
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2011.8.21
AND ENGINEERING
Volume 8, Number 1, January 2011 pp. 21–48

MULTIPLE OUTBREAKS FOR THE SAME PANDEMIC: LOCAL

TRANSPORTATION AND SOCIAL DISTANCING EXPLAIN THE

DIFFERENT “WAVES” OF A-H1N1PDM CASES OBSERVED IN
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Abstract. Influenza outbreaks have been of relatively limited historical in-

terest in México. The 2009 influenza pandemic not only changed México’s

health priorities but also brought to the forefront some of the strengths and
weaknesses of México’s epidemiological surveillance and public health system.

A year later, México’s data show an epidemic pattern characterized by three

“waves”. The reasons this three-wave patterns are theoretically investigated via
models that incorporate México’s general trends of land transportation, public

health measures, and the regular opening and closing of schools during 2009.

The role of vaccination is also studied taking into account delays in access and
limitations in the total and daily numbers of vaccines available. The research

in this article supports the view that the thee epidemic “waves” are the result

of the synergistic interactions of three factors: regional movement patterns of
Mexicans, the impact and effectiveness of dramatic social distancing measures

imposed during the first outbreak, and the summer release of school children
followed by their subsequent return to classes in the fall. The three “waves”

cannot be explained by the transportation patterns alone but only through

the combination of transport patterns and changes in contact rates due to the
use of explicit or scheduled social distancing measures. The research identifies

possible vaccination schemes that account for the school calendar and whose

effectiveness are enhanced by social distancing measures. The limited impact
of the late arrival of the vaccine is also analyzed.

1. Introduction. We live in a highly interconnected world where individuals move
between cities, states, countries, and continents in a matter of hours. Several studies
have looked at the role of movement of individuals or transportation patterns on the
recurrence of influenza epidemic outbreaks [40]. The first efforts to connect epidemic
patterns explicitly to train-transportation flows where conducted by [9, 63], and
most recently by [40], and [43]. The transmission and evolution of the influenza
virus is influenced by local and global individual patterns of movement, massive
demographic growth, and the diversity and availability of domestic and wild animal
populations, a key reservoir of genetic variability [65, 14]. Unfortunately, despite
the severity of single epidemic outbreaks and the availability of the earlier work
of Kermack and McKendrick [42] most of the theoretical work on influenza has
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been driven by concerns over its long-term dynamics and/or A-subtype specific
coevolutionary dynamics [16, 17, 5, 62]. Further, the role of behavior in epidemic
outbreaks has been explored in rather limiting settings [36, 12, 29, 34]. The impact
of “social-distancing” and information on disease dynamics have gained relevance
and importance during the last few years; a reinvigorated research direction by the
impact of this 2009 A/H1N1 influenza pandemic [58, 69, 4, 10, 56]. Fortunately,
theoretical extensions of the single outbreak models [42] have been carried out by
various researchers, most notably F. Brauer [11]. In fact, a detailed account on
recent advances in modeling influenza outbreaks can be found in this volume [13].

Figure 1. Initial influenza outbreak and the historical
influenza corridor. A/H1N1 epidemic outbreak in México by re-
gion 2009. The Mexican States that contributed with more than
half of the total cases during the initial spread of A/H1N1 up to
June 4, 2009 are shown in dark gray (see Fig. 3). The remaining
States (light gray) were the main contributors to secondary out-
breaks later in the year. The red dots mark states in the historical
influenza corridor (Acuña-Soto, personal communication, see also
[2] and Figs. 2).

The study of the dynamics of influenza outbreaks in México must account for
México’s unique characteristics. México is a highly centralized country in which
the massive transportation of individuals occurs predominantly by land with México
City as the main hub for most traffic (air transportation inclusive). México City has
four “Central Bus Terminals”, connected by a subway system that moves 5 million
people per day. In addition, there are 80 thousand taxicabs generating about 780
thousand rides daily [51] and a public city bus system with 11 main lines that moves
approximately eight million users per day [32]. Influenza does not seem to follow
uniform transmission patterns along México. In fact, it seems to “primarily” travel
through what [1] has coined as Mexico’s influenza corridor (Fig. 1, red dots). This
corridor extends from south to north along central México and is bounded by two
mountain ranges, the West and East Sierra Madres. This geographical distinction
seems to be supported by recent preliminary analysis of historical data of upper
respiratory illnesses in México. The origins of “the” corridor are not entirely clear
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but the abundance of some metals and other minerals, and the historical patterns
of commercial activity may constitute some of the underlying factors [44]. In fact,
there is a large overlap between the States in “the” corridor (Fig. 1 red dots) and the
States that collectively reported more than half of the cases of pandemic influenza
A-H1N1 (A-H1N1pdm) during the first wave up to June 4, 2009 (about 12 weeks,
Fig. 1 dark gray).

Confirmed cases of A-H1N1pdm in México.

Figure 2. A-H1N1pdm epidemic outbreak in México dur-
ing 2009. Daily confirmed cases by RT-PCR reported by Mexican
authorities [66]. January 1, 2009 is considered as day 1 and the last
day was approximately December 25, 2009. From [66]. Social dis-
tancing and school closures were imposed in April 29, 2009. The
official summer school closure occurs at the end of June and mid
December, and fall classes start around Sept. 1.

The A-H1N1 pandemic of 2009 in México was characterized by three “waves”
of morbidity and mortality (Fig. 2). For comparison, past pandemics have been
characterized by the occurrence of multiple “waves” over short time periods [52, 22].
However, the size of the individual contributions from different geographical regions
within México to these “waves” is not uniform (Fig. 3A,B). These “waves” took
shape during the year as data aggregated over time. What are the drivers of these
epidemic “waves”? One possibility is that non-uniform aggregation of the data is
due to delays in transmission that, in turn, were caused social distancing measures,
movement of people, and population density. Can these “waves” be explicitly tied
in to transportation patterns, behavioral changes, and the regular school calendar
schedule in México?

We investigate the influence of México City as a hub on the spatio-temporal
patterns of spread of A-H1N1pdm cases during 2009 (Fig. 2) by assuming that the
different Mexican States and the Federal District (DF) form a star-shaped graph
with vertices representing the flow to, or from DF. To do so, we combine official
case data from the Mexican health authorities (Figs. 2 and 3A,B) and empirically
estimated flows from observations collected at toll gates located at the different
entry points to DF, taking into consideration a set of dates from 2009 hypothesized
as important for the introduction of delays in the propagation of A-H1N1pdm in
México. We identify scenarios that result in multiple epidemic “waves” due to the
synergistic interactions between transportation flow patterns and changes in the
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contact rates between individuals. It is observed that both of these factors induce
delays in the evolution of influenza dynamics that cause the data to aggregate
nonuniformly across different regions in México, displaying patterns consistent with
the existing data shown in Figs. 2 and 3.

The rest of this article is organized as follows: A qualitative analysis of the main
events related to the A-H1N1pdm epidemic in México is made first, followed by a
description of the model. Simulations where the influence of transport flow, social
distancing, and school closures on the time course of the epidemic are presented
first, followed by simulations of the effects of vaccination with different arrival times
during the year. We finish this article with a discussion and final remarks.

