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Abstract. This review focuses on how infectious diseases and their prevention
and control by development of vaccines and widespread vaccination has shaped

evolution of human civilization and of the animals and plants that humans de-

pend on for food, labor and companionship. After describing major infectious
diseases and the current status for control by vaccination, the barriers to in-

fection and the attributes of innate and acquired immunity contributing to
control are discussed. The evolution in types of vaccines is presented in the

context of developing technologies and in improving adjuvants to engender en-

hanced vaccine efficacy. The special concerns and needs in vaccine design and
development are discussed in dealing with epidemics/pandemics with special

emphasis on influenza and current global problems in vaccine delivery.

1. Introduction. Infectious diseases of animals, plants and humans have shaped
the evolution of human civilization ([5, 7, 43, 54, 115, 166, 190]) but the development
and use of vaccines and other means to prevent infectious diseases have, in part,
begun to partially negate Darwinian evolution of human civilization. It is likely
that the first human directed efforts to ameliorate the impact of infectious diseases
predated the recognition of the microbial/viral agents of disease and were associated
with the domestication of plants and animals during the development of agriculture.
In these endeavors during the past 12,000 years or so survivors were always used to
generate the next round of progeny. Thus unknowingly, resistance to various infec-
tious diseases, or at least the most severe manifestations of those diseases leading to
death, were selectively enhanced over the centuries during which domestication and
plant and animal crop improvement occurred. However, with the recognition that
specific infectious diseases were caused by bacteria ([68, 97, 98]) and viruses ([12]),
it became possible to connect these discoveries with prior successes in developing
vaccines to prevent some infectious diseases in animals and humans ([85, 138]). The
science of disease prevention in animals and humans took off with the beginning
understanding of immunity and our immune system starting with the discoveries of
Metchnikoff ([117]) and continuing to the present. Interventions to treat infectious
diseases by “magic bullet” drug therapy pioneered by Ehrlich ([47]) led ultimately
to discovery of sulfa drugs ([196]) and antibiotics ([52, 87]) as effective therapeutics
for control of infectious diseases in animals and humans. Development of anti-fungal
drugs ([69]), anti-parasite drugs ([45]) and anti-viral drugs ([152]) and subsequent
discoveries and developments of a diversity of anti-microbial/viral therapies have
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contributed greatly to the control of infectious diseases, at least in the developed
world. Nevertheless, the increasing global prevalence of infectious disease agents
that have acquired resistance and often multiple resistances to these antimicrobial
drugs and antibiotics ([63, 65, 88, 175, 195]) has made drug therapy often ineffective
with concomitant adverse consequences. These trends in the increasing ineffective-
ness of antimicrobial/viral drugs and a decreased rate of discovery and development
of new drugs, makes the development and widespread use of vaccines a much more
important means to prevent infectious diseases. This topic will thus be the focus of
this article. But from a global perspective on infectious disease control, it is impor-
tant to note that control of infectious diseases of agriculturally important plants,
although often controlled by use of fungicides ([49, 172]) and insecticides (to often
block transmission of infectious disease agents, ([49, 116]), is and will ultimately
be controlled by genetics ([51, 146]). Selection of plant species for resistance to
bacterial, fungal and viral pathogens has been impressively successful in the cereal
grain crops ([62, 122, 173]) and led to the “green revolution” ([70, 94, 95, 142, 145])
and these approaches are being rapidly augmented by genetic engineering ([119])
to confer pathogen ([30, 38]) and insect ([22, 50]) resistance while improving other
agronomically valuable attributes to improve quality and quantity of crop yields
([9]) as well as nutritive value ([11, 159, 162]), to produce natural compounds for
medical use ([141]).

