct) = c0 exp(rt). (3)

For each day t, we randomly generate Poisson variates based on the value of E(ct).
For kt, we assume that over time the true negatives simply act as noise, and we
generate a uniform distribution of the random integers for between 100 and 300
persons (so that E(kt) = 200 with a variance-to-mean ratio far greater than 1).

Figure 1B shows the test results as a function of time, representing usual em-
pirical observation. Sensitivity α and specificity β are assumed to be 0.5 and 0.7,
respectively. These values are in concordance with published estimates of diagnos-
tic accuracy of documented fever in diagnosing seasonal influenza in the USA [2].
Let pt be a random variable which yields an estimator of test positive individuals,
Pt. The diagnostic process of test positives, pt is given by a sum of two random
numbers,

pt = Bin(ct, α) + Bin(kt, 1 − β), (4)
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where Bin(n,m) represents a random number from a binomial distribution with
the number of trials n and the probability of the event of interest m. Let nt be
a random variable representing the number of test negative individuals. Because
the total number of cases undertaking diagnostic test on day t is determined by
the underlying dynamics (i.e. ct and kt), and thus, is independent of the diagnostic
process, nt is calcualted as ct + kt − pt.

As discussed in the previous section, one may rely only on the positive test results
Pt in Figure 1B to analyze the transmission dynamics. However, true positives that
are missed from Pt are included in Nt (and true negatives are included in Pt). For
example, if we model the test positives to perfectly reflect exponential growth, i.e.,
E(Qt) = q0 exp(rqt), and assume that the likelihood of estimating q0 and the growth
rate rq is proportional to

30∏
t=0

E(Qt)
Pt exp(−E(Qt)), (5)

then, the maximum likelihood estimate (and the lower and upper 95% confidence
intervals (CI) derived from profile likelihood) of rq is 0.190 (95% CI: 0.190, 0.191),
an underestimation of the actual incidence growth rate.

We, therefore, consider a data generating process for both Pt and Nt. Although
passive surveillance usually does not count test negatives, we consider the case where
both datasets are consistently recorded over time (see Discussion). From Table 1,
the expected value of Pt, E(Pt) is

E(Pt) = E(ct)α+ E(kt)(1 − β), (6)

where

E(ct) = a exp(bt), (7)

E(kt) = d, (8)

where a, b and d are the parameters. a represents the number of new cases on day
0, b is the exponential growth rate of true positives, and d is the number of true
negatives which is assumed to be independent of time t. Similarly, the expected
value of Nt, E(Nt) is modeled as

E(Nt) = E(ct)(1 − α) + E(kt)β. (9)

As well as modeling Pt and Nt alone, the sum St = Pt + Nt is independent of
diagnostic process and so informative, i.e.,

E(St) = a exp(bt) + d. (10)

In total, there are five unknown parameters, α, β, a, b and d. We naturally ex-
tend the likelihood in (5) to multivariate Poisson setting which allows the same
covariance between all the pairs. The likelihood of estimating the five parameters
is proportional to∏

t

E(Pt)
PtE(Nt)

NtE(St)
Pt+Nt exp(−E(Pt)) exp(−E(Nt)) exp(−E(St)). (11)

Figure 2 shows the comparison of the simulated data and the expected values
from the model mentioned above. Not only the observable counts (Figure 2B) but
the daily numbers of true positives and true negatives are also precisely captured by
the model. α and β are estimated to be 0.501 (95% CI: 0.500, 0.501) and 0.694 (95%
CI: 0.687, 0.702), respectively. Maximum likelihood estimates of c0 and r are 4.93
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Figure 2. Comparisons of the simulated and estimated
early growth of an epidemic. A. Comparison of the incidence
and true negatives for the simulated and estimated data. B. Com-
parison of test positives and test negatives for the simulated and
estimated data.

(95% CI: 4.88, 4.98) and 0.200 (95% CI: 0.200, 0.201), respectively. The intrinsic
growth rate r when inserted into the Euler-Lotka equation, yields an estimate for
the reproduction number, R (see next section) [20].