2. Qualitative analysis of the A-H1N1pdm epidemic in México during
2009. Three different reports of the number of A-H1N1pdm cases confirmed by real
time polymerase chain reaction (RT-PCR) in México, ordered by the States, are
shown in Fig. 3A. The difference between the three reports is collected in Fig. 3B.
The data in these figures (Fig. 3A-B) support the view that the first outbreak
affected mostly States shown on the left portion of panel A (e.g. Distrito Federal,
San Luis Potośı, etc. indicated by the line corresponding to June 4, 2009); the
States in the right portion of the graph (e.g. Sinaloa, Coahuila, etc in later reports),
reported significant numbers of confirmed cases during the summer; while States
like Baja California or Sonora did not experienced an outbreak until the fall. The
majority of the States that contributed the most A-H1N1pdm cases during the
initial phase of the outbreak have been identified as members of México’s influenza
corridor (Fig. 1).

The first official case of novel swine-origin influenza disease was identified in
Oaxaca [47, 24]. The diseased was a diabetic woman originally identified as a
probable SARS case around March 5, 2009; she died of atypical pneumonia a few
days later. A small outbreak of influenza-like illness was also reported in the town
of La Gloria, Veracruz, between March 10 and April 6, 2009. About one fourth of
the local population was affected but there were no hospitalizations [50, 66]. The
first confirmation that a novel strain of type A influenza was circulating in México
and affecting primarily a young population [20] was made in April 23, 2009 by
the National Microbiology Laboratory in Canada. The report was based on two
apparently unrelated cases, the woman from Oaxaca and a five year old child from
La Gloria. An epidemiological alert was issued by The National Committee on
Epidemiological Surveillance in México on April 16. On April 17, the United States
Center for Disease Control started reporting cases of a new A-H1N1pdm strain.
On April 18, the media spread the outbreak news while an ongoing alert on severe
pneumonia cases had just been set in México City. On April 22, a large number of
severe pneumonia cases were reported in México City, San Luis Potośı, and Oaxaca.

In response to the epidemiological alert, the government of México City imple-
mented a series of social distancing measures that included school closures, closure
of public spaces, and the cancellation of public events. The rest of the Mexican
States implemented the same policy within days. School closures started on April
27 while non-essential economic activities were suspended on April 30. Schools re-
opened after May 10 and the population slowly resumed their normal activities as
the summer arrived. By the time that social distancing measures were relaxed, the
behavior of people was notably modified. For instance, many individuals in México
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A. Confirmed cases of A-H1N1pdm by State.

B. Difference between reports.

Figure 3. A-H1N1pdm epidemic outbreak in México by
region 2009. A. Confirmed cases of A-H1N1pdm by State. Three
different reports of confirmed cases dated June 4 and September
5, 2009, and January 4, 2010. Collection of States contributed
differently to the reported total number of cases (aggregated three
wave data) during the 2009-2010 pandemic. B. Difference between
the reports shown in A.

were still wearing masks in public a year after the first A-H1N1pdm outbreak of
2009 was declared and hand sanitizers became part of the common office supplies.
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Classes for kinder garden, elementary, middle, and high school typically end at
around June 30 or earlier, marking the official start of the summer in México. Chil-
dren resume school activities at the beginning of September and do not have another
long break until mid December. These times during the year are regarded in this
work as important landmarks for the time course of the epidemic and are modeled
explicitly. The specific assumption made here is that infection rates decreased in
México as a result of enforced social distancing measures, and as a consequence
of the impact of school closures on contact rates [53, 70]. For instance, there were
three surges in the reported cases of A-H1N1pdm in México during 2009, with peaks
dated around April 30, July 1, and September 25 respectively (Fig. 2). The first
peak is in line with the implementation of social distancing measures and school
closures by the Mexican authorities; the second occurred soon after schools for pre-
college education closed for the summer; while the third took place during the fall
of 2009. The rising phase of the third wave began about the time when schools
returned to classes in the fall.

2.1. Vaccination during the pandemic. The General Director of the World
Health Organization communicated her decision to raise the A-H1N1pdm pandemic
alert from phase 4 to phase 5 on April 29, 2009 [19]. It became clear soon after
her announcement that the potential supply of vaccines was, at best, to be no more
than 900 million [28]; that is, perhaps enough to cover 10-15% of the current world
population [74]. The proportional distribution of vaccines would mean that each
country would have vaccinations for about 10%-15% of its population. The number
of vaccines that each country secured was in fact determined by the abundance or
lack of financial resources. Massive vaccination against the novel A-H1N1pdm virus
started in Canada, U.S., Northern Europe and other wealthy nations around the
end of September of 2009; additional countries began to administer their share over
the last months of the year. The first 650 thousand vaccines from an estimated 30
million vaccines, arrived in México on November 23, 2009 [48]. However, by the
beginning of January 2010, the Secretariat of Health in México had approximately
13 million vaccines in hand, of which only 1.5 million had been administered to
the general population [69]. Similar scenarios were repeated in other developing
countries.

2.2. Modeling. Models are used to theoretically investigate the role of transporta-
tion flow and the impact of public health interventions (modulations of the infection
rate of influenza) on the time course of an epidemic outbreak. This article explores
the role of social distancing, school closures, transportation patterns, and vacci-
nation policies on the time course of México’s epidemic. An extension of the [42]
model is constructed following the general framework originally proposed by [63].
Our modeling framework resembles the modeling approach of [7], [40], and [71].

México is divided into thirty-one States and DF; México City is contained in
DF. These thirty-two regions are regarded as nodes in a star-shaped, weighted
graph with all nodes connected to DF, but not directly connected to each other.
In the rest of this article the Mexican States will also be referred to as regions to
facilitate the description. The regions are indexed 0,1,...,31, with DF (México City)
index by the number 0. Regions are regarded as strongly and weakly connected to
D.F. (México City) according to the data from Fig. 3A,B. More specifically, regions
were ordered by their contribution to the initial total cases reported by June 4,
2009. Those regions with contributions larger than the median contribution up to
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June 4, 2009 are assumed to be strongly connected to DF. The rest of the Mexican
States form the weakly connected group.

The infection rate is assumed to change as a function of social distancing mea-
sures, behavioral changes induced by the epidemiological alert, and school closures.
The rates of infection and recovery periods are assumed depend on the region [7]
while the interactions between individuals within a given region are assumed to be
homogeneous. Populations in the so called influenza corridor are assumed to be
more susceptible to the disease (possible driven by higher contact rates); they are
also assumed to recover 2 days later than in the rest of the México [44]. The results
of our analysis are not sensitive to these last assumptions. That is, small variations
on the values of these parameters do not change the general results presented here.

Infected individuals are assumed to go through an incubation period of 2 days
before becoming infectious. Once infected, the recovery time was assumed to be
between 5 and 9 days. Disease deaths are also included in the model. Infectious
individuals are further divided into confirmed and unconfirmed cases. The uncon-
firmed cases include individuals who had symptoms of influenza but did not seek
medical care, and also those who had an asymptomatic infection [4]. It is assumed
that the traveling plans of an infectious individual were not affected by symptoms.
Individuals are assumed to infect others during this incubation period, at a lower
rate than the infectious individuals. Also, recovered individuals gain permanent
immunity against the novel A-H1N1pdm influenza virus [64, 6]. It is also assumed
that there is a limited vaccine stockpile (see [8]; see Morales et al. in this volume).
People belonging to the susceptible, incubating, infected but unconfirmed, and re-
covered groups are eligible for vaccination. Daily vaccination rates are not assumed
to be proportional to the populations receiving vaccinations. Instead it is assumed
that only a maximum number of vaccines can be administered each day (constraints
of the infrastructure) thus allowing a possible saturation in the demand for vaccines.

