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Abstract. We previously proposed a compartmental model to explain the
outbreak of Chikungunya disease in Réunion Island, a French territory in In-
dian Ocean, and other countries in 2005 and possible links with the explosive
epidemic of 2006. In the present paper, we asked whether it would have been
possible to contain or stop the epidemic of 2006 through appropriate mosquito
control tools. Based on new results on the Chikungunya virus, its impact
on mosquito life-span, and several experiments done by health authorities, we
studied several types of control tools used in 2006 to contain the epidemic.
We present an analysis of the model, and we develop a new nonstandard finite
difference scheme to provide several simulations with and without mosquito
control. Our preliminary study shows that an early use of a combination of
massive spraying and mechanical control (like the destruction of breeding sites)
can be efficient, to stop or contain the propagation of Chikungunya infection,
with a low impact on the environment.

1. Introduction. In 2004, 2005, and 2006, epidemics of Chikungunya [40] hit In-
dian Ocean islands like Comoros, Réunion Island, and Mauritius [35], and more
recently India [28]. In Europe, a few cases were reported in summer 2007 in Italy
[37, 44, 11, 41]. It is now recognized that Aedes albopictus [20] was the principal
vector of transmission for the Chikungunya in Réunion Island [36] and even in some
parts of India [38], for instance, in Kerala where the outbreak was particularly dra-
matic [26]. Aedes albopictus, also known as the Asian tiger mosquito, is found in
Southeast Asia, the Pacific and Indian Ocean islands, and up north through China
and Japan. It recently was found in Europe [29], USA, and Australia [5]. It ap-
peared in Réunion Island one century ago and is now well established on the island
[10].

The symptoms of Chikungunya appear between 2 and 4 days after a bite by an
infected mosquito: high fever and headache, with arthritis affecting multiple joints
(like ankle and wrist). Symptoms can persist several weeks or months (see [34] for
further information). Infected people can be treated with drugs, but the efficacy
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of the treatment varies greatly from one person to another [34]. Finally, in the
absence of a vaccine, the main preventive measures to reduce the transmission of the
Chikungunya virus are individual protection against mosquito bites and mosquito
control.

Through research conducted in France and India, we are better able to explain
what happened in 2006 (see also [40] for an overview about Chikungunya). Till
the huge episode of 2006, no model was explicitly developed for Chikungunya, in
contrast to many models for other vector-borne diseases (see [1, 14, 16, 17, 22] and
references therein). Since then, a few models have been proposed [4, 13, 35].

The present paper considers the L-SEIR model proposed in [13], but we now
take into account recent results obtained on the virus [43] and the life-span of the
infected mosquitoes [15]. In particular, we show that mosquito life-span in the
different compartments has a direct impact on the existence or not of an endemic
equilibrium. Moreover, we added additional terms in the model related to the
different control tools we intend to study. Then, we computed the basic reproduction
number R0 (see [1, 14, 21, 22]) for the largest cities in Réunion Island, Saint-Denis
and Saint-Pierre.

We focused on the type of control tool for containing or stopping the epidemic.
Indeed, during the epidemic, the DRASS (a French government agency for disease
prevention and vector control) conducted several interventions, including:

• massive spraying using a chemical adulticide, Deltamethrin, to reduce the
number of adult mosquitoes. Note that Deltamethrin is the only authorized
adulticide in the European Union. Because Réunion Island has chaotic land-
scapes, most people live in the coastal lowlands, and thus, only truck-mounted
sprayers can be used to disperse the adulticide. This is done at night (be-
tween 2 am and 5 am). The problem is that this type of intervention can
be very detrimental to the environment [18]. In particular, the high toxicity
and the lack of specificity of Deltamethrin prevent spraying it near rivers or
sources. Yet, the population of Aedes albopictus in Réunion Island is sen-
sitive to Deltamethrin, which is not the case everywhere. For instance, in
Martinique, another French overseas department, located in the French West
Indies, 60% of the Aedes are Deltamethrin-resistant. Massive spraying is not
efficient in this case.

• localized treatment using a chemical larvicide, Bti (Bacillus thuringensis is-
raelensis), targeting the larvae in their breeding habitat before they mature.
Unfortunately, the impact of Bti seems not as efficient as that of adulticides.
In laboratory conditions the killing rate is good at least the first few days, but
in real conditions, i.e. in natural breeding sites, recent results show that it is
not so good [27].

