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Abstract. The lessons learned from the 2009-2010 H1N1 influenza pandemic,

as it moves out of the limelight, should not be under-estimated, particularly
since the probability of novel influenza epidemics in the near future is not neg-
ligible and the potential consequences might be huge. Hence, as the world,
particularly the industrialized world, responded to the potentially devastating
effects of this novel A-H1N1 strain with substantial resources, reminders of
the recurrent loss of life from a well established foe, seasonal influenza, could
not be ignored. The uncertainties associated with the reported and expected
levels of morbidity and mortality with this novel A-H1N1 live in a backdrop of
36, 000 deaths, over 200,000 hospitalizations, and millions of infections (20%
of the population) attributed to seasonal influenza in the USA alone, each
year. So, as the Northern Hemisphere braced for the possibility of a poten-
tially “lethal” second wave of the novel A-H1N1 without a vaccine ready to
mitigate its impact, questions of who should be vaccinated first if a vaccine
became available, came to the forefront of the discussion. Uncertainty grew
as we learned that the vaccine, once available, would be unevenly distributed
around the world. Nations capable of acquiring large vaccine supplies soon
became aware that those who could pay would have to compete for a limited
vaccine stockpile. The challenges faced by nations dealing jointly with sea-
sonal and novel A-H1N1 co-circulating strains under limited resources, that is,
those with no access to novel A-H1N1 vaccine supplies, limited access to the
seasonal influenza vaccine, and limited access to antivirals (like Tamiflu) are
explored in this study. One- and two-strain models are introduced to mimic
the influenza dynamics of a single and co-circulating strains, in the context of a
single epidemic outbreak. Optimal control theory is used to identify and eval-
uate the “best” control policies. The controls account for the cost associated
with social distancing and antiviral treatment policies. The optimal policies
identified might have, if implemented, a substantial impact on the novel H1N1
and seasonal influenza co-circulating dynamics. Specifically, the implementa-
tion of antiviral treatment might reduce the number of influenza cases by up to
60% under a reasonable seasonal vaccination strategy, but only by up to 37%
when the seasonal vaccine is not available. Optimal social distancing policies
alone can be as effective as the combination of multiple policies, reducing the
total number of influenza cases by more than 99% within a single outbreak,
an unrealistic but theoretically possible outcome for isolated populations with
limited resources.

1. Introduction. Influenza is a recurrent infectious disease associated with high
morbidity in the human population and, in the case of seasonal influenza, there
is a relatively well known pattern of age-specific severity and mortality. Seasonal
influenza in the Northern Hemisphere refers to outbreaks that occur approximately
between November and April of each year [38]. It is estimated that between 5 and
20 percent of the United States population get the seasonal flu, with approximately
36,000 people dying of flu-related causes each year. Elderly people, young children,
and people with specific chronic health conditions have been identified as those most

likely to develop serious complications from seasonal influenza infections.
Influenza strains that regularly generate outbreaks in human populations are di-

vided into three main types: A, B and C. Type A has a large reservoir since it can
infect birds and mammals [33]. Influenza A viruses are differentiated by the struc-
ture of their two surface proteins - hemagglutinin (HA) and neuraminidase (NA).
Three A-subtypes, H1N1, H2N2, and H3N2, [14] which have afflicted humans for
centuries, have the ability to maintain an impressive reservoir of genetic variabil-
ity, primarily through human-to-human transmission and animal reservoirs. Each
influenza A subtype gives rise to multiple strains – that is, comparatively minor
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variants that result from nucleotide substitutions in the HA molecule. Type A and
type B influenza viruses both contribute to the yearly seasonal influenza epidemics
in the United States, while type C is less prevalent, causing only mild respiratory
illness [16].

Influenza viruses are continuously changing via antigenic shift (major changes)
and drift (minor changes) mechanisms [14]. New variants have the ability to evade,
or limit the efficacy of, the host’s immune system [29]. Mutations often increase
the viruses’ ability to colonize large populations of individuals. When an indi-
vidual is infected and recovers from a specific strain of influenza, he/she becomes
immune to future infections with the same strain. Furthermore, prior infections
with related strains (same subtype) provide different degrees of partial immunity
or cross-immunity to new strains within the same subtype [7]. The evolving nature
of influenza viruses means vaccines tend to be strongly effective for one year. New
vaccines must be prepared each year in order to deal with the emergence of new
variants. Vaccine production is therefore based on pre-selected potentially virulent
emergent influenza strains. Which strains will be selected in the preparation of
the next seasonal vaccine depend on international surveillance and cross-reactivity
studies using ferrets [3]. The 2009 seasonal influenza vaccine was a trivalent inactive
vaccine (TIV) that included one strain of influenza type B, one of A subtype H1N1
and one of A subtype H3N2 [16]. The pandemic H1N1 vaccine was available (in
varying quantities) by December 2009 – that is, most likely too late to be effective
[32, 20].

Influenza A has been responsible for several pandemics including the deadly 1918
pandemic and, of course, the 2009-2010 H1N1 (Swine Flu) pandemic [9]. New sub-
types (which are rare), are likely to have pandemic potential; new strains (from
existing subtypes) capable of escaping detection from most immune systems, also
have pandemic potential. The novel H1N1 strain detected in Mexico arose from the
recombination of influenza viruses that circulate among pig, avian, and human pop-
ulations [13]. This kind of reassortment of flu viruses of different species naturally
generated high levels of anxiety among public health authorities. Its apparent abil-
ity to generate a large number of severe infections among schoolchildren, teenagers,
and young adults further increased anxiety in 2009 [12].

The novel H1N1 strain of influenza that surfaced in March 2009 in Mexico has
now spread worldwide [12]. Its pattern of mortality was unusual, with 87% of the
H1N1-induced deaths having occurred among individuals between the ages of 5 and
59 [12]. The fear that this variant might go through critical genetic changes after
visiting the Southern Hemisphere, possibly generating a virulent second wave [36],
did not materialize. This novel H1N1 strain infected more people during the winter
time (the second wave), that is, during “seasonal influenza” time [5]. Questions and
concerns regarding the impact of co-circulating (seasonal and new H1N1) influenza
virus surfaced. For example, although the seasonal influenza vaccine included a
strain of H1N1, it showed very little, if any, efficacy in reducing infections generated
by the novel H1N1 virus [10]. The vaccine for the new H1N1 influenza strain was
brought into production rather quickly, distributed unevenly around the world, and
most likely arrived too late [21]. The new H1N1 vaccine was made available first to
high-risk groups [9], but as the fears associated with H1N1 subsided, countries with
large supplies like Canada began to sell large quantities to developing countries like
Mexico. The bulk of the vaccine arrived in Mexico in January of 2010. A large
percentage of the population, including members of Mexico’s medical personnel,
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initially refused to get vaccinated [32, 18]. At any rate, distribution took place in
large quantities towards the end of January of 2010, probably too late to avoid a
catastrophe. Fortunately, the novel A-H1N1 turned out to be relatively “mild”.

Although the emergence of the novel H1N1 virus diverted most attention from
the seasonal flu, it should be remembered that seasonal influenza poses a significant
morbidity and mortality impact every year. In addition, there are resource limita-
tions linked with the effective use and distribution of seasonal influenza vaccines.
The United States only had enough seasonal influenza vaccines for roughly one-third
of its population [31]. To whom the vaccine should be administered is therefore a
relevant public health issue. Research indicates that a large percentage of influenza
cases failed to show flu-like symptoms (asymptomatics) [1, 35]. Consequently, a
large percentage of individuals receiving the seasonal influenza vaccine might have
been (or previously been) asymptomatic with seasonal influenza. Thus, a large
proportion of asymptomatics might result in vaccines being wasted. Vaccine-waste
is particularly detrimental to countries with limited access to seasonal influenza
vaccine stockpiles. These countries must distribute their scarce supplies effectively.