2. Infectious diseases and vaccination. Based on WHO estimates some 55 mil-
lion people die each year and some 18 million die as a direct consequence of infection
with an infectious disease agent ([193]). However, many cancers are the consequence
of infection with bacteria and viruses (Helicobacter pylori, hepatitis B virus, papil-
loma virus, etc.) and respiratory pathogens undoubtedly contribute to chronic lung
diseases ([61]). There is also increased interest in the ability of pathogens such
as Chlamydia pneumoniae to contribute to cardiovascular disease ([29]) and other
microbes to contribute to autoimmune diseases ([131]). Thus, infectious diseases
can potentially be implicated in causing or contributing to up to half of the an-
nual global deaths and to much of the morbidity associated with infectious diseases
and other pathogen-induced diseases. These cumulative losses are measured as the
number of disability-adjusted life years (DALYs) lost due to premature deaths and
disabilities ([126]). Smallpox is one infectious disease that has been eradicated by
the availability of the vaccinia anti-smallpox vaccine and a well-coordinated global
vaccination effort ([71]). This success came some 182 years after Jenner’s discovery
and is now estimated to save some five million lives each year had the vaccine not
been effectively deployed ([96]). Ten vaccines, against polio, diphtheria, pertussis,
measles, mumps, tetanus, hepatitis B, yellow fever, rubella and tuberculosis, are
used in much of the world as the targeted diseases of the Children’s Vaccine Initia-
tive ([124]) listed in a decreasing scale of use and/or effectiveness and prevent some
six million annual deaths. If all these vaccines were maximally effective and uni-
versally used to immunize all children, another seven to eight million lives could be
saved annually ([160]). However, the BCG vaccine to prevent tuberculosis ([28]) is
only effective in preventing miliary tuberculosis in young children and is totally in-
effective in preventing the pulmonary form of the disease ([34, 37]) such that we still
have some two to three million tuberculosis deaths each year ([154]). We now have
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effective vaccines against Hemophilus influenzae B ([147, 140]), Streptococcus pneu-
moniae (the most prevalent forms) ([134]), rotavirus ([112, 130]), Neisseria menin-
gitidis ([21, 64]), Salmonella Typhi ([58, 80]), papilloma viruses ([2]) and influenza
virus ([15]). However, most of these vaccines are too expensive for widespread use
in the developing world ([90]) and the need for refrigeration and administration by
needles can compromise effectiveness and increase costs as well as contribute safety
issues, respectively. There are still many infectious diseases for which no effective
vaccines exist and these include most of the pathogens that cause respiratory and
diarrheal diseases ([155]). These pathogens contribute to high mortality in children
under five years of age in the developing world ([155]) and undoubtedly contribute
to their malnourishment, which in turn impedes development of the central nervous
system ([121]) to lessen development of intellectual skills to recognize and solve
problems to improve their economic well-being in adulthood. In this regard, it
should be noted that successfully fighting infections requires stimulating the im-
mune system and this requires gene activities and production of protein antibodies
and specific classes of lymphocytes ([42]), which diverts nutrients needed for growth
and development of tissues and organs. Similarly vaccines against parasitic diseases
including malaria, schistosomiasis, sleeping sickness, Chagas disease, etc. do not
exist and this is also true for HIV and tuberculosis that account for some four to
five million of the annual deaths due to infectious disease agents ([193]).