• mechanical control (like ”Kass’Moustik”, see [25]) to reduce the number of
breeding sites. This effective means consists in eliminating standing water in
rain gutters, old tires, buckets, plastic covers, tree holes, or any other container
where mosquitoes can breed. It requires the help of the local population and
permanent work to maintain the number of breeding sites as low as possible.

Based on these three control tools, we wanted to determine whether it would
have been possible to contain or stop the epidemic. In particular, we compared the
efficiency of each control tool to choose the best one, having in mind that chemical
control tools may not be specific enough and that they may impact endemic species.



VECTOR CONTROL FOR THE CHIKUNGUNYA DISEASE 315

Remember that Réunion Island is one of the 35 hot spots of endemicity in the world
and thus, during massive spraying, it is necessary to conduct appropriate controls
to protect this endemic heritage and at the same time to reduce the mosquito pop-
ulation. In mid-February 2006, an estimated 45, 000 persons were infected by the
Chikungunya virus in Réunion Island. Thus, the French health authorities decided
to use mechanical control, massive adulticide spraying, and localized larvicide treat-
ment on the whole island. They estimated that only one third of the population
became sick. This result is far from the prevalence obtained in Comoros in 2006:
63% of the population was infected by the virus. Thus, we can suppose that either
more people were infected in Réunion Island, leading to a phenomenon of global
”resistance”, or that the combination of the different control tools helped to stop the
epidemic, or that other factors, like the impact of the virus on mosquito life-span
[15], have limited the spreading of the disease. The previous assumptions could
partly explain why no more outbreaks have appeared since the middle of 2006, just
isolated cases till March 2007.

The outline of the paper is as follows. Section two presents the compartmen-
tal L-SEIR model and some theoretical results: existence of a solution, existence
of disease-free equilibrium, existence of an endemic equilibrium, and stability and
instability properties of the disease-free equilibrium associated to the basic repro-
duction number R0. In section three, based on the work of Kamgang and Sallet
[24] and recent works by Anguelov et al. [2], we propose a new nonstandard finite
difference scheme. Section four presents several simulations according to the dif-
ferent control tools used in Réunion Island in 2006. The last section concludes the
paper.

2. The compartmental model for the Chikungunya disease: equilibrium,

basic reproduction number, global asymptotic stability. The Chikungunya
epidemiological cycle is like that of other vector-borne diseases (see Figure 1, page
316). The so-called L-SEIR model [13] is a compartmental model that classifies hosts
(the humans) into four epidemiological states: susceptible (or non-immune), Sh;
exposed, Eh; infectious, Ih; and resistant (or immune), Rh. As a first approach, we
assume that the total population Nh is constant, because we are mainly interested
in the years following the beginning of the epidemic.

Female mosquitoes are also classified into four epidemiological states: susceptible,
Sm; exposed, Em; infectious, Im; and aquatic, Am. The aquatic state includes
the eggs, larvae, and pupae. Both humans and mosquitoes are assumed to be
born susceptible. The exposed (or incubating) states, Eh and Em, reflect the viral
intrinsic and extrinsic incubation periods, 1

νh
days and 1

ηm
days, respectively. The

extrinsic incubation period is the time necessary for the virus to follow a cycle that
brings it from the mosquito’s stomach to its salivary gland. This incubation period
can vary greatly depending, for example, on the temperature. For humans, the
intrinsic incubation period or latent period is the period from the onset of infection
to the beginning of infectiousness. An infected human is infectious during 1

ηh
days,

called the viremic period, and then becomes resistant or immune.
Cross-infection between humans and vectors is modeled by the mass-action prin-

ciple normalized by the total population of humans. Every day, each mosquito bites,
on average, B times. βmh is the probability that a bite will lead to host infection,
which implies that Bβmh represents the contact rate between infectious mosquitoes
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Figure 1. A compartmental model for the Chikungunya disease

and susceptible hosts. Similarly, Bβhm is the contact rate between infectious hosts
and susceptible mosquitoes.