The situation experienced in 2009 regarding the novel A-H1N1 vaccine will repeat
itself as seasonal vaccination stockpiles attract the interest of developing nations.
The upshot is that rich nations will have greater access than developing nations to
antiviral drugs, vaccines, intensive care units, and effective diagnostic tools. Poor
nations are likely to have no access to even minimally acceptable medical resources
of any type. The development and testing of control policies that make sense in
a context that resembles the scenarios faced by poor or developing countries is
essential. The research in this manuscript is our attempt to engage the community
in this discussion.

Specifically, we explore the use of a seasonal vaccination strategy that asks each
patient whether or not he/she has experienced “flu-like” symptoms or received the
current seasonal flu vaccine. Individuals that reply “No” are offered the seasonal
influenza vaccine. We introduce a model that helps estimate the morbidity and
the number of wasted vaccines during an outbreak under the above policy. Optimal
control theory is used to identify the policies that minimize morbidity under various
scenarios that account for the costs. Specifically, the effectiveness of policies that
take into account the cost of social distancing and/or the cost (and availability) of
antiviral treatment for the novel H1N1 strain is evaluated. Our paper is organized as
follows: In Section 2, we introduce a Susceptible-Asymptomatic-Infected-Recovered
(SAIR) model for novel H1N1 influenza and analyzed the effect of H1N1 asymp-
tomatics on disease-dynamics. Optimal control is applied in the context of this SAIR
model to determine the “best” way to implement social distancing and treatment,
if minimizing cost and the number of H1N1 infections are the priorities. Numerical
results and simulations are used to illustrate the characteristics of optimal strategies
under selected scenarios. Section 3 introduces a two-strain model that focuses on
the competition between seasonal and the novel influenza virus when the seasonal
influenza vaccine is available. Further, the optimal control problem is stated in the
context of competing strains of influenza and numerical simulations are carried out
to identify optimal control policies under various scenarios. Our conclusions and
thoughts are summarized in section 4.

2. SAIR model. We first considered a simple SAIR (Susceptible (S) - Asymp-
tomatic (A) - Symptomatic (I) - Recovered (R)) model for novel H1N1 influenza in
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which every infected individual first goes through an asymptomatic stage becoming
symptomatic at the rate α or recovering without showing symptoms at the rate κ.
Since we are less likely to treat asymptomatic individuals, the duration of infection
will persist until their immune system takes over.

Figure 1. Diagram of the SAIR compartmental model.

Some definitions are introduced to describe the SAIR model. The state variable S
denotes the susceptible individuals; A denotes the asymptomatic-infectious; I the
symptomatic-infectious; and R denotes the recovered – that is, those individuals
that gain full immunity after infection. The model parameters β, α, γ, and κ quan-
tify the rate of an individual’s progression from one state to the next. Specifically, β
denotes the per-susceptible per-infected transmission rate; α is the per-capita pro-
gression rate from the asymptomatic to the symptomatic class; γ is the per-capita
recovery rate of the symptomatic class; and κ is the per-capita recovery rate of
asymptomatics. Births and deaths are ignored in this section. Consequently, the
size of the population N = S + A + I + R is constant. Susceptible individuals
may become infected by coming into contact with either an asymptomatic or symp-
tomatic individual. Although asymptomatic individuals are likely less infectious
than symptomatic individuals, we assume for simplicity that asymptomatics and
symptomatics are equally infectious. These assumptions and definitions lead to the
following single outbreak epidemic SAIR model:

dS

dt
= −βS

A+ I

N
(1)

dA

dt
= βS

A+ I

N
− (α+ κ)A (2)

dI

dt
= αA− γI (3)

dR

dt
= γI + κA (4)

N = S +A+ I +R, (5)

where individuals are assumed to mix uniformly.
The basic reproductive number [2], that is, the average number of secondary

infections generated by the introduction of a typical infectious individual (a mixture
of asymptomatics and symptomatics) in a population where S ≈ N is given by

R0 = RA +RI ,

where RA = β
α+κ

denotes the contribution to secondary infections by the A-class

and RI = β
α+κ

α
γ
the relevant contribution by the I-class.
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Using the approaches found in Brauer et al [6], we arrive at the following final
size relationship for the single-strain and single outbreak model:

ln

(

S0

S∞

)

−R0

(

1−
S∞

N

)

= 0, (6)

where S0 denotes S(0) and S∞ denotes the size of the susceptible population at
the end of the outbreak. Relation (6) determines the connection between R0 and
the total number of individuals who became infected (N − S∞). This implicit
relationship (6) allows, for example, for the use of serological studies to estimate
R0 through the use of estimates of the actual infected proportion in the population,
after a single outbreak is over.

2.1. SAIR model with control. Control theory is used to identify ways of pro-
ducing maximum performance at a minimal cost under various sets of assumptions
[34]. Control theory has been used to evaluate the effectiveness (including the cost)
of “case finding” – the identification of an infected individual together with cost-
effective interventions that produce a faster (individual and population) recovery
[22]. Case finding, in the context of our SAIR model, would correspond to the
treatment of individuals identified as infected, with antiviral drugs. Control theory
is also used to reduce the length and number of infections. The activities and tech-
niques used to avoid contracting an infection are often referred to as “case holding”
[22]. We address case holding measures in our setting through the addition of po-
tentially costly social distancing measures like closing schools or public events. Lee
et al. [24] address the use of antivirals drugs and social distancing in their single-
strain pandemic model via controls that reduce the number of contacts between
susceptible and hospitalized individuals [24]. Mexico implemented case-finding and
case-holding measures during the months of April and May, 2009 in their efforts to
reduce the impact of the novel H1N1 virus [17]. The economic cost derived from
the implementation of Mexico’s policies was tremendous [24].

Deploying all methods of disease control at full force is likely to be effective in
stopping an influenza outbreak but far too costly. Further, the effective imple-
mentation of social distancing measures over larger windows in times is most likely
impossible. So, what are the best means for controlling the size of an outbreak such
as the one generated by novel H1N1 in Mexico? What is the best way to implement
control measures? Through the incorporation of two time-dependent controls to
Model 1 we address these questions theoretically. The control u1(t) measures the
effort needed to increase social distancing, reducing the effective transmission rate
(β). The control u2(t) measures the effort required in administering antiviral drug
treatment to novel H1N1 infected individuals. Both control functions are required
to be bounded and Lebesgue integrable on the interval [0, tf ], where tf denotes a
pre-selected length of time during which these controls are applied. We only treat
symptomatic individuals. Hence, the term γTu2(t), where γT is the additional re-
covery rate of a novel H1N1 infected individual undergoing treatment (i.e. γ + γT
= recovery rate with treatment), is inserted. Wherever a full effort is being placed
on social distancing or treatment measures at time t, we would have that u1(t) and
u2(t) must be equal to one. Likewise, the situation when u1(t) and u2(t) are equal
to zero corresponds to the situation when no effort is being placed in these controls
at time t.
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The above observations leads to the following model with two controls:

dS

dt
= −β(1 − u1(t))S

(

A+ I

N

)

dA

dt
= β(1 − u1(t))S

(

A+ I

N

)

− (α+ κ)A (7)

dI

dt
= αA − (γ + γTu2(t))I

dR

dt
= (γ + γTu2(t))I + κA.