3. Barriers to infection and effective immunity. Animals and humans have
numerous natural defense mechanisms to decrease the likelihood of infections. Nat-
ural barriers to infection include skin, which can be bridged by insect delivery of
infectious disease agents and wounds that expose susceptible tissues, an extensive
array of enzymes (lysozyme, proteases, lipases, etc.) ([123]), peptides (defensins,
etc.) ([44, 123]) and ion scavengers such as lactoferrin ([184, 188, 189]) present in
mucosal secretions of the respiratory, intestinal and genitourinary tracts and harsh
environments that have antimicrobial attributes such as stomach acidity and the
detergent action of bile secreted into the duodenum. Two types of immunity exist,
innate and acquired. Innate immunity is always present and consists of an intri-
cate system by which infection is recognized with production of antimicrobial/viral
activities and recruitment of neutrophils and other phagocytic cells to the site of
infection to kill or neutralize invading pathogens ([23, 125, 135]). These activities
are triggered by the presence of cell-surface and internal Toll-like receptors (TLR)
([125, 135]) and also by internal Nod factors ([125, 135]) that recognize certain
pathogen-associated molecular patterns present in or on pathogens. These PAMPs
as they are called ([20, 82]) include bacterial cell wall components such as teichoic
acid, lipopolysaccharide, flagellin, lipoproteins, peptidoglycan, etc. as well as viral
single-stranded and double-stranded RNA and forms of bacterial DNA that dif-
fer in methylation at CpG sequences ([82]). The interaction between the PAMPS
and the TLRs and Nods elicit production of cytokines and other secretions that
result in different degrees of inflammation and call in/recruit different innate de-
fense mechanisms ([82]). Acquired immunity is induced in response to the invading
pathogens but is dependent on the innate immune system to facilitate presentation
of pathogen antigens to trigger either production of antibodies or stimulate cellu-
lar immunity ([1]). Antibody production is dependent on B lymphocytes and for
T-cell dependent antigens such as proteins also depends on T cells of the CD4 type
([42]). Most carbohydrates are T-cell independent antigens although CD3-type T
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cells are sometimes involved in the stimulation of antibodies by B cells ([192]). This
humoral or systemic immunity due to production of antibodies is also divided into
two compartments in which antibodies are present in serum or in secretions from
mucosal tissues and secretory glands ([177]). The antibodies in serum are mostly
IgG but also IgA and IgM ([42]) whereas the mucosal antibodies are mostly IgA
that are dimeric and contain a secretory component (S) that permits their transport
and secretion from mucosal cell surfaces and secretory glands (mammary, salivary,
lacrimal, etc). Serum antibodies are also contained in some mucosal secretions such
as in saliva due to leakage of serum IgG from the gingival crevice ([46]) and in
the female reproductive tract due to the opening of the oviduct to the peritoneal
cavity ([100, 194]). Serum antibodies are effective in neutralizing toxins or viruses
to prevent their entry into cells ([109]). Mucosal antibodies can also block attach-
ment/invasion of pathogens entering through a mucosal surface ([78]). Stimulating
this line of immune defense is of significant importance since most pathogens use
a mucosal portal of entry ([129]). Cellular immunity is dependent on presentation
of antigens or parts of antigens termed antigenic determinants or epitopes ([42]) by
either of two pathways by antigen presenting cells that are either macrophages or
dendritic cells ([42]). In one pathway, antigens are presented in association with
the major histocompatibility (MHC) class II antigen to trigger antigen-specific T
cell help (via CD4 T cells) for antibody production by B cells ([84, 92]). In the
other pathway, antigens are presented in association with the major histocompati-
bility (MHC) class I antigen to stimulate antigen-dependent CD8 T cells ([92, 101]).
These T cells are cytotoxic and can specifically kill host cells in which a pathogen
resides ([110]). This type of immunity is very important in preventing infections
by pathogens that multiply within host cells as is the case for facultative and obli-
gate intracellular bacterial pathogens, all viruses and many parasites ([25, 77, 89]).
T-cell immunity is essential for induction of long-term protective immunity against
infectious disease agents ([104, 114, 197]).

4. Types of vaccines. Although survival from infection with a pathogen generally
results in life-long protective immunity, this is a risky way to acquire immunity,
but probably was very important in selecting for survival of those with increased
natural abilities to survive infection or more rapidly mount an effective immunity.
Use of a pathogen with decreased potential to cause disease due to attenuation or
partial inactivation was thus a more acceptable means to induce immunity. This
approach, using old stored dried-out pox crusts from individuals with mild non-fatal
small pox infections, was successfully used as the first means to prevent smallpox
infections during the Qing Dynasty in China ([176]). The one percent mortality from
this form of vaccination was preferable to the much higher mortality associated
with small pox infection. Because of safety concerns, most current vaccines are
killed (heat or chemically inactivated) viruses or bacteria or are purified protein or
carbohydrate subunits of the virus or bacteria or are inactivated toxins (toxoids)
([105]). In still other cases, conjugate vaccines have been developed to combine a
not very immunogenic protective carbohydrate antigen to a highly immunogenic
protein ([4]). These conjugate vaccines become T-cell dependent and importantly
induce immunity in infants under the age of two, which is the age at which induction
of immunity to carbohydrate antigens becomes possible ([167]). Some vaccines are
attenuated derivatives of the pathogen so as to induce a mild non-fatal infection.
Some of the means of attenuation derive from Pasteur’s pioneering research using
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multiple passages of infectious material as a means to attenuate the agent (what
ever it was) while retaining its ability to induce protective immunity ([137]). This
was used in the development of the live attenuated polio vaccine by Sabin ([156]).
Currently, live attenuated vaccines for influenza were developed by selecting for
mutant strains of virus that only grow at low temperatures (cold-adapted) and
replicate very slowly at our body temperature ([33, 86]). Other live attenuated
vaccines have been generated by reassortment of segmented virus genomes so that
the recombinant attenuated viruses have an altered host range to reduce replication
proficiency in humans ([78]). This has been successfully used in development of the
Rota Teq human-bovine reassortment vaccine to prevent diarrheal disease due to
rotavirus infections ([35]). Still other live attenuated bacterial vaccines have been
generated by introducing attenuating mutations ([58]). These live attenuated viral
and bacterial vaccines tend to induce a higher level of immunity of longer duration.