K is the carrying capacity of breeding sites. The average lifespan for susceptible
mosquitoes is 1/µm, the average lifespan of the exposed mosquitoes is 1/µE days,
while the average adult lifespan for infected mosquitoes is 1/µmoi. The last two
assumptions are new in the modeling of vector-borne diseases. Indeed, for other
vector-borne diseases it has never been observed that the virus influences the lifespan
of an infected mosquito. But in Réunion Island, it was recently proven that the
lifespan of the infected mosquito is almost halved, which influences the dynamic of
the disease [15]. Thus 1/µmoi ≤ 1/µE ≤ 1/µm.

Vertical transmission was not taken into account because it was very recently
shown that vertical transmission of Chikungunya has not played a key role in the
maintenance of the virus in Réunion Island [45].
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Then, we add new terms in the model to assess the different control tools studied:
cA is the additional mortality rate due to the larvicide, cm is the additional mortality
rate due to the adulticide, and α is the parameter associated with the efficacy of
the mechanical control.

Estimates of the parameters are given in Table 1, page 324.
From the aforementioned, we obtain the following systems of equations















dSh

dt
(t) = µhNh − Bβmh

Im

Nh
Sh − µhSh

dEh

dt
(t) = Bβmh

Im

Nh
Sh − νhEh − µhEh

dIh

dt
(t) = νhEh − ηhIh − µhIh

dRh

dt
(t) = ηhIh − µhRh

(1)

and














dAm

dt
(t) = µb

(

1 − Am

αK

)

(Sm + Em + Im) − (ηA + µA)Am − cAAm,
dSm

dt
(t) = −Bβhm

Ih

Nh
Sm − (µm + cm) Sm + ηAAm,

dEm

dt
(t) = Bβhm

Ih

Nh
Sm − (µE + cm)Em − ηmEm,

dIm

dt
(t) = ηmEm − (µmoi + cm) Im,

(2)

with the following initial conditions (Nh − 1, 0, 1, 0, αK, mNh, 0, 0), where m is a
positive integer. In the forthcoming computations and numerical simulations, we
will consider K = kNh, where k is a positive integer.

Using the fact that Sh + Eh + Ih + Rh is constant, equal to Nh, system (1)-(2)
can be rewritten in the following way:

dX

dt
= A(X)X + F (3)

with X = (Sh, Eh, Ih, Am, Sm, Em, Im)T , A(X) =
















−Bβmh
Im
Nh

−µh 0 0 0 0 0 0

Bβmh
Im
Nh

−νh−µh 0 0 0 0 0

0 νh −ηh−µh 0 0 0 0
0 0 0 −A44 µb µb µb

0 0 0 ηA −Bβhm
Ih
Nh

−µm−cm 0 0

0 0 0 0 Bβhm
Ih
Nh

−µE−ηm−cm 0

0 0 0 0 0 ηm −µmoi−cm

















such that A44 = (cA + µA + ηA + µb
Sm+Em+Im

αK
), and F = (µhNh, 0, 0, 0, 0, 0, 0)T .

Note that A(X) is a Metzler Matrix, i.e. a matrix such that off-diagonal terms are
nonnegative for all X ∈ R

7
+. Thus, using the fact that F ≥ 0, system (3) is positively

invariant in R
7
+, which means that any trajectory of the system starting from an

initial state in the positive orthant R
7
+ remains forever in R

7
+. The right-hand side

is Lipschitz continuous: there exists a unique maximal solution.
Let G = {(Sh, Eh, Ih, Am, Sm, Em, Im) ∈ R

7
+/Am ≤ αkNh, Sh + Eh + Ih ≤

Nh and Sm + Em + Im ≤ mNh}. Since m ≥ ηA

µm+cm
αk, it can be verified that

G is positively invariant with respect to (3). Thus, from now on, we suppose that
m and k are choosen such that

m ≥ ηA

µm + cm

αk (4)

and we set

N =
µbηA

(µm + cm)(cA + ηA + µA)
.

Then, we prove
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Proposition 2.1. • If N ≤ 1, then, system (1)-(2) has only one Trivial (Dis-
ease Free) Equilibrium TE = (Nh, 0, 0, 0, 0, 0, 0, 0).