By exploiting the exponential growth of an epidemic during its early phase, our
simple model permits joint quantification of the epidemic dynamics (the intrinsic
growth rate in the illustrated example) and diagnostic accuracy. It should be noted
that an important key data source for this framework is the counts of both test
positive and test negative individuals. Although this framework is not applicable to
all practical settings (e.g., the model may not converge if the incidence continues to
be much smaller than the true negatives and if both the sensitivity and the specificity
are extremely small), the proposed approach is theoretically valid for any infectious
disease and any diagnostic test. Although this approach does not capture very mild
cases without medical attendance (e.g., asymptomatic individuals), the proposed
model can take into account all the individuals who undergo diagnostic testing as
long as the assumed model appropriately captures actual transmission dynamics.

4. The application of joint quantification to an entire epidemic curve.
We consider empirical datasets for interpandemic (seasonal) influenza A (H1N1)
from October 2007 to August 2008 in the Mie prefecture, Japan [14]. During the
local surveillance of interpandemic influenza in Mie, seven rapid diagnostic test
kits were used, and the weekly counts of test positives and test negatives were
reported from 73 hospitals in this prefecture throughout the epidemic season (week
42 in 2007 to week 35 in 2008; Figure 3). During this period, a total of 29,332
individuals underwent a rapid diagnostic test, and 13,055 (44.5 %) tested positive.
This epidemic was exclusively caused by A/Brisbane/59/2007 (H1N1) virus, and
those testing positive to type A virus accounted for 12,640 (96.8 %) of all positive
cases. Although 382 of the remaining individuals tested positive to type B virus
and the type-specificity of 33 others was unknown, we ignored the contributions of
type B virus to the epidemic dynamics.
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Figure 3. Epidemic curves for interpandemic influenza A
(H1N1) from October 2007 to August 2008, Mie prefec-
ture, Japan. The weekly numbers of influenza-like illness cases
testing positive and negative to a rapid diagnostic test kit were
recorded. The weeks were counted from week 42 (the week ending
21 October) 2007 onwards. The 2007/08 epidemic season was ex-
clusively caused by A/Brisbane/59/2007 (H1N1). Although 3% of
cases tested positive to the influenza B virus, the contributions of
the type B virus to the epidemic dynamics are ignored.

It should be noted that the rapid diagnostic test (RDT) kits are known to be
very specific, while the sensitivity tends to be relatively low [12]. Thus, while RDT
is very useful for diagnosis by exclusion, it is not capable of detecting all influenza
cases. Given that empirical estimates of the specificity for the majority of RDT are
100 %, to estimate the sensitivity α of the RDT and the reproduction number R, we
fixed β at 1. Because of the unavailability of information for the test kit employed
for each case, we assume that α does not vary between RDT kits [12].

The difference between this empirical example and the simulated data in the
last section is that the entire epidemic curve is observed in Figure 3. Because we
do not intend to fully investigate the underlying epidemic dynamics, we focus on
the reproduction number R and some additional characteristics (e.g., the turning
point of an epidemic) that constitute the information that we aim to extract from
the dataset. Thus, we employ a parsimonious model and assume that the epidemic
dynamics (the cumulative incidence C(t) by the end of week t) are governed by the
following general form of the logistic equation

C(t) =
Z

(1 + exp(−r(t− tm)))
1
g

, (12)

where Z is the carrying capacity of the total number of cases, which is equivalent
to the absolute final number of cases; r is the intrinsic growth rate; tm satisfies
tm = ti + ln(g)/r where ti is the inflection point; and g is the exponent of deviation
from the standard logistic curve. Equation (12) is referred to as the Richards
model or the generalized logistic equation [3]. It is known to be very flexible and is
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Figure 4. Model-based estimates of interpandemic in-
fluenza A (H1N1) from October 2007 to August 2008 in
the Mie prefecture, Japan [14]. A. Comparisons of test posi-
tives and test negatives for the observed and estimated data. B.
Estimated true positives (incidence) as a function of time. The
weeks are counted from week 42 (the week ending 21 October)
2007 onwards.

useful for realizing the unimodal epidemic curve. This approach has been applied
elsewhere to other infectious diseases [10, 11].

The expected value of true positives in week t is approximated by the difference
between C(t) and C(t− 1),

E(ct) = C(t) − C(t− 1), (13)

for t ≥ 1 and the expected total number of reports in week t is

E(St) = C(t) − C(t− 1) + d, (14)

where d is again the number of true negatives which is assumed to be independent
of time t. The other assumptions are the same as those described in the last section
and the likelihood equation is identical to (11). We estimate six parameters, α, d,
r, Z, tm and g, by minimizing the negative logarithm of (11).