Naturally, each control incurs in some costs: social distancing generates economic
losses and effective treatment requires the existence and support of a costly public
health infrastructure. Unfortunately, we do not have good data on the costs associ-
ated with these efforts (although there are some studies which attempt to quantify
the cost of antiviral treatment [23]). Hence, we focus on the use of “relative” cost
for the controls. We use the quadratic term B1

2 u2
1 +

B2

2 u2
2, where the constant Bi

represents the weight constant for the control ui (i=1,2) and B1

B2

is the relative cost
of u1 with respect to u2. We make the a priori assumption that social distancing is
more costly than treatment, which may be true in some societies. Minimizing the
total number of infections during the H1N1 outbreak is the pre-selected goal. The
minimization of an objective functional J , that incorporates both infectious classes
(A and I) and their costs is the selected approach. J , a function of the controls, is
defined by

J(u1(t), u2(t)) =

∫ tf

0

(

A+ I +
B1

2
u2
1 +

B2

2
u2
2

)

dt. (8)

The problem becomes that of finding a pair of functions (u∗

1, u
∗

2) such that

J(u∗

1, u
∗

2) = minΩJ(u1, u2), (9)

where, for i = 1, 2 and LBi and UBi fixed constants in [0, 1],

Ω ≡ {(u1(t), u2(t)) ∈ L1(0, tf )‖LBi ≤ ui(t) ≤ UBi, t ∈ [0, tf ]}, (10)

subject to the State Equations (7) for a given set of initial conditions. The pair of
function (u∗

1, u
∗

2) are the optimal controls.
The existence of optimal controls u∗

1 and u∗

2 for this model is guaranteed by
standard results in Optimal Control Theory [19]. Necessary conditions that the
controls must satisfy are derived via Pontryagin’s Maximum Principle. The optimal
control problem given by expressions (7)-(10) is equivalent to that of minimizing
the Hamiltonian H :
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H = A+ I +
B1

2
u2
1 +

B2

2
u2
2

+ λ1

(

−β(1− u1(t))S

(

A+ I

N

))

+ λ2

(

β(1− u1(t))S

(

A+ I

N

)

− (α+ κ)A

)

+ λ3 (αA− (γ + γTu2(t))I)

+ λ4 ((γ + γTu2(t))I + κA)

A standard application of Pontryagin’s Maximum Principle [30] leads to the fol-
lowing result:

Theorem 2.1. There exists an optimal pair u∗

1(t), u
∗

2(t) and corresponding solu-

tions, S∗, A∗, I∗, and R∗, that minimizes J(u1(t), u2(t)) over Ω. The explicit op-

timal controls are connected to the existence of continuous specific functions λi(t),
the solutions of the following adjoint system:

dλ1

dt
= λ1β(1 − u1(t))

(

A+ I

N

)

− λ2β(1 − u1(t))

(

A+ I

N

)

dλ2

dt
= −1 + λ1β(1− u1(t))

S

N
− λ2

(

β(1− u1(t))
S

N
− (α+ κ)

)

(11)

−λ3α− λ4κ

dλ3

dt
= −1 + λ1β(1− u1(t))

S

N
− λ2β(1− u1(t))

S

N
+ λ3(γ + γTu2(t))

−λ4(γ + γTu2(t))

dλ4

dt
= 0

subject to the transversality conditions,

λi(tf ) = 0 for all i = 1, 2, 3, 4. (12)

Furthermore, the following properties hold

u∗

1 = min

(

max

(

LB1,
1

B1

[

βS

(

A+ I

N

)

(λ2 − λ1)

])

, UB1

)

(13)

u∗

2 = min

(

max

(

LB2,
1

B2
[γT I(λ3 − λ4)]

)

, UB2

)

,

2.1.1. Numerical Results. Numerical simulations leading to the approximation of
the optimal controls, are carried out using the forward Euler method. Starting
with an initial guess for the value of the controls on the time interval [0, tf ], we
solve the state system with controls (7) using forward Euler. Next, the adjoint
system is solved using the solutions of the state system and the transversality con-
ditions (12) backward in time. After updating the controls u1 and u2, the error
between the old values of ui (i = 1, 2) and the updated values is calculated. The
process is repeated until the error is less than a pre-assigned value (here chosen to
be 0.001). The final values of u1 and u2 obtained via the above method are the
numerical approximations to the optimal control pair (u∗

1, u
∗

2). There are several
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means of updating the values of the controls u1 and u2 after each iteration. In our
case, to avoid convergence problems, it was necessary to use a convex combination
with a weighted average (regardless of the values chosen for B1 and B2) [25]. Rep-
resentative simulations using the parameter values for H1N1 specified in Table 2,
including the basic reproductive number R0 = 1.8, are used to highlight the results
of applying optimal controls in three scenarios. In the first scenario, the optimal
strategy when social distancing and treatment control measures are implemented
simultaneously is illustrated. The second scenario considers social distancing with-
out treatment. In scenarios one and two we arbitrarily fix the cost constant for
treatment, B2, to the value 10. We simulate the optimal solutions when B1 = 20,
30, and 50. Finally, the third scenario highlights the results of computing the opti-
mal strategy when treatment is the only control with values of B2 = 10, 100, 1000,
and 10,000.
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Figure 2. SAIR optimal control results for the case where B1

B2

= 2 and

A(0) = 100. Figure (a) illustrates the SAIR model outbreak (A + I) without
control. The optimal control functions are plotted in (b), and (c) demonstrates
the impact of the optimal control policy on the influenza outbreak (A+ I).

The dynamics of the natural single outbreak are plotted in Figure 2(a). That
is, Figure 2(a) illustrates the course of the epidemic in the absence of controls,
with parameter values β = β2, α = α2, γ = γ2 from Table 2, and κ = µ = 0. The
parameter values chosen are consistent with the parameter values used for the novel
H1N1 virus in the two-strain model introduced in the next section.
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First, we seek the optimal strategy when social distancing and treatment control
measures are implemented concurrently. The numerical solutions, u1(t) and u2(t)
where social distancing is twice as costly as treatment ( B1 = 20 and B1 = 10) are
presented in Figure 2(b). The computed optimal control strategy requires maximum
effort at the beginning of the outbreak. This result is consistent with the observa-
tions of Horst Behncke in his study of optimal control applied to deterministic SIR
epidemic models [4].

We observe from Figures 2(b) and 2(c), where B1 = 20 and B1 = 10, that the
implementation of the optimal controls (social distancing and treatment) immedi-
ately suppresses the outbreak. The use of optimal controls requires strong efforts
at the beginning of the outbreak. It is not surprising that they are quite effective at
yielding immediate positive results. Social distancing is the most costly control (by
assumption) and yet, Figure 2(b) says that most of the effort should be placed in
social distancing, not on treatment, throughout the outbreak. Mexican authorities
used social distancing measures, closing schools, restaurants, and public events, to
mitigate the potential of the novel H1N1 pandemic [17] – a very expensive propo-
sition that led to hotel occupancy levels of 10% in Mexico City [26]. Comparisons
between the sizes of the spring and fall wave [21] suggest that they worked.

Increasing the relative cost of the control u1 by setting B1 = 50 while keeping
B2 fixed so that B1

B2

= 5, (social distancing five times more costly than treatment)
leads to an optimal control policy that puts more effort into treatment. Thus, the
higher the relative cost of u1, the less the benefits associated with the use of this
control when cost is factored in. In general, as B1

B2

increases, the number of novel

A-H1N1 cases increases. However, for B1

B2

= 2, 3, and 5, using the optimal control

policy reduced the number of cases by more than 99%.
How effective would a single control policy be? That is, what would be the

optimal effort required if we were only to implement one control strategy at a time?
A significant reduction in the size of the outbreak is still observed when social-
distancing is the sole control measure and B1 = 20. The implementation of the
optimal control requires intense effort for the first 20 days, which might be difficult
to achieve in practice. Most often, policies are implemented sometime after the start
of an outbreak since the immediate implementation is often impossible. Delays are
the “worst” enemies if the goal is to reduce the morbidity of “fast” drivers like
influenza [24]. In the case of Mexico, school closures began on April 23rd, 2009,
6 days after the outbreak was identified [17] while in Japan, control policies came
into effect on May 18th, 9 days after the start of the outbreak [27]. In other words,
national responses were fast and yet often too late [27].