• If N > 1, then, system (1)-(2) has a biologically Realistic Disease-Free Equi-
librium, called hereafter RDFE, (Nh, 0, 0, 0, Am0, Sm0, 0, 0), with

Am0 =
(

1 − 1
N

)

αkNh,
Sm0 =

(

1 − 1
N

)

ηA

µm+cm
αkNh.

Proof : Appendix A

Remark 2.2. The first steady state TE, the ”Trivial Equilibrium”, corresponds to
a human population free of mosquitoes, while the second one, RDFE, is the steady
state of a human population in the presence of mosquitoes.

Then, following [42], we prove

Proposition 2.3. If N > 1, then, the basic reproduction number associated to
(1)-(2) is

R2
0 =

ηmνhB2βhmβmh

(νh + µh)(ηh + µh)(µmoi + cm)(µE + ηm + cm)

(

1 − 1

N

)

ηA

µm + cm

αk. (5)

RDFE is locally asymptotically stable if R0 < 1 and unstable if R0 > 1 .

Proof. see Appendix B.

Remark 2.4. Without control, following the parameters given in Table 1, page
324, we have N > 1. Thus, the only possible disease-free equilibrium is RDFE.
Even if we consider a mechanical control, i.e 0 < α < 1, RDFE still exists. This is
no longer true when we consider chemical control tools, i.e. when we choose cA, and
cm such that N becomes less than 1. In that case, the only disease-free equilibrium
is TE.

We now turn to the existence of an endemic equilibrium. We prove the following

Proposition 2.5. Let N > 1, µm ≤ µE ≤ µmoi, and R2
0 > 1. There exists a

unique endemic equilibrium.

Proof. see Appendix C.

2.1. Global asymptotic stability of TE and RDFE. Let us denote by γ(A)
the stability modulus of A, i.e. γ(A) = maxλ∈Sp(A) Re(λ). Then, following G,
defined on page 5, we now consider the bounded set D:

D = {(Sh, Rh, Am, Sm, Eh, Ih, Em, Im) ∈ R
8
+/Am ≤ αkNh, Sh + Eh + Ih + Rh =

Nh and Sm + Em + Im ≤ mNh}. First, we prove the following

Proposition 2.6. If N < 1, then, TE is globally asymptotically stable.

Proof. From the previous proposition, if N ≤ 1, we know that there exists a unique
equilibrium TE. Now, setting Y = X − TE, we can rewrite (3) in the following
manner

dY

dt
= B(Y )Y (6)
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with B(Y ) =


















−Bβmh
Y8
Nh

−µh 0 0 0 0 0 0 −Bβmh

Bβmh
Y8
Nh

−νh−µh 0 0 0 0 0 Bβmh

0 νh −ηh−µh 0 0 0 0 0
0 0 ηh −µh 0 0 0 0
0 0 0 0 −B44 µb µb µb

0 0 0 0 ηA −Bβhm
Y3
Nh

−µm−cm 0 0

0 0 0 0 0 Bβhm
Y3
Nh

−µE−ηm−cm 0

0 0 0 0 0 0 ηm −µmoi−cm



















,

and B44 = (cA+µA+ηA+µb
Y6+Y7+Y8

αK
). It is clear that TEY = (0, 0, 0, 0, 0, 0, 0, 0) is

the only equilibrium. Then, it suffices to consider the following Lyapunov function
V (Y ) =< W, Y >, with W = (1, 1, 1, 1, 1

µb
, 1

µm+cm
, 1

µm+cm
, 1

µm+cm
) >> 0. Thus,

we have V (Y ) > 0 except for Y = TEY . Straightforward computations show that

V̇ (Y ) = < W,B(Y )Y >

=
(

1 − Y5

αK

)

(Y6 + Y7 + Y8) − µA+ηA+cA

µb
Y5 − µh (Y1 + Y2 + Y3 + Y4)

+ ηA

µm+cm
Y5 − Y6 − µE+cm

µm+cm
Y7 − µmoi+cm

µm+cm
Y8.

Thus,

V̇ (Y ) = − Y5

αK
(Y6 + Y7 + Y8) − Y5 (1 −N ) µA+ηA+cA

µb

−µh (Y1 + Y2 + Y3 + Y4) −
(

µE+cm

µm+cm
− 1

)

Y7 −
(

µmoi+cm

µm+cm
− 1

)

Y8.