During the spring, summer, and winter breaks, the contribution to the total flow
of people in and out of México City is assumed to be nearly the same for the strongly
and weakly connected States. The strongly connected populations contribute more
to the total flow of people in and out of México City the rest of the year. Note, for
instance, that during the initial outbreak DF is followed by the strongly, and then
the weakly connected regions, as ordered by their relative contribution to the first
wave of the epidemic (report of June 4, Fig. 3). It is assumed that the net daily
flow of people through DF is zero, with about half a million people coming into or
out of México City every day.

The contribution of each region to the daily flow through DF is determined as
follows: let F , q, and Ni denote, respectively, the number of people that go through
DF every day, the relative contribution of the strongly connected group to the
total daily flow through DF, and the population size of the ith region. The daily
contribution of the ith strongly connected region and the kth weakly connected
region are written, respectively, as

qi(t) = F · q(t) ·Ni∑
{Nj : j ∈ Js}

, qk(t) = F · (1− q(t)) ·Nk∑
{Nj : j ∈ Jw}

. (1)

where Js and Jw are index sets for the strongly and weakly connected regions,
respectively. During the school breaks q = 1/2, and q >> (1− q) during the rest of
the year.
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The flux between States given by transportation can be written with the aid of
a time-dependent symmetrical matrix, Q(t) = (Qij) with entries defined as

Qij =

{
qj(t)/Ni if i = 0
0 otherwise

for 0 < i, j ≤ M = 31. Here, Qij(t) represents the proportion of the population
from region i that travels to region j per day.

The population of each region is divided into disjoint subgroups based on the
individuals epidemiological states: S, I, C, U,R, and V represent, susceptibles, incu-
bating, infected and confirmed, infected but not confirmed, recovered, and vaccinated,
respectively. A schematic of the relationships between the classes are as shown in
Fig. 4.

Figure 4. Schematic of the flow between compartments
in each of the Mexican States.

Each of the classes S, I, C, U , R, and V is indexed by region. The infection rate
for region k, βk, represents the mean infection probability per contact where λk(t)
being

λk(t) = g(t)
βk
Nk

(Ck + Uk + µIIk) (2)

where the parameter µI takes values between 0 and 1 modeling a decrease in the
infectivity of individuals who are within the incubation period. The contact rate
is modulated by a function g(t) to capture social distancing and school closures at
specific dates during the year. The modulation of the infection rate was defined
using a combination of sigmoid functions of the form

g(t) =
∑
{S(t; ti,m) : i} , (3)

where

S(t; ti,m) = A+
B −A

1 + exp [m(t− ti)]
, (4)

with 0 < A < B < 1. The time point at which the sigmoid reaches a value of
0.5(B−A) is ti. The selected times ti are used as anchor points for the sigmoids, at
or slightly after dates when social distancing or school closures occur. The rate at
which the sigmoid function changes is controlled by m, that is S is decreasing when
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m > 0 and increasing when m < 0. For instance, a sharp downward sigmoid with
m = 10 is used to represent a sudden drop in the contact rate as it happens when
schools close or open, or if social distancing policies are imposed by the government.
In contrast, an slowly increasing sigmoid with m = 0.5 is used to represent a slow
recovery in the contact rate after social distancing was imposed.

Table 1. Parameters.

Parameter Description Value/Range Reference
α−1 incubation period 2 days [55]

σ−1k recovery period for
State k

7 days [25],[60]

µI reduction factor
for infectivity
during incubation

0.5 Estimated,
[59]

βk mean infection
probability per
contact for State k

0.95 Estimated,
[60]

δx influenza-induced
death rate for
x = {C,U}

10−6 Estimated,
[60]

p probability of con-
firmed case

[0.1, 0.3] Estimated

ν̂ maximum vaccines
per day

[1, 60]× 103/day Estimated
from Media
[48, 28]

F Thousands of
people traveling
to/from D.F. per
day

[500, 1000]× 103/day México
City gov-
ernment
[27]

The start of the epidemic outbreak is modeled by inserting a pulse of the form

εk(t) = 0.001 exp

[
(t− t0)

2

2

]
(5)

added to the class Ek to start the outbreak in the region k; the pulse is also sub-
tracted from Sk. In the simulations below, εi is zero for all i 6= k; and the ini-
tially seeded regions are Oaxaca (in the south Pacific) and Veracruz (in the Golf of
México). These two regions are important ports of entry of tourists and goods from
the Atlantic and Pacific, respectively, and were also the two regions where the first
official cases of A-H1N1pdm were reported. The peak amplitude can be thought of
as one individual (0.001 in thousands). The time t0 can thus be thought of as the
start of the epidemic with (approximately) one individual in the incubating group.

The vaccines are assumed to be distributed on a daily basis with the system
being able to deliver a maximum number of vaccines per day. The stockpiles are
distributed as proportions of a total stockpile depending on policy. The number of
vaccines in the initial stock pile, ν is adjusted to calculate the initial stockpile for
each State

νk = ν · wi, for i = 0, ..., 31. (6)
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The weights wi are determined by setting a “vaccination policy”. The vaccines
in this article are proportionally distributed according to the relative population
size in each region. That is, wi = Ni/

∑
{Nk : k = 0, ..., 31}. The number of

vaccines used per day, per class, within the kth population, are denoted by νSk
,

νIk , νUk
, νRk

and calculated as follows: Given a maximum number of vaccines per
day ν̂, the number of vaccines that can be used each day in the population k is
ν̂k = ν · Nk/

∑
{Ni : i = 0, ...31}. Therefore, the number of vaccines that can

be used in each class within a single region k is a proportion of ν̂k determined by
the number of individuals in that city, and the percentage of individuals in each
class of that city. For instance, for the class X in city k, the maximum number of
vaccines available, νXk

, is less than or equal to ν̂k · Xk/
∑
{Xi : i = 0, ..., 31}, for

X ∈ {S, I, U,R}. The available number of vaccines for each region was calculated
by subtracting

∑
{ν̂k : k = 0, ..., 31} from the number of remaining vaccines for

the region at each point in time considered in a simulation. At each point in time,
the numerical implementation includes conditions that guarantee that the number
of vaccinated people in a compartment does not exceed the number of people in the
compartment. That is, at each point in time, νXk

< NXk
, for X ∈ {S, I, U,R}.