Finally, Figure 3(a) highlights the exclusive use of treatment as a control measure
with weight constant B2 = 10. This last policy is not as effective as social distancing
alone. We see that treatment alone reduces the total morbidity by 63% with more
than 99% reduction when the optimal social distancing strategy is employed. In
fact, the outbreak continues when treatment is the sole optimal control measure
over a 100-day horizon. In the case where B1

B2

= 100, the optimal control function
and the resulting influenza outbreak are qualitatively very similar to the case where
B1

B2

= 100. However, as the cost of treatment increases further, we observed dramatic

differences in the shape of the optimal treatment control function u2 (Figure 3),
including a decline in efficacy. In fact, the efficacy (in terms of the percent reduction
in the number of cases during the control period) of this single control strategy is
roughly 62% if B2 equals 100 or 1000 and decreases dramatically to 30% if treatment
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(b) B2 = 10
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Figure 3. SAIR optimal control results for treatment-only strategy with
A(0) = 100 and B2 = 10, 1,000, and 10,000. (a), (c), and (e) illustrate the
optimal treatment-only control functions. (b), (d), and (f) demonstrate the
number of infections (A+I) over time resulting from the corresponding optimal
control policy.

is very costly (B2 = 10000). Behnke observed that in his applications of optimal
control theory to SIR models, the optimal control solution always appeared to be
one in which maximum effort was required at the beginning of the outbreak [4].
However, the shape of u2 if B2 = 10000 (Figure 3(e)), in the absence of social
distancing, differs substantially from Behnke’s observation. Instead, the optimal
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treatment-only policy follows the similar “hill-like ”shape of the outbreak. The
corresponding curves illustrating the number of infections at time t (A(t)+I(t)) for
each case are presented in Figures 3(b), 3(d), and 3(f).

3. Co-circulating influenza strains. As expected, the incidence of cases of novel
H1N1 accelerated as it moved to the Southern Hemisphere. The emergence of the
novel strain of H1N1 in April of 2009 in the Northern Hemisphere and the large
scale social distancing measures put in place, for example in China, Japan, and
North America, meant that, despite the (suspected) large number of individuals
with asymptomatic infections, the population of individuals susceptible to H1N1
probably remained high. Epidemic data from several countries in the Northern
Hemisphere (including North America) have confirmed that a large pool of sus-
ceptibles remained. In Mexico, for example [21], three waves were observed in the
number of reported cases of the novel H1N1: the initial spring wave, a smaller
summer wave, and a huge fall wave. The third waves in Canada, Mexico, and the
US, emerged as the seasonal H1N1 vaccine was being delivered. Data show [21]
that most of the reported cases of influenza in the fall and winter of 2009 can be
directly attributed to the novel H1N1, which appears to have “out-competed” the
seasonal flu. It is therefore not far fetched to assume that the availability and wide
distribution (at least in Canada and the US) of the seasonal influenza vaccine may
have indeed helped the novel H1N1 “out-compete” the seasonal flu.

In this section, an influenza dynamics framework that allows the exploration of
the time evolution of the (joint) dynamics of the novel H1N1 and seasonal influenza,
mediated by the distribution of the seasonal influenza vaccine and the availability
of antiviral drugs, is introduced.

It is assumed that everyone is susceptible to both strains of influenza before a
joint outbreak is experienced. Further, co-infections are ignored since the average
infectious period is short. Individuals that recover from their first influenza infection
become immediately susceptible to infection by the alternate type. It is assumed
that only the seasonal influenza vaccine is available and that there is no cross-
immunity between the novel H1N1 and the seasonal “flu”. Infected individuals
die or recover with permanent immunity to infection to the same “flu”; we do not
assume that the population size is constant. Natural births and deaths are not
considered, since our interest is on the joint dynamics over a short window in time.
The seasonal vaccine is assumed to be 100% effective while the influenza recovery
rates are assumed to be different. Asymptomatics (A) as well as symptomatics (I)
are considered in the model because, by all accounts, they seem to play a vital role
in disease transmission [1, 35].

In order to simplify the analysis here, it is assumed that all infected individu-
als experience an asymptomatic period followed by an infectious period (Figure 4).
Individuals who do not show symptoms will be given the seasonal vaccine. This as-
sumption leads to three vaccinated classes: vaccinated susceptibles (VS), vaccinated
individuals with asymptomatic seasonal influenza infection (VA1), and vaccinated
individuals with asymptomatic novel H1N1 influenza infection (VA2). Vaccinated
individuals are not considered immune to the novel H1N1 virus. This assump-
tion leads to several infected (and infectious) classes: asymptomatic novel H1N1
infections that had a prior seasonal influenza infection (A1,2), symptomatic novel
H1N1 infections that had a prior seasonal influenza infection (I1,2), asymptomatic
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Figure 4. Diagram of the compartmental model, where 1 =Seasonal and 2 =H1N1.

seasonal influenza infections that had a prior novel H1N1 infection (A2,1), symp-
tomatic seasonal influenza infections that had a prior novel H1N1 infection (I2,1),
asymptomatic H1N1 infected individuals who were vaccinated but have no prior in-
fections (A∗

2), and novel H1N1 infections (I∗2 ) that develop symptoms after passing
through either VA2 or A∗

2. Individuals in the symptomatic classes die or move on
to the protected class (P) – protected against re-infection from both strains. The
class VA1 keeps track of asymptomatic seasonal influenza infected individuals who
received the seasonal flu vaccine. Since seasonal asymptomatic individuals are still
infectious and will eventually show symptoms, any seasonal influenza vaccine given
to them is wasted.

Controls are used to manage social distancing (u1) and antiviral treatment (u2)
as it was done in the single-strain influenza model. Vaccination is not managed via
controls; it is assumed that the vaccination policy described above is in place and
that the cost associated with such a policy is known. Further, we keep track of
“wasted” vaccines under the “asymptomatics-only” seasonal influenza vaccination
policy. These assumptions lead to the following model:
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Table 1. List of epidemiological classes and their meaning, where 1 = Sea-
sonal and 2 = H1N1

Class Meaning
S Susceptible
A1 Infected with Seasonal- Not Showing Symptoms (No Previous Infection)
I1 Infected with Seasonal - Showing Symptoms (No Previous Infection)
R1 Recovered from Seasonal
A2 Infected with H1N1- Not Showing Symptoms (No Previous Infection)
I2 Infected with H1N1 - Showing Symptoms (No Previous Infection)
R2 Recovered from H1N1
Vs Vaccine Given to Susceptible
VA1 Vaccine Given to Asymptomatic with Seasonal Flu
VA2 Vaccine Given to Asymptomatic with H1N1 Virus
A∗

2 Infected with H1N1 after Receiving Vaccine- Not Showing Symptoms
I∗2 Infected with H1N1 after Receiving Vaccine- Showing Symptoms
A1,2 Previously Infected with Seasonal, now Infected with H1N1

- Not Showing Symptoms
A2,1 Previously Infected with H1N1, now Infected with Seasonal

- Not Showing Symptoms
I1,2 Previously Infected with Seasonal, now Infected with H1N1

- Showing Symptoms
I2,1 Previously Infected with H1N1, now Infected with Seasonal