(7)
Then, using the fact that µm ≤ µE ≤ µmoi, we deduce that µE+cm

µm+cm
≥ 1 and

µmoi+cm

µm+cm
≥ 1, which implies that V̇ (Y ) ≤ 0 if N < 1. Moreover, the maximal

invariant set contained in {V |V̇ (Y ) = 0} is TEY . Thus, from Lyapunov theory, we
deduce that TEY and thus, TE is GAS if N < 1.

Proving that RDFE is globally asymptotically stable is a very difficult task.
Also, there is no general result for epidemiological problem apart [7, 24]. Following
[23, 24] and [13], we prove that RDFE is globally asymptotically stable under a
certain threshold condition. Using the approach of Chavez et al. [7], it is possible
to rewrite (1)-(2) in the following manner

{

ẋS = A1(x)(xS − xRDFE,S) + A12(x)xI ,
ẋI = A2(x)xI ,

(8)

where xS is the vector representing the state of different compartments of non-
transmitting individuals (e.g. susceptible, immune) and the vector xI represents
the state of compartments of different transmitting individuals (e.g. infected, ex-
posed). Here, we have xS = (Sh, Rh, Am, Sm)T , xI = (Eh, Ih, Em, Im)T , and
xRDFE,S = (Nh, 0, Am0, Sm0)

T , with

A1(x) =









−µh 0 0 0
0 −µh 0 0

0 0 −(cA + µA + ηA + µb
Sm

αK
) µb(1 − Am0

αK
)

0 0 ηA −(µm + cm)









,

A12(x) =









0 0 0 −Bβmh
Sh

Nh

0 ηh 0 0
0 0 µb

(

1 − Am

αK

)

µb

(

1 − Am

αK

)

0 −Bβhm
Sm

Nh
0 0








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and

A2(x) =









−(νh + µh) 0 0 Bβmh
Sh

Nh

νh −(ηh + µh) 0 0

0 Bβhm
Sm

Nh
−(µE + ηm + cm) 0

0 0 ηm −(µmoi + cm)









A direct computation shows that the eigenvalues of A1(x) are real and negative.
Thus, the system ẋS = A1(x)(xS − xRDFE,S) is GAS at xRDFE,S . Note also that
A2(x) is a Metzler matrix. We set

R2
G =

ηmνhB2βhmβmh

(νh + µh)(ηh + µh)(µmoi + cm)(µm + ηm + cm)
m. (9)

Let us recall the general result proved in [23, 24]:

Theorem 2.7. Let D ⊂ R
4
+×R

4
+, the compact subset defined in page 6. The system

(8) is of class C1, defined on U . If

1. D is positively invariant relative to (8);
2. The system ẋS = A1(xS , 0)(xS − xRDFE,S) is GAS at xRDFE,S ;
3. For any x ∈ D, the matrix A2(x) is Metzler irreducible;
4. There exists a matrix A2, which is an upper bound of the set M = {A2(x) ∈

R
4×4|x ∈ D}, with the property that if A2 ∈ M, for any x ∈ D, such that

A2(x) = A2, then, x ∈ R
4 × {0};

5. The stability modulus of A2 satisfies γ(A2) ≤ 0.

Then, RDFE is GAS in D.

Finally, using the same reasoning and computations as in [13], we show that
γ(A2) ≤ 0 if RG ≤ 1, which leads to the following

Theorem 2.8. If N > 1 and RG ≤ 1, then, RDFE is globally asymptotically
stable in D.

Remark 2.9. Following (4), we have

R2
G =

(

m

αk

µm + cm

ηA

) N
N − 1

R2
0 > R2

0,

showing that R2
G is not necessarily an optimal threshold parameter.

Remark 2.10. The previous results are of utmost importance, because they show
that if at any time, through appropriate interventions (e.g. destruction of breeding
sites, massive spraying....), we are able to lower N or R0 and RG to less than 1
for a sufficiently long period, then the disease can disappear (see the simulations
hereafter).