Equations. Having defined rates, transportation, and vaccination as above (Eqs.
(1)-(6)), the system of equations describing the time-dependent change in region k
is:

Ṡk = (Qk − λk)Sk +
∑
i 6=k

Qi1Si − ε(t)− νSk
(7)

İk = (Qk − α) Ik +
∑
i 6=k

Qi1Ii + λkSk + ε(t)− νIk (8)

Ċk = (Qk − σk − δC)Ck +
∑
i 6=k

Qi1Ci + αpIk (9)

U̇k = (Qk − σk − δU )Uk +
∑
i 6=k

Qi1Ui + α(1− p)Ik − νUk
(10)

Ṙk = QkRk +
∑
i 6=k

Qi1Ri + σkCk + σkUk − νRk
(11)

V̇k = QkVk +
∑
i 6=k

Qi1Vi + νSk
+ νIk + νUk

+ νRk
, (12)

ẇk = − (νSk
+ νIk + νUk

+ νRk
) (13)

Ḋk = δCCk + δUUk (14)

with variables w and D representing, respectively, the available vaccine stock-
pile and disease-induced deaths. All population numbers are in thousands of in-
dividuals; the time is in days with t0 equal to January 1st, 2009. The term
Qk = Qk0−

∑
{Q0i : i = 1, ...,M, i 6= k} denotes the proportion of people travel-

ing from region k to DF minus the proportion of people returning to region k.

2.3. Data acquisition and numerical simulations. All data presented here was
obtained from the weekly reports of the Mexican Health Secretariat [66], recorded
in spreadsheets using Open Office 2.3, and processed using Python 2.5 in Mac
Pro notebooks running on OS X or in a Lenovo T400 laptop running Python2.6
under Ubuntu 9.10 with an Intel(R) Core(TM)2 Duo CPU T9600 at 2.8 GHz.
All simulations were performed using the python module scipy [41]. Figures were



MULTIPLE OUTBREAKS OF A-H1N1PDM 31

produced with the python module matplotlib [37]. Code used for simulations is
available upon request.

Figure 5. Start of the pandemic. Data fit for the beginning
of the first wave of the pandemic. The original data (confirmed
cases) and the modeled curves were normalized so that the peak
was located at 1, and the infection rate and incubation recovery
periods (β and rinfect = α, respectively) were adjusted to fit the
initial outbreak before the first peak. The resulting parameters are
such that β/α ≈ 1.9. Day 73 corresponds to March 14. Day 117
corresponds to April 29.

3. Results.

3.1. Parameter estimation and start of the fist outbreak. A reduced version
of model (1)-(14) assuming no vaccination (ν = 0) and no deaths was used to
estimate parameters that best fit the curve of confirmed cases before April 29, 2009.
For this initial parameter estimation, it was assumed that there were no unconfirmed
cases (p = 0), and that the infection rate and total infectious period (incubation +
infection recovery periods) of the system (2)-(14) were assumed to be the same for
all States, thus yielding the “aggregated” dynamics that would be generated by a
single population model [7]. To do so, the simulated total of infective (incubating,
confirmed, and unconfirmed, respectively, I, C and U , for all regions) and the data
for the first wave were normalized by their peaks so that both had a maximum
of 1. It is worth remark at this point that the data examined does not let us test
whether or not some populations in México were more susceptible to the novel A-
H1N1pdm virus. However, the historical evidence on the patterns of respiratory
disease support this assumption [1]. Systematic variation of the incubation period
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and infectivity was performed to fit the slope of initial outbreak to the data up to the
first of the three major epidemic peaks (Fig. 2 and also Fig. 5). The starting point of
the epidemic was then shifted to find the time at which the initial increasing phase of
the outbreak in the simulations overlapped with the initial phase of the normalized
data. The death rate was carefully chosen to match the order of magnitude reported
in official data (∼ 100’s of people, not shown). From this initial estimation, our
simulations suggest that the start of the epidemic occurred approximately between
days 73 and 75, which correspond to March 15-17, 2009.

After fitting the model to the first outbreak, regional variations in the parameters
were introduced by adding uniformly distributed random numbers between -0.1 and
0.1 to βk and σk for each k ∈ {0, ..., 31}. The system (1)-(14) was used to investigate
the effects of transportation (weak/strong connections to DF), social distancing, and
school closures on the development of the epidemic. As with the initial parameter
estimation, it was assumed that there was no vaccination (ν=0, Sec. 3.2).

Simulations that include regional variations in the parameters (not shown) yield
starting dates for the epidemic that are consistent with the initial estimations ob-
tained assuming homogeneity in the parameters. In particular, simulations in which
the recovery period σk was 1 day longer in the influenza corridor and 1 day shorter
out of the corridor (not shown) yield qualitatively similar average values for the
mean infection probability per contact, βk. The overall results presented in this
article are not significantly affected by the parameter variations mentioned above.

3.2. Influence of transport, social distancing and school closure on the
time course of the epidemic.

3.2.1. Transportation as a delay mechanism to generate multiple outbreaks. The
spread of A-H1N1pdm cases was not uniform across México. That is, not all States
were hit by the epidemic at the same time, or with the same force (Fig. 3A-B, June
4 and September 4 reports, black and orange curves).

To test if land transport could be responsible for the delay observed in the epi-
demic outbreaks reported in the different Mexican States, simulations with the sys-
tem (1)-(14) were conducted assuming different contributions of the strongly and
weakly connected States (q and 1− q, respectively) to the total daily flow from and
to México City (Fig. 6). To do so, the number of confirmed cases was analyzed by
region and the local spread of A-H1N1pdm during the first outbreak (Fig. 3, June
4 report) was considered explicitly in the derivation of the transportation matrix
of the model (Eq. (2)). Figure 6 shows the total of infected people at each point
in time (the sum of incubating (I), confirmed (C), and unconfirmed (U)) from the
strongly and weakly connected States, respectively, in solid and dashed black lines.
The total of infected people in the whole country is illustrated by a solid, thicker
gray line. For all simulations presented here, it was assumed that the epidemic
started in Veracruz and Oaxaca; note the general aspects of the results presented
in this section can be obtained assuming other starting states.

A case in which all Mexican States contribute to the flow into and out of DF
nearly proportionally to their population size (q = 0.5) is shown in Fig. 6A. The
small delay between the strongly and weakly connected is mainly due to the small
difference between the contributions of strongly and weakly connected States and
to a less extent, from the modest levels of heterogeneity coming from infection
rates and recovery periods (assumed for the different populations). If the traffic
weight q for the Mexican States in the strongly connected subset is increased (i.e.
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Figure 6. Influence of transportation on the time course
of the epidemic. The curves represent the total of infected people
including the incubating (I), confirmed (C), and unconfirmed (U)
groups. The solid and dashed curves are, respectively, the infected
people in strongly and weakly connected populations to D.F. The
dotted line is the epidemic curve in Veracruz and Oaxaca. The
thicker gray line is the total of infected people. A. Simulation in
which strongly and weakly connected populations contribute nearly
the same (q=0.5) to the total traffic through México City. B and
C. Simulations in which, respectively, 9 of every 10 (q=0.9, B), and
999 of every 1000 (q=0.999, C)) individuals traveling to and from
D.F. come from a strongly connected region. Other parameters:
p=0.1, F=500.

it is assumed that strongly connected populations contribute more than they would
according to their proportion in the total population), the delays between the peaks
become larger. Fig. 6B shows the case in which 9 out of 10 individuals come from
the strongly connected States. Fig. 6C shows simulations in which 999 out of every
1000 individuals traveling through México City come from the strongly connected
states. In general, the delay is an increasing function of q. However, for the delay
in the weakly connected regions to be similar to the delay of the secondary “wave”
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observed in the epidemic, the contribution of the weakly connected states to the
total traffic has to be negligible (q >0.9999, not shown). Since the case in which
only one in every 100 individuals traveling in and out of DF comes from one of the
weakly connected states (q = 0.99) is unrealistic but the delays in the total curve
appear for q > 0.99. Therefore, we conclude that transportation may contribute
to create a delay between peaks of confirmed cases for different states, but the
connectivity between DF and the 31 Mexican States alone does not fully explain
the different peaks delayed by several weeks shown in the data curve of total cases.