- Showing Symptoms
P Protected Against Seasonal and H1N1

dS

dt
= −β1(1− u1)SJ1 − β2(1− u1)SJ2 − νS (14)

dA1

dt
= β1(1− u1)SJ1 − (α1 + ν)A1 (15)

dI1

dt
= α1A1 + α∗

1VA1 − (γ1 + µ1)I1 (16)

dR1

dt
= γ1I1 − β2(1− u1)R1J2 (17)

dA1,2

dt
= β2(1− u1)R1J2 − α2A1,2 (18)

dI1,2

dt
= α2A1,2 − (γ2(1 + u2) + µ2)I1,2 (19)

dA2

dt
= β2(1− u1)SJ2 − (α2 + ν)A2 (20)

dI2

dt
= α2A2 − (γ2(1 + u2) + µ2)I2 (21)

dR2

dt
= γ2(1 + u2)I2 − β1(1 − u1)R2J1 (22)

dA2,1

dt
= β1(1− u1)R2J1 − α1A2,1 (23)

dI2,1

dt
= α1A2,1 − (γ1 + µ1)I2,1 (24)
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dVA2

dt
= νA2 − α∗

2VA2 (25)

dI∗2
dt

= α∗

2VA2 + α2A
∗

2 − (γ2(1 + u2) + µ2)I
∗

2 (26)

dVS

dt
= νS − β2(1− u1)VSJ2 (27)

dA∗

2

dt
= β2(1− u1)VSJ2 − α2A

∗

2 (28)

dVA1

dt
= νA1 − α∗

1VA1 (29)

dP

dt
= γ2(1 + u2)(I

∗

2 + I1,2) + γ1I2,1 (30)

where

J1 =
I1 +A1 +A2,1 + I2,1 + VA1

N

J2 =
I2 +A2 +A1,2 + I1,2 + I∗2 +A∗

2 + VA2

N

The dynamics of the above model are first explored without controls. The basic
reproductive number under vaccination, Rv ([37, 15]) is given by

Rv = max{R01v, R02v},

where

R01v =
β1

α1 + ν
+

β1

α1 + ν

α1

γ1 + µ1
+

β1

α1 + ν

ν

α∗

1

α∗

1

γ1 + µ1
+

β1

α1 + ν

ν

α∗

1

R02 =
β2

α2 + ν
+

β2

α2 + ν

α2

γ2 + µ2
+

β2

α2 + ν

ν

α∗

2

α∗

2

γ2 + µ2
+

β2

α2 + ν

ν

α∗

2

.

In the absence of vaccination, Rv reduces to the basic reproductive number, R0.
Thus, the basic reproductive numbers for seasonal influenza and H1N1 are

R01 =
β1

α1
+

β1

α1

α1

γ1 + µ1

R02 =
β2

α2
+

β2

α2

α2

γ2 + µ2
,

respectively. Thus, R0 = max{R01, R02}.
The terms in R01v and R02v represent secondary infections generated by infec-

tious individuals with different “life” histories. R01v denotes the average number of
secondary infections generated by a “typical” seasonal influenza infected individual
in a population that includes vaccinated individuals in the absence of treatment
and social-distancing measures. Specifically, β1

α1+ν
denotes the secondary infections

generated by the A1 class;
β1

α1+ν
α1

γ1+µ1

denotes the secondary infections coming from

non-vaccinated individuals in the I1 class; β1

α1+ν
ν
α∗

1

α∗

1

γ1+µ1

denotes the secondary in-

fections arising from vaccinated individuals in the I1 class; and β1

α1+ν
ν
α∗

1

denotes

the secondary infections generated by individuals in the VA1 class. Similarly, R02

denotes the average number of secondary infections generated by a “typical ”novel
H1N1 influenza infected individual in a population that includes vaccinated individ-
uals in the absence of treatment and social-distancing measures. In the term R02v,
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β2

α2+ν
denotes the secondary infections generated by individuals in A2;

β2

α2+ν
α2

γ2+µ2

denotes the secondary infections generated by individuals in I2;
β2

α2+ν
ν
α∗

2

α∗

2

γ2+µ2

de-

notes the secondary infections generated by individuals in I∗2 ; and
β2

α2+ν
ν
α∗

2

denotes

the secondary infections generated by individuals in A∗

2.

Table 2. List of epidemiological parameters and their values. These pa-
rameter values represent the values used in all of the numerical simulations
presented in this paper. Transmission rates are calculated using the formula-
tion of R01 and R02 and the remaining parameter values given in this table.
For simplicity we assume the disease-induced death rates µ1 and µ2 are zero,
although in reality they are non-zero. Parameter values (other than for R01

and R02) without citations are rough estimates based on general CDC infor-
mation regarding influenza. The units for all parameters other than R01 and
R02 are days−1 Index 1 refers to Seasonal Influenza and index 2 to the Novel
H1N1 influenza.

Parameters Description Value Reference
β1 Transmission Rate 0.2167 Estimate

α1 Rate of Progression to Symptomatic 1
2 Estimate

α∗

1 Rate to Symptomatic Infection after .5 Estimate
Vaccination

γ1 Recovery Rate 1
5 [8]

µ1 Death Rate 0
ν Vaccination Rate .01 Estimate

R01 Basic Reproductive Number 1.3 [11]
β2 Transmission Rate 0.2793 Estimate

α2 Rate of Progression to Symptomatic 1
2 [28]

α∗

2 Rate to Symptomatic Infection after .5 Estimate
Vaccination

γ2 Recovery Rate 1
33 : 1

100 [28]
µ2 Death Rate 0
R02 Basic Reproductive Number 1.8 [28]

From the definition of Rv, we arrive at four cases: R01v > 1 and R02v > 1
(simultaneous seasonal and novel H1N1 outbreaks occur), R01v < 1 and R02v > 1
(only novel H1N1 outbreak occurs), R01v > 1 and R02v < 1 (only seasonal influenza
outbreak occurs), and R01v < 1 and R02v < 1 (neither seasonal nor novel H1N1
result in an outbreak). Using the parameter values given in Table 2, our two-strain
influenza model falls under the first case, that is, in which an outbreak of both
seasonal and novel H1N1 occur simultaneously. This is the only scenario explored.

3.1. Simulations of a concurrent influenza outbreak with and without

vaccination, in the absence of social distancing and treatment measures.

Numerical simulations, generated using the parameter values listed in Table 2, are
used to evaluate the effects of vaccination on the duration of an outbreak, the total
morbidity at the end of the seasonal and novel H1N1 influenza outbreaks, and the
total number of wasted vaccines during an outbreak. In particular, since the basic
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reproductive number is given by R0 = max{R01, R02}, R0 = 1.8. We present results
for a population size of 100,000 and different initial conditions.

Figure 5 plots the outbreaks of seasonal and novel H1N1 influenza for different
initial conditions in the absence of a vaccination policy. The graphs demonstrate a
much larger peak in the novel H1N1 outbreak than for seasonal influenza; however,
the duration of the novel H1N1 outbreak is much shorter. We observed different
dynamics in the growth of the A1 class in Figures 5(a) and 5(c). When there are
more asymptomatic seasonal infections than asymptomatic novel H1N1 infections
at the beginning of the outbreak, we noticed fluctuations in the growth of A1.
Initially, A1 increases then begins to decrease as individuals recover from seasonal
influenza. Then, as individuals recover from I2, they are now susceptible to a
secondary infection from a seasonal virus. Because the novel H1N1 outbreak is
large, the number of secondary seasonal infections is greater than the number of
primary seasonal infections. So, as members of the population enter the A21 class,
they begin to infect members of class S, resulting in another visible increase in the
A1 class.
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Figure 5. Dynamics of the infectious classes in the absence of a vaccination
policy where A1(0) = 200 and A2(0) = 100 in Figures (a) and (b), and A1(0) =
100 and A2(0) = 200 in Figures (c) and (d).

Resources are never explicitly limited in our model. However, we want to use
a vaccination strategy that conserves vaccines, so we choose the policy: if symp-
tomatic within a recent (pre-determined) window in time, then no vaccine is ad-
ministered. Specifically, under our vaccination strategy, only those who have never
shown influenza symptoms during the ongoing outbreak or who have not received
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Figure 6. Dynamics of the infectious classes in the presence of the
“asymptomatics-only” vaccination policy. In Figures (a) and (b), A1(0) = 200
and A2(0) = 100. In Figures (c) and (d), A1(0) = 100 and A2(0) = 200.