Remark 2.11. Instead of considering the compact subset D, it is possible to con-
sider the particular compact subset DSm0 = {(Sh, Rh, Am, Sm, Eh, Ih, Em, Im) ∈
R

8
+/Am ≤ αkNh, Sh + Eh + Ih + Rh = Nh and Sm + Em + Im ≤ Sm0} in Theorem

2.7. Then, using the same computations, it is possible to show that DFE is GAS in
DSm0 if N > 1 and R0 ≤ 1.

After the huge episode of 2006, the DRASS carried out several interventions,
like the destruction of breeding sites, and these can partly explain why no more
outbreaks appeared. Only a few cases were reported from time to time but none
since March 2007.
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3. Construction of a dynamically consistent scheme. Numerical simulations
are crucial in the study of deterministic models. But not all numerical methods are
suitable for solving an epidemiological model (see for instance [3]). Nonstandard
finite difference schemes have shown their great potential in many areas of research
(for an overview, see [31, 33]). In [13], the authors have presented a nonstandard
finite difference scheme [30, 32] that preserves the positivity of the solutions as well
as the relation Sh +Eh +Ih +Rh = Nh and the local asymptotic stability of RDFE
since R0 < 1.

Here, we propose a new nonstandard finite difference scheme, that preserves
the previous properties and in particular the global asymptotic stability property
of RDFE. Thus, following Mickens’ rules [30, 32], we approximate the nonlinear
terms in a nonlocal way and the linear terms in an explicit way. Moreover, instead
of considering the classical denominator ∆t, we consider a time step function φ(∆t)
such that φ(∆t) = ∆t+O(∆t2). Thus, using a suitable time-step function, we obtain
a scheme that preserves the equality Sh + Eh + Ih + Rh = Nh, the positivity of the
solution as well as the equilibria and the stability/instability property associated
to the Realistic Disease-Free Equilibrium, RDFE (see [2]), for all ∆t > 0, when
N > 1. In fact, to construct our discrete scheme, we consider equation (8) instead
of equation (3). Let Xn be an approximation of X (tn), where tn = n∆t, n ∈ N

and ∆t > 0. Thus, a nonstandard approximation for system (1)-(2) is given by














Xn+1
S − Xn

S

φ(∆t)
= A1(X

n) (Xn
S − XRDFE,S) − D12(X

n
I )Xn+1

S + B12(X
n)Xn

I ,

Xn+1
I − Xn

I

φ(∆t)
= A2

(

Xn+1
S

)

Xn
I

(10)
such that

− D12(XI)XS + B12(X)XI = A12 (X)XI , (11)

with

D12(XI) =









Bβmh
Im

Nh
0 0 0

0 0 0 0
0 0 0 0

0 0 0 Bβhm
Ih

Nh









,

and

B12 (X) =









0 0 0 0
0 ηh 0 0

0 0 µb

(

1 − Am

αK

)

µb

(

1 − Am

αK

)

0 0 0 0









,

which implies that the scheme is consistant with formulation (8).

Remark 3.1. The matrix formulation seems to be quite complicated relative to
the system formulation, but it permits us to prove several results in a very efficient
way.

Summing lines 1, 2, 5, and 6 in (10) shows that Sn+1
h + En+1

h + In+1
h + Rn+1

h =
Sn

h + En
h + In

h + Rn
h for all n ≥ 0 and all ∆t > 0. Thus, using the fact that

S0
h + E0

h + I0
h + R0

h = Nh, we deduce that Sn
h + En

h + In
h + Rn

h = Nh for all n ≥ 0.
The scheme (10) can also be rewritten in the following way:

{

AnXn+1 = bn

X0 ≥ 0,
(12)
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with

An =

(

Id + φ(∆t)D12(X
n
I ) 0

0 Id

)

and

bn =

(

Xn
S + φ(∆t) (A1(X

n) (Xn
S − XRDFE,S) + B12(X

n)Xn
I ) ,

(

Id + φ(∆t)A22(X
n+1
S )

)

Xn
I

)

.

Noticing that An is a diagonal matrix, (12) leads to the following numerical scheme:






Xn+1
S = (Id + φ(∆t) (D12(X

n
I )))

−1
(Xn

S + φ(∆t) (A1(X
n) (Xn

S − XRDFE,S)+
+B12(X

n)Xn
I ))

Xn+1
I =

(

Id + φ(∆t)A2(X
n+1
S )

)

Xn
I .