5. Innate immunity and recruitment by adjuvants. As stated above, all an-
imals have evolved to display a multitude of barriers as means to confer natural
resistance to infection by infectious disease agents. In addition, host tissues, espe-
cially mucosal tissues recognize and respond to both commensal harmless as well
as infecting harmful microbes and elicit responses accordingly, which constitute the
innate immune system ([42]). As stated above, innate immunity is dependent on a
large number of cell surface and internal toll-like receptors (TLRs) that recognize
various conserved constituents of microbial pathogens such as fimbrial and flagellar
appendages, lipoteichoic acids, lipopolysaccharide and lipo-protein constituents of
the cell walls of bacteria, single- and double-stranded RNA from viruses, and CpG
dinucleotides from bacterial nucleic acids and other internal molecules termed Nod
factors that recognize peptidoglycan components of bacteria. These PAMPs and
the interaction between PAMPS and TLR and Nod ligands leads to induction to a
specific array of inflammatory or non-inflammatory cytokines and these in turn lead
to recruitment of neutrophils, macrophages and dendritic cells to the site of infec-
tion to non-specifically defend against infecting pathogens or to result in tolerance
to benign commensal invaders ([179]). Many of these signal transduction pathways
can lead to the development of acquired immunity to infecting pathogens due to the
ability of recruited macrophages and dendritic cells to destroy invading pathogens
and present pathogen antigens to MHC class I and class I antigens to commence
to stimulate acquired immune responses ([179]). However, many injectable subunit
vaccines do not possess PAMPs or have PAMPs but not in a form to trigger TLR
and Nod factors to recruit innate immunity and are therefore not very effective in
inducing protective immunity. We are currently learning the consequence of this
problem with the recent recurrence of whooping cough caused by Bordetella pertus-
sis with increased infections and more mortality than observed in prior years ([120]).
This is presumably due to the shorter-term immunity induced by the safer new acel-
lular pertussis vaccine, which lacks PAMPs, compared to the old whole cell killed
pertussis vaccine that contained PAMPs but was more reactogenic. These lower
immunogenicity problems with some subunit vaccines have been partially overcome
by the addition of adjuvants to subunit vaccines ([39]), which have the ability to
elicit production of inflammatory cytokines that in turn recruit macrophages and
dendritic cells ([42]) capable of presenting the pathogen protective antigens in the
subunit vaccine to the immune system to initiate induction of acquired immunity.
For many years, the only approved adjuvant for use in human vaccines was alum
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that acts, in part, by prolonging the presence of the subunit antigen at the site
of injection ([60, 66]). More recently, mono-phosphoryl lipid A ([144]) has been
approved as a very effective adjuvant. It is a non-toxic derivative on the lipid A
endotoxin from gram-negative bacteria and is very efficient at recruiting innate im-
munity by a specific interaction with TLR4 ([41]). Other adjuvants that are quite
effective are used in veterinary vaccines ([174]) and some of these will undoubtedly
eventually be approved for use in human vaccines. Still other immuno-enhancer
attributes are being designed into improved vaccines ([106, 148]) to increase the
level and duration of induced protective immunity.