Figure 4A compares observed and predicted weekly counts of test positives and
test negatives. Although the peak incidence in test positives was not fully realized,
the parsimonious model (12) described the observed pattern well. The sensitivity
α of RDT was estimated to be 0.462 (95% CI: 0.461, 0.463), a little less than the
published estimates based on pre-defined study populations. It should be noted that
in the present case study, α is not conditioned on a pre-defined study population
(clinical criteria are not considered for inclusion, as is the case in many empirical
studies) but could be interpreted as being conditioned on all the individuals who
undertook RDT in the 73 hospitals in Mie. The intrinsic growth rate r was estimated
to be 0.621 (95% CI: 0.613, 0.628) per week. Therefore, if the generation time
distribution follows an exponential distribution with a mean of Tg = 3 days, the
reproduction number is R = 1 + rTg/7 = 1.27. If the generation time is constant
with a mean of Tg = 3 days, the reproduction number is R = exp(rTg/7) = 1.30.
These estimates are consistent with other interpandemic settings in temperate zones
[5]. The final size Z was 28,255 (95% CI: 28209, 28301) cases, and true negatives
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Figure 5. Immigration and screening results at the Tokyo-
Narita International Airport, April-May 2009 [17]. A. The
daily number of passengers from Canada, Mexico and the USA
from 28 April to 21 May 2009. The most strict entry screening
measure was implemented during this period. Upon arrival and
before unshipping, all the passengers were questioned about the
presence of any suspicious symptoms as well as potential contacts
and were screened for fever using a portable thermoscanner. A
total of 191,969 passengers were screened. B. The daily number
of passengers with influenza-like illness (ILI) and the number of
ILI cases testing positive to a rapid diagnostic test. A total of 561
passengers were diagnosed as ILI and of these, 6 tested positive to
rapid diagnostic testing. Five of the 6 cases were later confirmed to
be influenza A (H1N1) 2009. Because the number of test positive
ILI cases was small, non-zero counts are indicated by arrows.

were estimated to be 27.9 (95% CI: 26.8, 29.1) individuals in each week. tm and g
were estimated at 15.5 (15.4, 15.5) and 1.13 (1.11, 1.15), respectively.

Figure 4B shows the predicted number of true positives. It should be noted that
the curve for true positives yields a higher peak incidence than that for test positives
alone, indicating a critical need to address diagnostic accuracy and to understand
actual epidemic dynamics. Indeed, understanding the height of peak incidence is
crucial for estimating the burden of hospitalizations to, for example, calculate the
required number of hospital beds during a future epidemic.

5. The application of joint quantification to entry screening data. We
now consider the application of our model to a different dataset, the result of en-
try screening during the very early stages of the H1N1-2009 pandemic from late
April to May 2009 in Japan [17]. Figure 5 illustrates the statistics of the entry
screening results at Tokyo-Narita International airport which handles the majority
of international passenger traffic to and from Japan. Epidemics in the USA and
Mexico, caused by a novel influenza A (H1N1) virus, were officially announced on
24 April. This was followed by the recognition of the epidemic in Canada a few days
later. Japan started a strict entry screening measure on 28 April 2009 targeting
all passengers arriving from Canada, Mexico and the USA. The entry screening for
all aircraft arriving from these three countries included onboard quarantine during



58 HIROSHI NISHIURA

which medical specialists searched for febrile passengers and their contacts using
portable thermoscanner and interviewed any passengers with suspicious symptoms
before disembarkation. The entry screening measure was carried out until 18 June
2009 and involved more than two million passengers. The strictest onboard quar-
antine for all the aircrafts from Canada, Mexico and the USA was conducted from
28 April to 21 May. Figure 5A shows the daily number of passengers arriving at
Narita airport from these three countries. During this period, the total number of
passengers screened was 191,969.

During the entry screening, the definition of influenza-like illness (ILI) was a little
broader than the usual criteria mentioned earlier. ILI during the entry screening
was defined as the presence of fever > 38.0 ◦C or any acute respiratory symptom. In
addition, passengers with a history of probable contact with a case or with a travel
history to Canada, Mexico or the USA were subjected to entry screening regardless
of ILI. All ILI cases were subjected to rapid diagnostic testing and, if they tested
positive to type A influenza virus, were identified as a suspected case to be further
examined using RT-PCR for confirmatory diagnosis. Figure 5B shows the observed
daily numbers of ILI cases and the number of ILI cases with positive test results.
During the period of interest, 561 passengers (0.29 % among the total passengers)
were identified as having ILI. Of these, six (1.07 %) tested positive to influenza A
virus during rapid diagnostic testing and five of them were later confirmed to be
influenza A (H1N1) 2009.