(13)
The Kamgang-Sallet approach used for (10) ensures that RDFE is a fixed point

of (10), as well as is TE. Using special matrices arguments [6, 19], it is possible to
show the following:

Lemma 3.2. The scheme (12) is positively stable for all ∆t > 0.

Proof. We suppose Xn ≥ 0. An is a positive diagonal matrix and thus, A−1
n ≥ 0.

It suffices to show that bn ≥ 0. B12 is a positive matrix and a direct computation
shows that −A1(X)(XRDFE,S) ≥ 0. Finally, it suffices to choose φ(∆t) such that

Id + φ(∆t)A1(X) ≥ Id + φ(∆t)A
¯ 1 ≥ 0,

Id + φ(∆t)A2(XS) ≥ Id + φ(∆t)A
¯ 2 ≥ 0,

for all X ∈ D, where A
¯ 1 and A

¯ 2 are lower bounds for the sets {X ∈ D|A1(X)} and
{X ∈ D|A2(X)} respectively. Then, considering the following time-step function

φ(∆t) =
1 − exp(−M∆t)

M
, (14)

with

M ≥ max
(

µh + νh, µh + ηh, µE + ηm + cm, µmoi + cm, µA + ηA + cA + µb

m

αk

)

.

implies that bn ≥ 0. Altogether we have proved that Xn ≥ 0 implies Xn+1 ≥ 0.
Hence, by induction, the result is true for all n.

Equation (13) can be rewritten in the following formulation
{

Xn+1
S = g(Xn

S , Xn
I ),

Xn+1
I = A(Xn

S , Xn
I )Xn

I ,
(15)

for n ≥ 0 with

A(XS , XI) = Id + φ(∆t)A2(XS).

In [2], we have showed the following result:

Theorem 3.3. [2] Let system (15) satisfy the following conditions:

D1 the system is dissipative on D;
D2 the subsystem Xk+1

S = g(Xk
S ,0) is globally asymptotically stable at the equi-

librium XRDFE,S on D1 = {XS ∈ R
n1 : (XS ,0) ∈ D};

D3 A(XS , XI) is nonnegative for all (XS , XI)
T ∈ D;

D4 there exists an upper bound A of the set M = {A(XS, XI) : A(XS , XI) ∈ D}
and A is irreducible;
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D5 either (D5.1) ρ(A) < 1
or (D5.2) ρ(A) = 1 and A(X) >> 0, X ∈ D,

and (A(XS , XI) = A =⇒ XI) has a zero coordinate).

Then, (XRDFE,S , 0) is a GAS equilibrium of (15) on D.

In some sense, our theorem is an extension of the result from Kamgang and Sallet
to discrete systems (see (13)). Finally, using the previous theorem, we show the
following important result:

Proposition 3.4. If N > 1 and RG < 1, then, RDFE is a GAS equilibrium of
(15), for all ∆t > 0.

Proof. see Appendix D.

Remark 3.5. This result is very important. In general, even if an equilibrium of
the continuous problem is globally asymptotically stable, it is not necessary that
this property holds for the numerical scheme. Actually, it is very difficult to find
or to construct a numerical scheme that handles this global asymptotic stability
property. Here, we show that the nonstandard finite difference method can be very
helpful to construct such a scheme. In that sense our scheme is superior to the
scheme proposed in [13] and, it is said to be dynamically consistent, irrespective of
the values of the time step size.

4. Numerical simulations and control. We now present some simulations for
the two largest cities of the Réunion Island: Saint-Denis, the capital, located in the
North, and Saint-Pierre, in the South-West. These cities are at sea-level. More-
over, we compare our simulations with real data, corresponding to declared cases,
recorded (with corrections) since the beginning of the outbreak by the DRASS in
cooperation with the CIRE (both French government health authorities) through a
sentinel network. The major difference between our simulations and the simulations
given in [13] is that here we consider the evolution of infected humans (and not only
the new cases) per week. Indeed, using the fact that the average viremic period is
3 days, we use the data recorded in 2005 to obtain the number of infected people
per week, which can be compared with the simulated Ih.