3.2.2. Social distancing and school closures. The first two local maximae in the
epidemic curves shown in Fig. 2 occurred at times in which it is fair to assume
that the contact rates suddenly decreased. In the first case, the peak is reached
at, or soon after the Mexican government imposed social distancing measures and
school closures. In the second case the peak is reached around June 30, which marks
the end of the school year. Similarly, the first two local minima occur at times in
which contact rates among the population increase after a period of reduction. The
first local minimum occurs at the end of May after the social distancing measures
imposed by the Mexican government were relaxed and the population resumed
normal activity; social distancing measures lasted for approximately 2 weeks, after
which the population slowly resumed their normal activities. The second local
minimum occurs near the end of August when the school year begins.

Remarkably, many of the States located within the historical influenza corridor
that were hit by A-H1N1pdm during the first “wave”, continued to be affected dur-
ing the summer, but some seemed to be less affected than the weakly connected
states during the summer; a trend that continued in some but not all States through-
out the fall (see Fig. 3A,B). The epidemic, viewed from a whole-country perspective
seemed to become milder during the summer and resumed to have a much larger
peak and width at the end of the summer, which marks the end of the school break.

To test the possibility that social distancing and school closure had an impact
on the epidemic, and more specifically, whether these two factors contributed to
the generation of the second and third outbreaks, it is assumed that the changes
in contact described in previous paragraphs are captured via the time-dependent
modulation of the infection rates in each state, λk, k = 0, ..., 31. To introduce a time-
dependent modulation in agreement with the dates at which government policies
were implemented and with the school calendar, we combined sigmoid functions
(Eq. (4)) to decrease and increase the rate of infection λk, at specific points in time
(see also Fig. 7A). The measures implemented by the Mexican government during
the last days of April 2009 (before day 120) were captured by modulating the contact
rate with a decreasing sigmoid with very steep amplitude. The end of the social
distancing policy and subsequent return to normal activity was represented by an
increasing sigmoid with a slower slope compared to that of the implementation of
government policies. The final value of this second, increasing sigmoid function
was such that the infection rate could be lower than the initial infection rate. The
lower value is justified by the fact that behavioral changes occurred during the days
and months following the start of the epidemic. Similar constructions were used to
model the end of classes at the end of June (around day 180) and the reopening of
schools in September (before day 240). The resulting modulating function for the
infection rate, g(t), was varied by changing the slopes and final values for each of
the sigmoid functions. The last value of this modulation function reflects long-term
behavioral changes that occurred during the beginning of the epidemic Fig. 7A.
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Figure 7. Social distancing and school closures can create
multiple outbreaks. A. The different graphs show different mod-
ulations of the infection rate after behavioral changes occurred. B1-
B3. Different time courses for the percentage of A-H1N1pdm cases.
Panels B1, B2, and B3 correspond, respectively, to the curves g1-g3.
The thick curves are the sum of all infected individuals. The strongly
and weakly connected populations are shown in solid and dashed black
lines, respectively. The values of the mean infection rate after behav-
ioral changes have occurred noted in the right upper corner of each plot
and correspond to the curves g1-g3 shown in panel A. Other parameters
as in previous figures. The slope of the modulation function g(t) after
the relaxation of social distancing measures was 0.3. Other parameters:
t0=78 for Oaxaca and Veracruz as starting States.

As illustrated in Fig. 7B1-B3, the government policies implemented at the end of
April do explain the decrease of the epidemic outbreak observed in the data for the
first wave. Further, the second “wave” can be generated by several combinations
of the slope and inflection time of the sigmoid used to resume of activity in May
(after day 120). Furthermore, our simulations suggest that the second “wave” is
the result of a rebound in the epidemic in which the susceptibles from the weakly
connected States played a significant role. Our simulations suggest that second
“wave” was also cut short by the reduction in contacts at the end of the school
year. The start of classes for the fall in Mexico is typically around September 1.
The third “wave” of the A-H1N1pdm in México starting around then. For this
reason, the mechanism of suppression and recovery of the infection rates described
in the last paragraphs was used again, in this case with sharp slopes representing
the sudden changes in transmission that may occur during closure and reopening of
schools. Taken together, these results suggest that the implementation of measures
that decrease the contact rates in combination with the school calendar, as it was
the case in México, can have a significant mitigating effect on the spread of the
influenza.

The patterns shown by the strongly and weakly connected States in the different
scenarios shown in Fig. 7B1-B3 also reflect nontrivial aspects of the epidemic. For
instance, if the infection rate recovers to a small proportion of what it was originally
(Fig. 7A, line labeled “g1”, g(t) ≈ 0.5, t > 300), infections would occur at a very
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low rate after the government intervention. In this case, the model predicts that
there would be only two large “waves” during the year with one outbreak of small
amplitude during the summer, and a third “wave” occurring after a long delay
(Fig. 7B1, thick gray line). In cases like these, the strongly connected populations
would experience the bulk of the epidemic first (black, solid lines), followed by the
weakly connected populations during the second “wave” (black, dashed lines).

As the recovery in the infection rate increases after the social distancing is re-
laxed, a second “wave” starts to emerge during the summer (Fig. 7B2), followed by
a third wave that still occurs in the fall/winter (0.3 < g(t) < 0.8, t > 300). The
contribution from the weakly connected States to the second “wave” is always more
prominent than the contribution from the strongly connected States. Both strongly
and weakly connected States contribute during the third “wave” of the fall/winter.
However, the third “wave” starts first in the weakly connected States, followed by
growth in the strongly connected States. If the final infection rate is large enough,
the third “wave” starts at the strongly connected States (not shown). This occurs
in part because during the second “wave” the weakly connected States are affected
the most. That is, the (still large) susceptible population in the weak states is the
driver for the second “wave”. If the infection rate recovers almost fully (Fig. 7B2,
g(t) ≈ 0.9, t > 300), the second “wave” increases in size until the third “wave”
does not occur anymore. Not surprisingly, if there are enough susceptibles after a
decrease in contact that caused a decay in the epidemic curve, and there are no
further interventions (e.g. vaccination), there will be a rebound “wave”. The size
depends on the size of the first outbreak.

The number of secondary outbreaks is highly dependent on the size of the first
“wave”, and the timing and impact of subsequent interventions. In particular, the
size of secondary and later “waves” depends on the similarity between infection
rates before and after each decrease in the incidence curves. In the context of the
above simulations, if the behavioral changes just mentioned result in a reduction of
the infection rate of approximately 35% or more, then the rebound “wave” can take
several months to occur (Fig. 7B1). In contrast, if the reduction is less than 35%
a significant rebound “wave” can take as little as 2 months to occur (Fig. 7B2).
If the decrease in infection rates is about 10% or less the pool of susceptibles is
almost completely depleted during the second (rebound) “wave”, thus eliminating
the possibility of a third “wave” (e.g. Fig. 7B3).