Apart from Japan, many other Asian countries carried out similar (or less strict)
entry screening during the very early stages of the 2009 pandemic. Asian countries
adopted screening as one of the countermeasures to be implemented to attain early
containment (in anticipating the possible emergence of highly pathogenic avian
influenza prior to the 2009 pandemic [34]). Nevertheless, even before the 2009 pan-
demic, it was recognized that entry screening might still allow substantial number
of infected-and-incubating individuals to enter a new community [26]. Moreover,
an empirical study of the 2009 pandemic has shown that entry screening was not
associated with a substantial delay in the start of local transmission [6]. Indeed,
without restricting the movement of a substantial fraction of the passengers at risk
(corresponding to the etymological root of quarantine in restricting movement for
40 days) [25], the introduction of cases and local transmission are unavoidable [31]
(although the effectiveness of entry screening is, of course, not zero).

In the present study we do not consider the overall protective effect of entry
screening. Rather, we ignore the entrance of incubating individuals upon arrival
and investigate how well diagnostic procedures were able to detect febrile passen-
gers with influenza during the entry screening period. Specifically, the focus of the
present study is the diagnostic accuracy of ILI and of the subsequent rapid diagnos-
tic testing during the entry screening. Assessing the specificity β1 of ILI using this
dataset is critically important because the screened population is not conditioned
on any specific medical states (except for a possible exposure in Canada, Mexico
or the USA). The data, thus, provide an extremely rare opportunity for measuring
the usefulness of ILI for screening a general population.

Let α1 and β1 denote the sensitivity and specificity of ILI, respectively, during
the entry screening at Narita airport. Using an empirical result from Narita, α1

was fixed at 0.25; from a total of 16 cases of influenza (including pandemic and
interpandemic strains), 4 (25 %) exhibited high fever > 38.0 ◦C upon arrival. Since
ILI is non-specific, we estimated β1 from the dataset in Figure 5. Similarly, let α2
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Table 2. Data generating process for an infectious disease
following a two-step diagnostic procedure

True positive True negative Total
Test positive α1α2ct (1 − β1)(1 − β2)kt Pt

Test negative α1(1 − α2)ct (1 − β1)β2kt Nt

ct and kt are the incidence (true positives) and true negatives on day t, respectively.
α1 and β1 are the sensitivity and specificity, respectively, of the first screening test (ILI;

influenza-like illness). Only those testing positive during the first screening were further
examined.
α2 and β2 are the sensitivity and specificity, respectively, of second diagnostic testing.
Pt and Nt are the observed counts of test positives and test negatives (to rapid diagnostic
testing) on day t, respectively.

and β2 represent the sensitivity and specificity of rapid diagnostic test, respectively.
As in the last section, β2 was fixed at 1, and the sensitivity of the rapid diagnostic
test was estimated. It should be noted that the measurements, α1, α2, β1 and β2 all
represent the diagnostic accuracy in detecting febrile influenza cases upon arrival.

Let ct and kt be the incidence (true positives) and true negatives, respectively.
Table 2 summarizes the data generating process. We assume that the diagnostic
accuracy of the two tests is independent. Only cases that met the definition of ILI
during entry screening were further examined by rapid diagnostic testing in Narita.
Therefore, the total number of individuals who underwent both tests is represented
by ctα1 + kt(1 − β1). Of these, ctα1α2 + kt(1 − β1)(1 − β2) tested positive to rapid
diagnostic testing and the remaining ctα1(1 − α2) + kt(1 − β1)β2 tested negative.
Those individuals who did not undergo rapid diagnostic testing (because of non-ILI)
are also informative, and are expressed as ct(1 − α1) + ktβ1.