Table 3. Results for varying initial conditions (in percentages) with seasonal
influenza “asymptomatics-only” vaccination policy

A1(0) = 200 A1(0) = 100 A1(0) = 100 A1(0) = 0
A2(0) = 100 A2(0) = 200 A2(0) = 0 A2(0) = 100

Population Vaccinated 49 48 95 51

Vaccines Wasted 0.2 0.1 0.1 0

Vaccines Successful 99.8 99.9 99.9 100

Vaccines administered 1.9 2.1 0 1.9
to asymptomatic H1N1
infected individuals

Population infected 7.7 4.9 4.9 0
with seasonal

Population infected 73 73 0 73
with H1N1

a vaccine for the current influenza season will be vaccinated. There will always
be wasted vaccines in this strategy since invariably a portion of individuals who
are already infected with seasonal influenza but have not yet shown symptoms
(A1) will be vaccinated. To count the total number or fraction of vaccines wasted,
we calculate the total number of people who have passed through the vaccinated
asymptomatic seasonal compartment (VA1) during the outbreak. Since the vacci-
nation rate (0.01) is low in comparison to the rate of becoming symptomatic (0.5),
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Table 4. Results (in percentages) for varying initial conditions without vaccination

A1(0) = 200 A1(0) = 100 A1(0) = 100 A1(0) = 0
A2(0) = 100 A2(0) = 200 A2(0) = 0 A2(0) = 100

Population infected 54 57 59 73
with seasonal

Population infected 70 71 0 73
with H1N1

a low number of wasted vaccine, less than 1% for each set of initial conditions, is
observed (Table 3). Our strategy also allows us to vaccinate those H1N1 asymp-
tomatics as well as those with no previous influenza infections. These vaccinations
are successful vaccinations since once a person recovers from H1N1, they would
have become susceptible to seasonal influenza were they not to receive the seasonal
vaccine. By counting the number of individuals who have traveled through VA2 dur-
ing the outbreak, it was found that this strategy successfully vaccinated a slightly
larger percentage (around 2%) of novel A-H1N1 infected individuals (A2) than the
proportion of vaccines wasted (less than 1%) on seasonal influenza asymptomatics
(see Figure 7 and Table 3). However, because there is no way to differentiate be-
tween seasonal influenza and H1N1 influenza symptoms, this vaccination strategy
will also fail to vaccinate those who have not been infected with seasonal influenza
but are H1N1-symptomatic (I2) or have recovered from H1N1 (R2). This strategy
might be useful in societies with limited resources that cannot administer tests for
H1N1 to their patients and cannot afford to waste the available vaccines.
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Figure 7. Comparison of vaccines wasted and vaccines administered to
H1N1 infected individuals over time. In (a) A1(0) = 200 and A2(0) = 100, in
(b) A1(0) = 100 and A2(0) = 200.

The introduction of our seasonal influenza “asymptomatics-only” vaccination
program significantly changes the dynamics of the seasonal influenza infections.
In the absence of vaccination, as previously explained, more individuals contract
secondary (I21) seasonal infections than primary (I1) seasonal infections. However,
when vaccination is introduced, we observed a higher peak in the primary seasonal
infections than in the secondary seasonal infections. Since our model assumes no co-
infection of influenza virus strains, using the seasonal vaccine has a negative effect
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in terms of the H1N1 outbreak. Allowing more individuals to become infected
with seasonal influenza, by withholding vaccination, reduces the number of people
susceptible to H1N1. Thus, we observe a slight increase in the fraction of the
population infected with H1N1 (when vaccination is present) from 70% to 73% for
initial conditions A1(0) = 200 and A2(0) = 100, and an increase from 71% to 73%
for initial conditions A1(0) = 100 and A2(0) = 200.

3.2. Optimal control theory applied to two-strain model. Our goal is to
reduce the number of seasonal and H1N1 infections and increase the number of
recovered individuals. We used the same technique as with the SAIR model for
deriving the optimal control pair (u∗

1, u
∗

2). The objective function to be minimized
is therefore

J(u1, u2) =

∫ tf

0

[J1(t)N + J2(t)N +
B1

2
u2
1(t) +

B2

2
u2
2(t)]dt,

where u1 is controlling β1 and β2 and u2 is controlling γ2. From Pontryagin’s
Maximum Principle, we find the optimal controls by minimizing a Hamiltonian, H,
where

H = J1(t)N + J2(t)N + B1

2 u2
1 +

B2

2 u2
2 +

17
∑

i=1

λigi.

Also, from using Pontryagin’s Maximum Principle, we gather that

dλ1

dt
= −

∂H

∂S
, λ1(tf ) = 0

· · ·

dλ17

dt
= −

∂H

∂P
, λ17(tf ) = 0.

From this expression, we obtain the adjoint system (See Appendix).
The optimal control pair (u∗

1, u
∗

2) is defined by:

u∗

1 = min(max(LB1,−
1

B1
(λ1(β1SJ1 + β2SJ2) + λ2(−β1SJ1) +

β2R1J2(λ4 − λ5) + λ7(−β2SJ2) + β1R2J1(λ9 − λ10) +

β2VsJ2(λ14 − λ15))), UB1)

u∗

2 = min(max(LB2,
γ2

B2
(λ6I12 + I2(λ8 − λ9) + I∗2 (λ13 − λ17))), UB2);

where LBi and UBi are fixed values in [0, 1], i = 1, 2.

3.2.1. Numerical Results. In this section, we analyzed numerically an optimal con-
trol strategy applied to our two-strain influenza model. As in the SAIR Optimal
Control Section, we select representative numerical simulations to illustrate the re-
sults of applying optimal controls to our two-strain model under three scenarios:
one in which social distancing and treatment measures are implemented simulta-
neously, one in which only social distancing is used, and finally, one in which only
treatment is used. We consider each scenario with our “asymptomatics-only” vac-
cination policy, and without this policy. For the figures and tables presented, we
assumed that the number of asymptomatic seasonal infected individuals and the
number of asymptomatic H1N1 infected individuals is 100 at time t = 0. We
again use the parameter values listed in Table 2. Thus, since we have shown that
R0 = max{R01, R02}, we have that R0 = 1.8.



CONTROL STRATEGIES FOR INFLUENZA 161

The first scenario illustrates the effects of increasingly higher costs of social dis-
tancing relative to treatment. We select simulations where B2 = 10 is fixed and
the cost of implementing social distancing is either two, ten, or one hundred times
greater than that of treatment. We ran these simulations for a time span of 100
days and present our results for B1

B2

= 2, B1

B2

= 10, and B1

B2

= 100.
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Figure 8. Dynamics of the seasonal influenza classes when B1

B2

= 100, and

vaccination is not present.

In general, higher relative social distancing costs (that is, higher B1

B2

values)
resulted in an increase in the total number of influenza cases. In particular, we
consistently observed higher numbers of seasonal influenza cases than H1N1 cases.
However, when vaccination is eliminated from the model, a greater disparity be-
tween the number of seasonal and the number of H1N1 influenza cases appears.
When social distancing is assumed to be 100 times more costly than treatment
(B1

B2

= 100), and vaccination is not present, seasonal influenza cases begin increasing

approximately half-way through the 100 day time period (see Figure 8(a)). Figure
8(b), in which we plot the seasonal infection dynamics for a 500 day window for the
same control policy ((u∗

1, u
∗

2) = (0, 0) after day 100), demonstrates that this policy
only delays the outbreak. This increase means that if the cost of social distancing
relative to the cost of treatment is significantly higher, public health programs may
need to maintain control measures for a period longer than 100 days to completely
stifle the outbreak in the absence of a seasonal influenza vaccination program. In
addition to the evident changes in the dynamics of the seasonal influenza classes, as
B1

B2

increases, significant qualitative changes in the corresponding optimal control
functions are observed. When the cost of social distancing is twice that of treatment,
greater effort should be placed in social distancing rather than treatment, despite
its higher cost. However, as we continue to increase this relative cost, we observe
that treatment eventually becomes the more dominant control measure - becoming
more important as B1

B2

gets larger. This switch in the roles of social distancing and

treatment, which occurred in the cases where B1

B2

= 10 and B1

B2

= 100, indicates that
there is a transition point where the cost of social distancing is so great that the
optimal control strategy is the one that puts more effort on treatment.