6. Vaccination and induction of acquired immunity. Most of the successful
vaccines are against infections by pathogens in which serum antibodies are able to
confer complete protection ([147]). Most of these vaccines are administered by injec-
tion and therefore do not induce mucosal immunity. Since most of these successful
vaccines do not induce very good cellular immunity, repeat booster immunizations
are needed throughout life. Some of the live attenuated vaccines against polio
([157]), rotaviruses ([112, 130]) and typhoid ([80]) are administered orally whereas
others against influenza ([14, 15, 16]) are administered intranasally. In these cases,
mucosal immunity is induced to reduce the likelihood of infection ([185]). The mu-
cosal immunity barrier is never absolute but it is postulated that a higher dose of
a pathogen would be needed to result in successful transit of a sufficient pathogen
dose to result in infection. However, these vaccines also stimulate significant serum
antibody titers to preclude onset of disease ([76]). Another advantage of vaccines
that induce mucosal immunity is that they should reduce transmissibility of the
infectious agent in populations of immune and non-immune individuals. It should
be obvious that administering vaccines at mucosal sites, especially orally, eliminates
the use of needles with their associated costs and risks of transmission of disease
agents by their reuse. However, oral immunization is not equally effective in all
populations and young children in many developing countries develop a lower level
of immunity after oral immunization than children of the same age from developed
countries ([83, 139]). This is thought to be due to repeat inflammatory trauma
of intestinal mucosal tissues due to recurrent infections with diarrheal pathogens
and parasites ([18, 111, 139]) to impair invasion and/or uptake of orally adminis-
tered vaccines ([24]). Such problems can be overcome by increasing the oral dose
of vaccine administered ([165]) or by oral immunization at an earlier age such as
in newborns or neonates ([6, 168]). Another highly beneficial attribute of live at-
tenuated vaccines, including recombinant attenuated viral and bacterial vaccines
still under development, is that they multiply and/or persist in the immunized host
to stimulate humoral and cellular immunities ([3]). This is not always the case,
however, since some live attenuated vaccines such as some derivatives of vaccinia
([133, 143, 171]) and assortment vaccines of rotavirus with different host specificities
([9, 161]) are defective/impaired in replication and are therefore not as effective in
stimulating long-lived protective immunity as live vaccines that are attenuated due
to other attributes but are more replication proficient ([91, 107, 183]). Since the
immunized host serves as the factory to manufacture the protective antigens, the
vaccine dose needed to successfully immunize an individual is likely reduced to fur-
ther reduce costs of vaccine manufacture. This benefit is correlated, however, with
the degree of replication proficiency of the live vaccine. Manufacturing costs are
also reduced by the fact that these live attenuated vaccines are replicative (under
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some defined conditions) and are harvested as intact viruses or bacteria. Such live
vaccines also do not need to be administered with costly adjuvants since they pos-
sess the PAMPs needed to recruit innate immunity ([118, 153, 186]). It is thus likely
that the further development of such live attenuated vaccines and especially live at-
tenuated recombinant vaccines in which an attenuated bacterium or virus serves to
deliver one or more protective antigens or the genetic information to specify these
antigens from various pathogens to the immunized host will result in vaccines that
are safe and cost effective for use throughout the developing and developed world.
Only then can we expect to conquer known infectious diseases.

7. Special concerns and needs in vaccine design and development. Most
infectious diseases are caused by pathogens that are reasonably genetically stable
and host-specific such that a single widely administered vaccine can be used to
effectively prevent widespread disease and especially epidemics. However, some in-
fectious diseases have zoonotic reservoirs with differing potentials for transmission
of the pathogen from the infected animal reservoir to humans. Thus Yersinia pestis,
the etiologic agent of plague, that is carried by a significant number and diversity of
rodent species in the U.S. southwest and Rocky Mountain states is not frequently
transmitted to humans since the fleas associated with these rodents have no propen-
sity to associate with humans. Thus, the infrequent plague infections in the U.S.
are often transmitted to humans by outdoor cats that have caught a plague-infected
mouse ([56, 108, 149, 150]). This was not the case in the Middle Ages when the Eu-
ropean black rat was the reservoir for plague and had a flea that liked to bite humans
as well as the rat ([103, 113, 151, 169, 181]) thus resulting in the fatal decimation of
about one-quarter of the entire European human population. Epidemic spread from
a zoonotic reservoir is thus often a consequence of other factors such as population
density of the reservoir species, which can be influenced by food availability, and
the existence of insect or other animal vectors. In this regard, influenza transmis-
sion poses additional problems. Influenza has a segmented genome with eight RNA
molecules encoding all of its properties and these include the ability to infect many
host species ([191]). However, many of the avian influenza strains remain mostly re-
stricted to avian species as is true for equine influenza and human influenza strains
that are mostly restricted to equines and humans, respectively ([10, 75, 79, 178]).
Pigs are not restrictive influenza hosts such that they can be easily infected with
avian, equine and human influenza strains as well as with those frequently associ-
ated with pigs ([32, 74, 164, 182]). Dual infection of pigs with multiple influenza
strains thus enables formation of reassortment viruses that have genome segments
derived from all the infecting viruses ([26, 27, 31]). Recent evidence of these occur-
rences was obtained upon thorough examination and sequencing of all the genome
sequences in the H1N1 virus epidemic that commenced in Mexico in spring of 2008
and quickly circled the world ([36, 55]). As revealed by genome sequence analyses,
certain segments were derived from avian, swine and human influenza strains and
some of the combinations had been seen in influenza strains identified in earlier years
([170]). Fortunately, this H1N1 epidemic was not severe with no higher mortality
than associated with the seasonal influenza strains that had already been circu-
lating in the human population ([13, 67]). This, of course, was not true in 1918
when the new reassortment influenza virus had antigenic components and other
virulence attributes not seen before by the human population and this epidemic
claimed millions and millions of lives throughout the world ([8, 180]). In addition
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to the occasional occurrence of new reassortment influenza viruses, antigenic varia-
tion occurs continuously due to mutations in the RNA genome segments encoding
the surface-localized hemagglutinin and neuraminidase antigens that are essential
for virus infection ([17, 48, 59, 72, 102, 163, 187]). Thus amino acid substitutions
are accumulated over time and these often permit virus propagation in individuals
infected or immunized in previous years with ancestor strains of the virus. Due
to this antigenic drift, it is necessary to change the components of the influenza
vaccine to be used each year. Typically the influenza vaccine is made up of one
Type B influenza virus (that does not undergo much change from year to year)
and two Type A virus strains that are subject to both annual antigenic drift and
the occasional antigenic reassortment ([57]). Because of the time to manufacture
new vaccines every year, decisions on the virus components are usually made in
late winter in the year prior to administration of the vaccine the coming fall. This
permits sufficient time for manufacture and safety testing. This antigenic drift is a
problem for control of a number of infectious diseases caused by RNA viruses and
the worst of these is HIV ([93, 158]) for which no effective vaccine has yet been
developed. Influenza control is also complicated by the worldwide dissemination
of avian influenza strains that can also contain reassortment viruses with genomic
segments from porcine, equine and human influenza strains by migratory waterfowl
([127, 132, 191]). These birds act as vectors of virus from northern to southern hemi-
spheres and reverse and ensure that genomic combinations are globally distributed
on a regular basis. One aspect of influenza control would be the immunization of
these migratory zoonotic reservoirs. This is problematic and not practical, however,
unless a very inexpensive anti-influenza vaccine could be developed. Manufacture of
annual influenza vaccines is also complicated by use of embryonated eggs for virus
propagation since only about one dose of vaccine is produced per embryonated egg
([73, 132]). For this reason, annual influenza vaccine production only enables immu-
nization of between one-quarter and one-third of the U.S., Canadian and European
populations ([136]) with the rest of the world having an exceedingly limited sup-
ply of vaccine. The problem is compounded by the recommendation of vaccination
preferably every year or at least every several years. It should be evident that it
is impossible to produce sufficient influenza vaccine for the entire world population
or even a quarter using embryonated chicken eggs. A further complication would
arise if a reassortment virus arose causing epidemic disease that possessed avian
influenza virus components and attributes. In this case, vaccine virus could not be
productively manufactured in embryonated eggs since avian influenza strains kill
the embryos so quickly ([128]) as to preclude much virus propagation. Use of cell
culture to propagate vaccine viruses would be a solution but not one that would be
very cost effective. Clearly, problems abound in attempting to devise a cost-effective
means for prevention and control of both seasonal and epidemic influenza.