Because we are considering the early stages of a pandemic, true positives and
true negatives are modeled as

E(ct) = a exp(bt), (15)

E(kt) = d1 + d2t, (16)

describing ct as an exponential function. As we described earlier, a represents
the number of new cases on day 0 and b is the exponential growth rate of true
positives. The true negatives are also allowed to vary as a function of time (with
d1 individuals on day 0 and linear coefficient d2) because of variations in the total
number of passengers with time (Figure 5A). Accordingly, the expected numbers of
ILI positive and ILI negative individuals are

E(P1t) = E(ct)α1 + E(kt)(1 − β1), (17)

E(N1t) = E(ct)(1 − α1) + E(kt)β1. (18)

As before, the total number of passengers S1t is informative:

E(S1t) = a exp(bt) + d1 + d2t. (19)

Thus, the likelihood for the observation of the presence or absence of ILI, L1, is
proportional to∏

t

E(P1t)
P1tE(N1t)

N1tE(S1t)
P1t+N1t exp(−E(P1t)) exp(−E(N1t)) exp(−E(S1t)).

(20)
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Figure 6. The diagnostic performance of fever screening
upon arrival. A shows the positive predictive value, the pro-
portion of passengers with positive ILI results who were correctly
diagnosed, and B shows the negative predictive value, the pro-
portion of passengers with negative ILI results who were correctly
diagnosed (as not having influenza).

Similarly, for the rapid diagnostic test (RDT) results, the expected numbers of RDT
positive and RDT negative individuals are

E(P2t) = E(ct)α1α2 + E(kt)(1 − β1)(1 − β2), (21)

E(N2t) = E(ct)α1(1 − α2) + E(kt)(1 − β1)β2. (22)

Thus, the likelihood for the observation of RDT results, L2, is proportional to∏
t

E(P2t)
P2tE(N2t)

N2t exp(−E(P2t)) exp(−E(N2t)). (23)

Accordingly, the total likelihood L to estimate the six parameters (β1, α2, a, b, d1
and d2) is

L = L1L2. (24)

It is not enough to focus on estimates of β1 and α2, because an understanding of
the diagnostic performance of the entry screening is necessary to be able to evaluate
the feasibility of an entry screening measure that relies on ILI as the first screening
method. We have, therefore, measured the positive predictive value (PPV) and
the negative predictive value (NPV) of employing ILI for screening influenza cases.
PPV represents the proportion of cases with positive ILI results and NPV represents
the proportion of cases with negative ILI results that were correctly diagnosed. In
equations, they are written as

PPV =
ĉtα̂1

ĉtα̂1 + k̂t(1 − β̂1)
, (25)

NPV =
k̂tβ̂1

ĉt(1 − α̂1) + k̂tβ̂1
. (26)

Based on the empirical data in Figure 5, the specificity of ILI β1 was estimated
to be 0.250 (95% CI: 0.249, 0.251). The sensitivity of RDT α2 was estimated to
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be 0.499 (95% CI: 0.099, 0.899). This indicates that ILI incorrectly identifies 75%
of true negative individuals as possible influenza cases, and that the RDT which
follows ILI screening appears to miss as many as 50% of true positive influenza
cases. It should be noted that β1 is even smaller than published estimates of ILI
specificity for those with medical attendance [4, 35]. Both β1 and α2 are based on
data for general populations with and without influenza and are not conditioned on
any pre-defined medical state.

Figure 6 shows PPV and NPV based on equations (25) and (26). It is notable
that during the course of strict entry screening at Narita airport, PPV remained
smaller than 0.1% and NPV was greater than 82%. In other words, correct positive
diagnoses were less than 0.1%, forcing 99.9% of ILI positive (but true negative)
individuals to undergo unnecessary RDT. On the other hand, the proportion of
correct negative results for the ILI negative individuals increased with time to close
to 1. In practical terms, the use of ILI as the first screening option to identify febrile
influenza cases is regarded as extremely costly.

6. Discussion. The data generating process for infectious diseases involves both
the transmission dynamics and the assignment of infected individuals as either pos-
itive or negative by means of a clinical diagnostic procedure. In the present study,
we propose a simple modeling approach to the joint quantification of these two
aspects. As the starting point, we exploited exponential growth and a generalized
logistic model to parameterize epidemic dynamics, thereby expressing both posi-
tive and negative test results as a function of calendar time. Our analysis of the
interpandemic influenza A (H1N1) of 2007-08 gave a reproduction number, R, that
appeared to be consistent with R for other interpandemic influenza in temperate
zones. This framework has also helped quantify the very limited specificity of ILI
and the low sensitivity of RDT in diagnosing influenza cases at an international bor-
der, suggesting that the screening procedure that begins with ILI is a very costly.