Figure 9(a) illustrates the optimal control strategy without vaccination when
B1

B2

= 2. These results showed that in order to reduce the duration and intensity of
the outbreak, treatment and social distancing efforts must be kept at a maximum
through the peaks of the infectious classes. Following the peak, social distancing
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Figure 9. Optimal control results in the absence of a vaccination policy for

the case where B1

B2

= 2.

remains at 95% (the prescribed upper bound) for 10 days to suppress the number of
influenza infections while the treatment effort diminishes after the outbreak climax.
The controls are so effective that they nearly eliminate the occurrence of secondary
infections (see Figures 9(b) and 9(d)). In other words, under the optimal control
policy, it becomes rare that an individual acquire both a seasonal and a novel H1N1
infection. Since control u1 hinders the ability of the virus to spread, we can surmise
that it is more effective than control u2, which is supported by our simulations of
the optimal control pair. The simulations in Figures 9(c) and 9(e) illustrate the
differences in both severity and duration of the seasonal and novel H1N1 epidemics
with and without the implementation of controls for the case where B1

B2

= 2. The

corresponding graphs of the number of infections over time for B1

B2

= 10 and for
B1

B2

= 100 are qualitatively very similar to the case when B1

B2

= 2.
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The optimal control strategy in the presence of the “asymptomatics-only” sea-
sonal influenza control policy is one in which control u2 remains at a maximum
effort level for the same period of time as the model without vaccination and con-
trol u1 is maintained at a maximum for a shorter time span. Under the influence
of our vaccination strategy, the presence of controls results in a similar impact on
the total H1N1 infections as in the absence of vaccination, while seasonal influenza
manages to influence a larger proportion of the infected population. However, if the
controls were not present, the vaccine still plays an important part in minimizing
the seasonal influenza outbreak. We observed that in the presence of vaccination,
the optimal control results suggest that more effort should be placed in treatment
than when vaccination is absent from the system. This result is consistent with our
earlier finding that H1N1 cases increase in the presence of vaccination.

Implementing social distancing exclusively (scenario two) produces similar results
to using social distancing in conjunction with treatment, with only slightly higher
numbers of influenza cases under the various conditions we explored. In fact, social
distancing alone and the simultaneous implementation of the two control measures
both resulted in a more than 99% reduction in the number of influenza cases during
the control period. In a social-distancing-only control strategy, we also observe
qualitative changes in the optimal control function u2 as the cost of social distancing
is increased. As B1 increases, the duration for which we should implement social
distancing at maximum effort at the beginning of the outbreak decreases. For the
case where B1 = 20, the optimal control function is at a maximum for just over 20
days. When B1 = 100, our results suggest that maximum effort should be placed
for more than 10 days. In the scenario where B1 = 1000, the greatest amount of
effort placed in social distancing should be a little below 0.9, at the beginning of
the outbreak, and for roughly no more than 5 days.

Employing an influenza control program with only treatment (the third scenario)
is significantly less effective than a combination of social distancing and treatment,
or even social distancing alone. Regardless of whether or not the model includes vac-
cination, the optimal treatment-only control strategy actually increases the number
of seasonal influenza cases by between 13 and 16 percent. Conversely, novel H1N1
cases decrease by 63 or 73 percent, depending on whether or not our vaccination
strategy is executed. With vaccination and treatment, the total number of influenza
cases is reduced by 59%. Without vaccination, treatment-only control results in a
37% reduction in the number of influenza cases. Since vaccination alone results in a
reduction of cases (compared with no vaccination) by approximately 35% over the
100 day period, using treatment as a control measure may still be worthwhile if so-
cial distancing is not feasible. According to our model, if vaccines are not available,
treatment could be used as a substitute for vaccination, producing similar results.

While treatment reduces morbidity under any of the scenarios we have consid-
ered, concerns regarding the potential for the novel H1N1 virus to develop drug-
resistance may deter some policy makers from choosing a control strategy which
relies heavily on the use of antivirals.

4. Conclusions and future work. Fortunately, the novel A-H1N1 virus that
emerged in Mexico in the spring of 2009 never reached its full pandemic potential.
However, managing this epidemic still induced large economic costs, particularly
for poor and developing nations such as Mexico, and brought to the forefront the
need to develop epidemic control strategies that not only minimize the morbidity
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and mortality of an outbreak, but also the need to develop strategies that are eco-
nomically feasible for any country. Addressing this problem by applying optimal
control theory to the SAIR model for novel H1N1 allowed us to determine optimal
strategies for minimizing the H1N1 outbreak in a cost-effective manner. Using a
combination of social distancing and treatment, the optimal strategy reduced the
number of H1N1 infections by more than 99% during the 100-day control period; so-
cial distancing alone produced similar results. However, the optimal treatment-only
strategy only reduced morbidity by 63% when the cost was low. This percentage
decreases as the cost of treatment increases.

While the SAIR model provided some insights into what an optimal policy for
the novel A-H1N1 epidemic might be, we recognized that the presence of the sea-
sonal influenza epidemic, which also poses a significant health risk each year, might
further complicate the problems associated with H1N1. The numerical results and
simulations for the concurrent influenza epidemic model showed that administering
the seasonal influenza vaccine according to our “asymptomatics-only” vaccination
policy reduced the overall number of infectious individuals in an outbreak and kept
the number of wasted vaccines low. However, this strategy increased the number
of H1N1 infections. This increase is a byproduct of our model assumption that an
individual cannot be co-infected with a seasonal and a novel H1N1 influenza virus.
We also observed that when the initial population of those infected with seasonal
influenza is larger than that of H1N1, more vaccines are wasted.

Using optimal control theory, we determined that implementing treatment and
social distancing control measures optimally has a substantial effect on controlling
the number of infections during an outbreak. When social distancing begins, the
number of infectious individuals rapidly declines. The controls are so effective in
suppressing the spread of infection that they nearly eliminated secondary influenza
infection cases from arising. That is, individuals who acquire both seasonal and
novel H1N1 infections are rare under the optimal control policy. The optimal im-
plementation of both social distancing alone and social distancing in conjunction
with treatment resulted in a more than 99% reduction in the total number of in-
fluenza cases. The optimal treatment-only strategy reduced cases by 59% in the
presence of vaccination, and by 37% in the absence of vaccination. Although so-
cial distancing is more effective than treatment in controlling the disease, the effort
placed in treatment became more important in the presence of vaccination as well
as when the cost of social distancing increased relative to the cost of treatment.

When vaccination is eliminated from the model and the cost of social distancing
relative to treatment is high (B1

B2

=100), we observed that implementing control
measures for a 100-day time period was not long enough to suppress the influenza
outbreak. In fact, since the optimal control policy over this time period does not,
in any of the scenarios we examined, reduce the number of infectious cases to zero
by the 100th day, we expect to see an outbreak occur once control measures are
lifted. With control measures removed, the basic reproductive number R0 returns
to its original value of 1.8. An R0 value greater than one, along with a positive
number of infections will lead to an outbreak. However, in the case where both social
distancing and treatment controls are used with B1

B2

= 2, and the “asymptomatics-
only” vaccination policy is in place, the number of individuals in each infected
class is between zero and one. For practical purposes we can treat “less than
one” of an individual as zero individuals. Thus, in this scenario, we may assume
that the corresponding 100-day optimal control policy successfully eliminated the
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threat of an influenza outbreak occurring after the control measures are lifted.
In the remaining scenarios, although we cannot entirely prevent an outbreak from
occurring once control measures are lifted after only 100 days, extending the control
period would either mitigate the severity of the delayed outbreak, or if the control
period is extended sufficiently, bring the number of cases in each infectious class
below one by the end of the control period.