8. Current problems in vaccine delivery. Given that the majority of the global
infectious disease burden is borne by those in the developing world and dispropor-
tionately by those less than five years of age ([193]), it behooves society to accelerate
research to discover and develop vaccines that will be safe and effective in prevent-
ing any and all infectious diseases whether caused by bacteria, viruses, fungi or
parasites and to be able to manufacture these vaccines at less than a dollar a dose
in a thermostable form for reconstitution at time and place of use to be adminis-
tered needle-free at a mucosal site. Such successes will also depend on achieving
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a far better understanding of the pathogenesis of many pathogens, especially par-
asite pathogens causing orphan diseases of no concern in the developed world. In
addition, many of these pathogens have multiple means to evade, suppress or mod-
ulate host immunity to their own benefit. In these cases, live attenuated vaccines
derived from these pathogens will not likely be effective unless the means for this
immune evasion can be discovered and inactivated in the live attenuated vaccine.
Such discoveries only come from extensive research. It may therefore be best if
one can generate recombinant poly-valent vaccines using a viral or bacterial vector
to deliver multiple protective antigens or information encoding those antigens to
the immunized animal or human host. Recent work in engineering vaccinia virus
derivatives that lack the ability to preclude induction of host interferon-gamma that
are totally attenuated yet replication proficient ([81]) offers a promising means to
induce protective immunity to heterologous pathogens, especially if means for im-
munization at a mucosal site can be developed, offer great promise. Similarly, much
has been learned during almost thirty years of effort by hundreds of laboratories to
harness Salmonella enterica serotypes as effective vectors ([40, 53, 99]) for delivery
of heterologous protective antigens especially from bacterial pathogens to induce
protective immunity in animals. Future work, however, will need to focus on per-
fecting these technologies for use in humans and for delivery of means to induce
immunity to viral, fungal and parasite pathogens.
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