3.3. Time course of epidemic by State. We now describe simulations of the
dynamics of the epidemic by State using parameters that resulted in three “waves”
with a qualitatively similar time course to that shown in the data (Figs. 2 and 7B2).
For instance, the second “wave” is milder and wider that the first one, and starts
shortly before the summer. Also, the third “wave” is the strongest and occurs
during the fall. An example of the temporal profile of the epidemic by State is
shown in Fig. 8.

Local transportation patterns and changes in contacts during the epidemic as
determined by social distancing measures and school closures are sufficient to gen-
erate specific aspects displayed by the data, including the delays between outbreaks
in different populations (compare to Fig. 3). Importantly, these factors do not
generate the patterns observed in the data when only transportation or behavior-
dependent contact rates are considered in isolation. Fig. 8 clearly illustrates that
the “waves” result from nonuniform aggregation of cases originated in the different
Mexican States at different times during the year. Importantly, the change in the
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Figure 8. Percentage of cases by State assuming the first
cases were in Oaxaca and Veracruz. The States have been
ordered with respect to their population size.

transportation patterns during the summer break underlies the contribution of the
pool of susceptibles in the weakly connected states to the second outbreak. In a
similar way, the change in the transportation pattern prior to the return to classes
in the fall favors the contribution of the susceptibles in the strongly connected pop-
ulations to the third outbreak. It is during this third outbreak that most States
experience an outbreak without interruptions. Importantly, these simulations also
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highlight the possible risk of a more prominent rebound “wave” of influenza after
social-distancing or school closure interventions if no further vaccination or other
protective measures are implemented.

In the next section, the vaccination stockpile, ν, is assumed to be nonzero and the
arrival date of the vaccines is systematically varied to study the effects of introducing
vaccination at different points in time during the epidemic (Sec. 3.4). The idea is
that in the event that a very contagious virus emerges, interventions as the one
made by the Mexican government could help avoiding saturating the demand for
resources destined to help the population when the initial outbreak and the next
school closure are distant in time (at least 4 weeks). Further, a mitigation strategy
to further constrain the spread of influenza through vaccination during the school
break is conceivable by taking into account the dynamics shown in Figs. 7 and 8.

3.4. Role of vaccination. The simulations in Fig. 7 suggest that social distancing
and school closures had a delaying effect on the transmission of the 2009 pandemic
influenza virus, thus creating a window of opportunity to implement preventive
measures such as vaccination. Therefore, we decided to examine the role that
vaccination could have had in mitigating the last “intervention-free” outbreak.

Since it was clear from the beginning of the pandemic that supplies would be
short for most of the countries in the world, we conducted simulations using the
system (1)-(14) and assuming a limited number of vaccines are available. In this
respect, the Mexican government announced that they would have a stockpile of
nearly 30 million vaccines [66]. However, only a small fraction of the planned
stockpile became available in November of 2009 (ca. 3% of 30 million). By mid
January, only approximately 1.5 million had been distributed among the population
[66].

To carry out the simulations, vaccination was introduced at different dates after
the social distancing measures and school closures implemented by the Mexican
government in April were suspended. The parameters for the simulations were
the same as in Fig. 7B2 and Fig. 8 with a stockpile of 30 million vaccines and a
maximum of 100,000 vaccines administered per day. For the simulations shown
in Fig. 9, vaccinations were distributed throughout the different States in México
according to their population size. That is, vaccination was not assumed to be
proportional to the populations that received the vaccines as typically assumed
in previous models (e.g. [67]). Simulations were carried out assuming that every
person, except those who had been confirmed as SOIV-AH1N1 cases, received the
vaccine. Vaccines were assumed to be distributed among the population as soon as
they arrived.

The effects starting vaccination on July 18, Sept 5, Oct 25, and Dec 15 are
shown in Fig. 9. These simulations suggest that if vaccination started at least in
September, the impact on the epidemic outbreak would have been minimal (com-
pare panels A and D in Fig. 9). On the other hand, if vaccination is introduced
before November, the effects on the incidence curves are more drastic and become
noticeable on or before September 5, at the beginning of the fall scholar term. An
estimate of the effect of introducing vaccination at different times was calculated by
dividing the integrals of the incidence curves for each of the arrival times by the in-
tegral of the incidence curve when no vaccination was introduced (not shown). The
maximum decrease obtained with the stock pile and maximum number of vaccines
that produced Fig. 9A was approximately 15% for the simulations performed here.
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Figure 9. Democratic vaccination for different arrival times.
Vaccination of a maximum of 100,000 individuals per day from a stock-
pile of 30 million. A-D. Time course of the epidemic assuming starting
vaccination times at days 200, 250, 300, and 350, corresponding, respec-
tively, to July 18, Sept 5, Oct 25, and Dec 15. Vertical axis, percentage
of the population. Parameters as in Fig. 7.

In conclusion, the early arrival and application of vaccines could have had a
noticeable but not too strong mitigating effect on the spread of the disease; even
for stockpiles with as many vaccines as 30 percent the total population; a quantity
that corresponds to the total of availability of vaccines originally announced by the
Mexican government (see Morales et al., this volume). Further, our simulations
indicate that the administration of the vaccines would have resulted in a significant
waste after November since no visible effects on the size or time course of the
epidemic curve could be observed in this case.

4. Discussion. The simulations presented here explain the existence of multiple
“waves” in the data in terms of the combined effects of transportation patterns
and behavioral changes. The behavioral changes are captured by considering the
reductions in contact from social distancing measures implemented by the Mexican
government, motivated by fear, or due to the school calendar. As expected, local
transportation without a decrease the infection rates (social distancing) results in
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single epidemic outbreaks; recall that the pattern of traffic is described by a star-
shaped graph with two sets of populations contributing differently to the daily flow
through the “center” node. The macroscopic patterns displayed by the regional and
whole-country data may thus be a consequence of the differences in flow between
the strongly and weakly connected states, and the drops in contact rates. From
a macroscopic (whole-country) perspective, the model shows three “waves” when
transportation and modulation of contact rates are combined (Fig. 7). However,
when examined in detail, the “waves” result from the aggregation cases occurring
non-uniformly with respect to location and time (Fig. 8). In addition, the multiple
“waves” do not occur because of differences in the recovery time or susceptibility
to infection due to geographical factors. These results provide strong support to
the hypothesis that a combined effect of local transportation, social distancing, and
school closures can produce multiple macroscopic (whole-country) “waves” for the
same epidemic; as observed in México during 2009 (Fig. 2).