It is likely that even if the optimal control policy is known, that policy may not
be implemented precisely, or resources to implement the optimal policy may be
limited. While Lee et al. consider the problem of limited resources in an optimal
control problem using different, and more rigorous, techniques [24], we considered
what impact a 10, 20, 40, or 50 percent reduction in the optimal control effort might
have on the dynamics of a concurrent influenza outbreak. We present in Figure 10
the results for the scenario where social distancing and treatment measures are
implemented simultaneously. Initially, the number of infected individuals decreases
as it does when the optimal controls are implemented perfectly. However, the
number of cases begins to rise again, indicating that using a strategy less than the
optimal strategy has the effect of simply delaying the outbreak if we restrict our
policy to a 100-day window in time. During the 2009-2010 novel H1N1 epidemic, the
late arrival of novel H1N1 vaccines was of great concern. Thus, although it may be
unrealistic to completely prevent an outbreak from occurring using control measures
such as social distancing and treatment over a 100-day period, simply delaying
the outbreak until vaccines arrive might be helpful in mitigating the severity of a
pandemic.
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Appendix.

Proof of Theorem 2.1. The existence of an optimal control pair follows from Corol-
lary 4.1 of [19] and the following two facts: the integrand of J is convex with respect
to (u1, u2) and the state system is Lipshitz with respect to the state variables. The
following relationships follow directly from the application of Pontryagin’s Maxi-
mum Principle [30]:

dλ1(t)

dt
= −

∂H

∂S
,
dλ2(t)

dt
= −

∂H

∂D
,
dλ3(t)

dt
= −

∂H

∂R
,
dλ4(t)

dt
= −

∂H

∂R
,

with λi(tf ) = 0 for i = 1, 2, 3, and 4 evaluated at the optimal control pair and
corresponding states. These evaluations naturally lead to the Adjoint System (11).
The Hamiltonian H must be minimized with respect to the controls at the optimal
control pair and so we differentiate H with respect to u1 and u2 on the set Ω. These
computations lead to the following optimality conditions:

∂H

∂u1
= B1u1 + (λ1 − λ2)βS

(

A+ I

N

)

= 0 at u1 = u∗

1
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and

∂H

∂u2
= B2u2 + (−λ3 + λ4)γT I = 0 at u1 = u∗

1.

Solving for u∗

1 and u∗

2 gives

u∗

1 =
1

B1

[

βS

(

A+ I

N

)

(λ2 − λ1)

]

,

u∗

2 =
1

B2
[γT I(λ3 − λ4)] ,

Use of the bounds on LBi ≤ ui ≤ UBi for i = 1, 2 lead to the expressions in
(13).

Adjoint system for two-strain model with controls.

dλ1

dt
= λ1(β1(1 − u∗

1)J1 + β2(1 − u∗

1)J2 + ν) − λ2(β1(1− u∗

1)J1)

−λ7(β2(1− u∗

1)J2)− λ14(ν)

dλ2

dt
= −1 + λ1(β1(1− u∗

1)
S

N
)− λ2(β1(1− u∗

1)
S

N
− (α1 + ν)) − λ3(α1)

+λ9(β1(1− u∗

1)
R2

N
)− λ10(β1(1 − u∗

1)
R2

N
)− λ16(ν)

dλ3

dt
= −1 + λ1(β1(1− u∗

1)
S

N
)− λ2(β1(1− u∗

1)
S

N
) + λ3(γ1 + µ1)− λ4(γ1)

+λ9(β1(1− u∗

1)
R2

N
)− λ10(β1(1 − u∗

1)
R2

N
)

dλ4

dt
= λ4(β2(1 − u∗

1)J2)− λ5(β2(1− u∗

1)J2)

dλ5

dt
= −1 + λ1(β2(1− u∗

1)
S

N
) + λ4(β2(1− u∗

1)
R1

N
)

−λ5(β2(1− u∗

1)
R1

N
− α2)− λ6(α2)− λ7(β2(1− u∗

1)
S

N
)

+λ14(β2(1− u∗

1)
VS

N
)− λ15(β2(1− u∗

1)
VS

N
)

dλ6

dt
= −1 + λ1(β2(1− u∗

1)
S

N
) + λ4(β2(1− u∗

1)
R1

N
)− λ5(β2(1− u∗

1)
R1

N
)

+λ6(γ2(1 + u∗

2) + µ2)− λ7(β2(1− u∗

1)
S

N
) + λ14(β2(1− u∗

1)
VS

N
)

−λ15(β2(1− u∗

1)
VS

N
)− λ17(γ2(1 + u∗

2))

dλ7

dt
= −1 + λ1(β2(1− u∗

1)
S

N
) + λ4(β2(1− u∗

1)
R1

N
)− λ5(β2(1− u∗

1)
R1

N
)

−λ7(β2(1− u∗

1)
S

N
+ (α2 + ν)) − λ8(α2)− λ12(ν)

+λ14(β2(1− u∗

1)
VS

N
)− λ15(β2(1− u∗

1)
VS

N
)
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dλ8

dt
= −1 + λ1(β2(1− u∗

1)
S

N
) + λ4(β2(1− u∗

1)
R1

N
)− λ5(β2(1− u∗

1)
R1

N
)

−λ7(β2(1− u∗

1)
S

N
) + λ8(γ2(1 + u∗

2) + µ2)− λ9(γ2(1 + u∗

2))

+λ14(β2(1− u∗

1)
VS

N
)− λ15(β2(1− u∗

1)
VS

N
)

dλ9

dt
= λ9(β1(1− u∗

1)J1)− λ10(β1(1− u∗

1)J1)

dλ10

dt
= −1 + λ1(β1(1− u∗

1)
S

N
)− λ2(β1(1− u∗

1)
S

N
) + λ9(β1(1 − u∗

1)
R2

N
)

−λ10(β1(1− u∗

1)
R2

N
− α1)− λ11(α1)

dλ11

dt
= −1 + λ1(β1(1− u∗

1)
S

N
)− λ2(β1(1− u∗

1)
S

N
) + λ9(β1(1 − u∗

1)
R2

N
)

−λ10(β1(1− u∗

1)
R2

N
) + λ11(γ1 + µ1)− λ17(γ1)

dλ12

dt
= −1 + λ1(β2(1− u∗

1)
S

N
) + λ4(β2(1− u∗

1)
R1

N
)− λ5(β2(1− u∗

1)
R1

N
)

−λ7(β2(1− u∗

1)
S

N
) + λ12(α

∗

2)− λ13(α
∗

2) + λ14(β2(1 − u∗

1)
VS

N
)

−λ15(β2(1− u∗

1)
VS

N
)

dλ13

dt
= −1 + λ1(β2(1− u∗

1)
S

N
) + λ4(β2(1− u∗

1)
R1

N
)− λ5(β2(1− u∗

1)
R1

N
)

−λ7(β2(1− u∗

1)
S

N
) + λ13(γ2(1 + u∗

2) + µ2) + λ14(β2(1− u∗

1)
VS

N
)

−λ15(β2(1− u∗

1)
VS

N
)− λ17(γ2(1 + u∗

2))

dλ14

dt
= −λ15(β2(1− u∗

1)J2) + λ14(β2(1 − u∗

1)J2)

dλ15

dt
= −1 + λ1(β2(1− u∗

1)
S

N
) + λ4(β2(1− u∗

1)
R1

N
)− λ5(β2(1− u∗

1)
R1

N
)

−λ7(β2(1− u∗

1)
S

N
)− λ13(α2) + λ14(β2(1− u∗

1)
VS

N
)

−λ15(β2(1− u∗

1)
VS

N
− α2)

dλ16

dt
= −1 + λ1(β1(1− u∗

1)
S

N
)− λ2(β1(1− u∗

1)
S

N
)− λ3(α

∗

1)

+λ9(β1(1− u∗

1)
R2

N
)− λ10(β1(1− u∗

1)
R2

N
) + λ16(α

∗

1)

dλ17

dt
= 0
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