The biggest advantage of joint estimation is that the estimated diagnostic accu-
racy is not pre-conditioned on study populations that have some artificial inclusion
criteria. Rather, the estimates are conditioned on population that has been included
in the observed epidemic data. Given that the diagnostic accuracy of ILI is usually
measured from epidemiological observation of a pre-defined population, the anal-
ysis of 2009 entry screening data is particularly highlighted as the methodological
advantage. An additional advantage is that our method permits the precise quan-
tification of the transmission dynamics. In Section 3 we have shown that relying
only on test positive results tends to yield biased estimate of the epidemic growth
rate, especially, if both the sensitivity and the specificity of a diagnostic test are
low. With reference to interpandemic influenza in Mie, we have also shown that
precise quantification of the epidemic dynamics appropriately captures the height
of the epidemic peak.

An important practical implication drawn from the present study is that both
test positives and test negatives (especially the latter) should be recorded during the
empirical collection of data (routine surveillance). Previously, surveillance tended
to record only those testing positive. We have shown that negative reporting facil-
itates the use of a simple statistical approach to extract much richer information.
Although the proposed approach does not capture all influenza cases, our model
allows the estimation of the incidence that diagnostic testing procedures aimed to
detect (e.g., all the symptomatic influenza cases that underwent diagnostic testing).
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An important disadvantage of our approach is in the parameterization of true
negatives as a function of time. Although we assume that true negatives are inde-
pendent of time, acting only as noise, this may not always be the case in all realistic
settings. Two typical examples violate this assumption; (i) dual epidemics (an in-
fluenza epidemic coupled with another epidemic caused by a different pathogen) and
(ii) an increase in people’s awareness (and the increase in medical attendance as a
function of time). To model both the true positives and true negatives as a function
of time might make the model more vulnerable to their parametric assumptions.
This limitation does not negate the proposed method but may be regarded purely
as a data limitation. To address the involvement of a similar viral disease epidemic
during an influenza epidemic, we have to account for the number of positive and
negative test results for that viral disease in addition to the test results of influenza.
Similarly, to account for time-dependency in medical attendance, we would have to
measure the detailed time dependency of medical attendance in addition to the test
results of influenza.

As another technical remark, it must be remembered that the successful joint
estimation depends on the validity of assumed transmission dynamics. That is,
the underlying transmission dynamics have to be correctly captured. For example,
although we employed deterministic exponential growth (with an ad-hoc Poisson
argument) in Section 3, that does not sufficiently account for demographic stochas-
ticity, and thus, is only applicable to actual exponential growth phase with a large
number of cases. In such a case, full stochastic model should replace the determin-
istic exponential formula. Instead of (7) and (11), we would have to use probability
distribution of the number of cases on day t which is given as a solution of a pure
birth process [1, 21] or birth-and-death process [36]. Since the likelihood function
of the stochastic process calls for conditional measurement as a function of time,
full likelihood may require us to account for more detailed relationship between
the transmission dynamics and diagnostic accuracy [16]. Moreover, as discussed in
Section 3, the successful convergence in such an initial phase will also depend on
the relative size of true negative individuals as compared with the number of true
positive individuals. Lastly, modeling practice of a pandemic during its very initial
stage has posed a technical challenge in accounting for infection-age of imported
cases [24].

As briefly mentioned in Section 2, there are other methods that use empirical
data to estimate the incidence (or prevalence) of infectious diseases. Especially,
the repeated measurement of the same individuals over time would greatly ease the
relevant estimation framework. Another area to be explored is the use of multiple
diagnostic testing procedures (e.g. ILI and RDT). Although our study of entry
screening had only to account for the dependence of the series of test (and not for
dependence between diagnostic accuracies), realistic applications frequently involve
dependence in diagnostic accuracy between two or more tests. Regarding the quan-
tification of the epidemic dynamics, the method may benefit from being extended to
more rigorous approaches applied to a heterogeneously mixing population. We be-
lieve that, even without these future improvements, the present study convincingly
emphasizes the usefulness of analyzing both test positive and test negative results,
and offers an insight into the usefulness of joint quantification of the transmission
dynamics and diagnostic accuracy.
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