4.1. Effects of behavioral modulation and intervention. Our simulations un-
ravel different possible scenarios in which influenza epidemics can occur for quali-
tatively similar time dependent changes in the infection rate (Fig. 7). Remarkably,
the two U-shaped modulations in the infection rate used here did not always result
in three large “waves”. The “waves” in the cases considered here occur because the
implementation of social distancing and school closure measures pause, but not stop,
the spread of the disease. The novel A-H1N1pdm considered here is non-seasonal,
so there are, a priori, no reasons to believe that the epidemic was mitigated by
changes in temperature or weather at large. Our simulations show that the number
of rebound “waves” depends on the number and steepness of U-shaped modula-
tions in the infection rates but also on the final value of the contact-modulating
function g. As a rule of thumb, a significant rebound in an epidemic outbreak can
be observed after an intervention if, aside from the timing the intervention before
the epidemic peak, contact between individuals is decreased and then allowed to
increased to similar, if not smaller value relative to the original infection rate. This
result highlights the importance of quantifying behavioral changes and the speed at
which these changes occur during an epidemic outbreak [15]. Therefore, it would
be beneficial for future epidemics to obtain data that helps estimate the dynamics
of contact.

The social distancing measures implemented in Mexico were very strict, much
stricter than would have been imposed in other countries, and the behavioral
changes (hand washing, use of masks in cold days or crowded places, television and
newspaper adds, jokes, etc) were still present during the summer of 2010 (MAHV
personal observations). To the best of our knowledge, we interpret the first local
maximum in the simulated epidemics as the result of reduced contact. We believe
that the fall “wave” was actually reached in what we could think of as an outbreak
free of intervention. The epidemic does not hit all the States during the first two
“waves”, but both weak and strongly connected States are affected during the third
wave. This pattern is consistent with the data globally and locally (by State), but
it is worth to remark that it is highly dependent on the behavioral modulation cap-
tured included in the infection rate. For instance, there would have been no third
wave during the year if the behavioral changes in the population were short-lasting
(g with a final value close to one and a fast positive slope after a decrease).

Government intervention during the initial stages of an epidemic outbreak can
help to mitigate the spread of the infection. Governments can use this strategy to
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initially mitigate the spread of influenza while resources become available. The price
to pay for the initial mitigation may be an increased likelihood of a second, or even
a third more prominent outbreak. An disturbing possibility is that if the necessary
resources are not available when the full outbreak occurs, the consequences can be
significant depending on the severity of the disease. In addition to the possible
financial implications of a sudden reduction in the contact rates via the implemen-
tation of social distancing policies, an additional burden on the health care system
could result from untimely interventions or interventions not followed by appropri-
ate mitigation strategies. Therefore, mild virulence of the 2009 pandemic should be
regarded as a luck factor that may not be present in future pandemics.

4.2. Global dynamics emerged from local interactions. The separation of
States into strongly and weakly connected based on the initial report of the epi-
demic was partially consistent with historical evidence about a corridor of epidemic
transmission [1]. Remarkably, assuming this initial division in the contribution to
the flow through the central node in our model (DF) also resulted in local dynami-
cal patterns of spread during the year that are consistent with the data separated
by State (Fig. 7 and 8). Note that those States affected during the initial outbreak
“wave” that were not in “the” influenza corridor belong to a subset of populations
in México that have close commercial, touristic, and other interactions with México
City. For instance, the State of Veracruz is the largest contributor of import/export
goods to México and does not belong to States in “the” corridor. The simulated
epidemics in those States are in reasonable agreement with the existing data, sug-
gesting that the classification of States into weak and strong is an important factor
in addition to the centralized traffic assumed in the transportation rates.

In Mexico, the social distancing measures were broad enough to affect the whole
population. If the age profile of the traveling population was similar to the age
profile of the population as a whole, the effect of age on travel would probably be
of little importance. With less stringent distancing measures, school closures could
have an effect, as the part of the population most involved in disease transmission is
formed by students, and thus might have a larger effect than a homogeneous mixing
model would indicate. Therefore, the question of whether school closures translated
into a real decrease in contacts, as was probably the case in Mexico, or whether
they translate into more time at day care centers or the mall, as might have been
the effect in the US or Canada could be asked. In fact, it could be the case that, in
addition to the changes in transportation, there was an increase in contact during
the summer breaks. However, based on the model, such an increase would have
happened mostly in the weakly connected States. In addition, the model was built
assuming that people within each State would randomly mix. For these reasons,
we conclude that the school closures did have an impact on the time course of the
epidemic, but this impact was indirect, as the flow of transportation changed, and
with it, the availability of susceptibles. Age structure was significant for H1N1, and
its effects have been documented elsewhere in the case of single populations [57].
The effects of including age structure in the model presented here would be helpful
to study questions related to how data might be aggregated over time in different
parts of the population, and in particular, to tackle questions related to the direct
or indirect role played by the school closure on the transmission dynamics.

4.3. Timing the administration of a limited vaccine stockpile. The simula-
tions presented in Figs. 7 and 8 suggest that the school closures due to the calendar
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can be used as reference time points to implement prevention strategies in anticipa-
tion of secondary epidemic outbreak. For instance, depending on the initial rate of
change of the incidence in the outbreak, if the starting point is too far from the date
of the next school break, it might be worth having a short lasting intervention like
that implemented by the Mexican authorities. Such interventions might be costly
from a financial perspective, but may prevent a challenge to the health care system
that could be catastrophic. Importantly, as suggested by our simulations, such in-
terventions will also cause rebound “waves”. As a consequence, the interventions
aimed to decrease contacts among the population should be thought of as a delay
mechanism that should be followed by prevention strategies such as vaccination; de-
laying the spread also prevents people from acquiring immunity. The timing of the
prevention strategies should be in sync with the times of the major school closures
(summer, winter, and possibly spring breaks) and could be improved if coordinated
with ongoing surveillance [21].

Our simulations corroborate in a quantitative way a prediction rooted in com-
mon sense: if the available vaccines are given to the population before the (third)
epidemic “wave”, the number of infected people will decrease dramatically, and by
extension, less vaccines will be wasted. Our model can be very useful in the sense
that possible scenarios can be planned if data is used together with the model to
produce short-term predictions. For instance, our simulations suggest that the best
time to vaccinate people in the case of México would have been during the sum-
mer. As a general rule of thumb, these results can be generalized as: “vaccination
campaigns are more effective during school breaks”. The reason, as suggested by
our simulations and by existing data [53], is that the school breaks can be assumed
to slow down epidemics of influenza (and similar viral diseases); on the flip side,
the return to classes accelerates the spread of influenza. In fact, past studies have
suggested that mass immunization of school children before vacation breaks would
be an appropriate strategy for reducing the spread of influenza within communities
[33, 35, 73, 72]. There are several reasons for targeting this group. First, school
children are an easy group to reach and offer an excellent opportunity for mass
immunization. School-based immunization programs or health fairs would preclude
the need for a visit to a physician’s office to receive the vaccine. Furthermore,
children and schools are the major pathways that spread influenza to families and
neighborhoods.

Importantly, with the current infrastructure to make vaccines, the vaccination
strategy suggested here can only be conceived assuming a morbidity of the novel
virus comparable to that of seasonal influenza. This strategy can be combined with
ongoing surveillance [21] and generalized for its utilization in Latin America and
other places where local transportation is similar to México. It is important to
note here that the vaccine was not available in time to have much effect for the
A-H1N1pdm epidemic, even with measures that postponed later waves. This will
continue to be an important general feature of pandemics, unless ways to develop
vaccines faster are found.

4.4. Fitting procedure, emergent properties, and modeling vaccination.
The parameter ranges used in the simulations were obtained by fitting the rate
of change in simulations to the data. Since the confirmed cases present in the
data are just a proportion of the actual cases, the fitting was done by first scaling
the simulations and the data to have a common maximum and only the rate of
change during the initial upstroke of the epidemic was considered. Errors resulting
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from this estimation procedure could be carried into our simulations and possibly
bias our interpretation of the results. Two factors are reassuring in this respect.
First, the parameters obtained in the fitting process were not disproportionate or
in disagreement with estimations of the contact probabilities made by other groups
[39, 23, 15, 8]. Second, based only the fitting to the initial outbreak dynamics, we
obtain qualitatively similar time courses for epidemics of the whole-country and also
State by State.

México is a country with many different environments, which in principle could
affect the predisposition of the population to different immunological insults [45, 46]
(see also [3, 68]). In particular, the recent trend of urbanization and aging of
the Mexican population could be increasing the vulnerability to acute infectious
respiratory diseases [1]. However, as noted before, the differences in the recovery
time and infection rate by State were not enough to produce drastically different
scenarios. In addition, the qualitative observations of the study presented in this
article depend more on the modulation of the infection rates by behavioral changes
than on the specific rates of infection or recovery. For these reasons, we are confident
that our parameter estimation is within acceptable ranges, and that our results are
not the consequence of making unrealistic assumptions.

We have also made some progress on the way vaccination is modeled. In this work
we implemented a vaccination scheme in which not only there was a limit for the
total number of vaccines available, but also, one that allowed saturation in the daily
demand for vaccines. To do so, the number of people that can be vaccinated per day
was calculated by first setting up a policy for the distribution of the stockpile by
State, and with respect to that distribution policy, a maximum number of vaccines
per State per day was calculated. The actual number of vaccines given per day was
either the maximum per day, or less depending on how many people were present
in each State, and each class. This scheme is very different in comparison to the
typical assumption that a proportion of the population gets vaccinated at any point
in time [67, 59, 60].

4.5. Future directions and concerns raised by simulations. The results ob-
tained in this work could have been obtained with a simpler model only containing
three classes, namely, unprotected, infected, and recovered. However, since the dif-
ference in computational cost between a simpler model and the one used here was
hardly noticeable using the code and the laptop computers described in Methods,
we decided to numerically solve Eqs. (1)-(14) which allow the extension into a model
that enables the calculation of wasted vaccines and tackle other important issues.

For instance, there is a big problem with influenza data since many, perhaps
most, cases are mild enough not to be recorded or noticed. Therefore, a significant
fraction of disease transmission comes from people that are asymptomatic in this
sense. The presence of a population of asymptomatic or unconfirmed cases has
been documented to be non-negligible [4], and it is believed to be close to 80% or
90% of the infected people [30]. A more detailed analysis of aspects related to the
unconfirmed population will appear elsewhere.

The second and the third “waves” observed during 2009 could be explained by
drifts or shifts. Our model does not include the possibility of relapse, or that a
different virus(es) indistinguishable with the current methods from the original one
for which the recovered population would not be completely immune. Drifts of
shifts could explain part of the second and the third “waves” observed during 2009.
This is a direction that requires more exploration. A priori, based on an intuition
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fixed by the simulations presented here and on the observations made about the
different contributions to the number of confirmed cases by the different States,
our interpretation is that the multiple “waves” resulted mostly from the combined
dynamics of local transport and changes in contact rates. In other words, the
magnitude of the incidence curves may change if different immunities are taken into
account, but not the general trends related to the number of waves their timing with
respect to the events that change the probability of contact between individuals.
The proportional distribution scheme used here can be modified to accommodate
rules or policies not necessarily based on the size of the local populations. For
instance, the distribution of vaccines in this model can be defined so that it reflects
different levels of geographical isolation, or other differences due to the political and
economical constrains (say, due to the existence of “guerrilla” in some areas of the
country, budget for cities as opposed to whole States, etc).

The effectiveness, supply, and capability of distribution of vaccines are aspects
that have not been addressed in this work. Parameters that capture these features
are hard to estimate for several reasons. There have been some problems with some
of the stockpiles of the vaccination for the novel A-H1N1pdm virus. For instance,
the week of November 16, the pharmaceutical company GlaxoSmithKline asked the
Canadian authorities to recall a stockpile of about 176 thousand vaccines of the
same kind that were supposed to arrive to México [48]. The reason for the recall in
6 of the 13 Canadian provinces and territories was suspected to cause more adverse
reactions than normally expected (1 in 20 thousand). In consequence, there are
many uncertainties about the supply of the vaccination and at this point it is hard
to estimate the effectiveness of the vaccines against a new virus [26]. In addition,
there have been several reports in the last months about antiviral resistance in some
patients to oseltamivir (Tamiflu) [38, 54, 49]. Regardless of the issues discussed
above, the uncertainty about the novel A-H1N1pdm outbreak seem to have been
resolved in the sense that the epidemic did not have devastating effects in terms of
mortality and the infection seems to be mild in comparison to other influenza types
and subtypes [31, 61]. These studies and others aimed understand the transmission
dynamics of highly virulent diseases like smallpox [18] are extremely important to
assess the risk of treats like the deliberate release of biological agents among others.

4.6. Final remarks. Our results support the notion that the massive governmental
intervention measures at the beginning of April did mitigate the spread of influenza
but as a result exhaust the supply of susceptibles. In fact, the first two “waves”
were interrupted by social distancing policies, the closing of schools in the sum-
mer, and altered by delays in transportation “effectiveness”. The only intervention
measures during that third “wave” came from the vaccination of a relatively small
group of people that started at the end of November. In other words, México’s
transportation structure and the non-uniform flow of individuals over this network
contributed significantly to the generation of three outbreaks; the third significantly
larger (and over a longer time span) than the first two. The third outbreak of infec-
tion (Fig. 2) can therefore be thought of as the result of a fully operational network.
The synergistic interactions between transport flow and modulation of the infection
rate by social-distancing and school closures seem enough to cause the number of
A-H1N1pdm cases to aggregate differently for the different States, thereby forming
multiple peaks of different sizes (Fig. 2).
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To summarize, social distancing and school closures have a delaying effect in the
spread of the epidemic. However, the model suggests that an unprotected popula-
tion is likely to suffer from a secondary or even a third harder epidemic outbreak
in comparison to the initial wave if no further mitigation strategies are embraced.
Governments can use a strategy based on this knowledge about the possible de-
lays induced in an epidemic outbreak strategy to initially mitigate the spread of
influenza while resources become available, but an alarming alternative is that if
the resources are not available when the full outbreak occurs, the consequences can
be significant depending on the severity of the disease. The A-H1N1pdm virus that
caused the 2009 pandemic has been mild in terms of infection and mortality. As re-
ports about transmission and recombination of different influenza viruses increase,
and in view of the recent pandemic, which was caused by a novel form of the virus
having portions of avian, porcine, and human A type influenza viruses, it may be
worthwhile to destine more resources to increase the capacity of mass production of
vaccines and treatment in preparation for a possibly more severe influenza epidemic
in the future.
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