4.1. Parameters and simulations. In Table 1, page 324, and Table 2, page 325,
we give the parameters used in the computations. We have included new knowledge
on the virus and Aedes albopictus. In this Table, some parameters can change from
place to place. Most of the values were obtained from entomologists and are related
to experiments on Aedes albopictus conducted by Dr. H. Delatte (CIRAD, France)
(see [8, 9]) and Dr. A. Failloux (Institut Pasteur, France) (see [43]), or obtained
through an adjustment of the numerical results to the data recorded during the
epidemic of 2005.

4.2. Simulations without vector control. We first consider that cA = cm = 0
and α = 1. These values correspond to the period of the first peak in 2005 when
there was no control policy. At time t = 0, we assume that one human is infectious,
i.e. Ih(0) = 1. In the following computations (see Figures 2 and 3, page 325), we
consider only the two largest cities in Réunion Island: Saint-Denis and Saint-Pierre.
We suppose that at the beginning of each episode (t = 0 in our Figures), there are
m female mosquitoes per human, i.e. the whole population of female mosquitoes is
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Parameters Description average value,
range of values

B average daily biting (per day) 1
βmh transmission probability from Im (per bite) ≈ 0.375
βhm transmission probability from Ih(per bite) ≈ 0.375
1/µh average lifespan of humans (in days) 78 × 365
1/ηh average viremic period (in days) 3
1/µm average lifespan of adult mosquitoes (in days) 11
1/µE average lifespan of exposed mosquitoes (in days) 10

1/µmoi average lifespan of infected mosquitoes (in days) 5
µb nbr of eggs at each deposit per capita (per day) 6
µA natural mortality of larvae (per day) [3; 5]
ηA maturation rate from larvae to adult (per day) ≈ 0.08

1/ηm extrinsic incubation period (in days) 2
1/νh intrinsic incubation period (in days) 3

Table 1. Epidemiological and entomological parameters.

thus Sm(0) = m × Nh. In the same way, for the maximal capacity K, we consider
a number k of larvae per human. K is given by K = k × Nh and we choose
Am(0) = k ×Nh. In Table 2, page 325, we summarize the initial values used in the
computations for each city. Note that k and m verify assumption (4).

Figure 2. Evolution of the infected population per week in Saint-
Denis in 2005; comparison of simulated data (blue) with real data
(green).

Remark 4.1. We begin our simulations in March 2005. This is the end of the rainy
season in Réunion Island. According to entomologists, the number of mosquitoes is
maximal in the end of the rainy season in Réunion Island. This is why we consider
a high number of susceptible mosquitoes at the begining of our simulations. This
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Figure 3. Evolution of the infected population per week in Saint-
Pierre in 2005 ; comparison of simulated data (blue) with real data
(green).

city Nh m k
Saint-Denis 130000 5 2
Saint-Pierre 73000 3 2

Table 2. Initial values for each city

fact explains partly why a small outbreak appeared in 2005, although the estimated
basic reproduction number is less than 1.

In Table 3, page 325, we summarize the results obtained for R2
0 and R2

G. In

Towns R2
0 R2

G

Saint-Denis 0.7 7.7
Saint-Pierre 0.57 4.6

Table 3. R2
0 and R2

G for Saint-Denis and Saint-Pierre in May 2005

2005, our simulations show that R0 < 1, indicating a small outbreak with a fast
decay to RDFE, as expected from the theory. In general, because Saint-Denis and
Saint-Pierre are at sea-level, we obtain almost identical results . Also, recall that
the model and the simulations give only a mean behavior of the time course of the
disease; hence, it is impossible to fit the real values. According to the model, the
disease should have disappeared after a while in 2005, but this did not happen.

Indeed, the disease survived the dry period and rose again in December 2005-
January 2006, at the beginning of the rainy season. Many assumptions have been
made to explain the sudden large outbreak in December 2005-May 2006. Because
R0 was less than 1 in 2005, it should have been impossible to have an outbreak of
such amplitude in 2006. Yet, it is known that mosquitoes are able to survive during
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the dry period, which can explain why during this period (from June to October)
some cases appeared from time to time in Réunion Island. Another important
factor was pointed out by Vazeille et al. [43]: two strains of the virus were isolated
in Réunion Island. The first one, strain 05.115, was isolated in May 2005, during
the first outbreak, and the second one, strain 06.21, was isolated later, in November
2005. Vazeille et al. proved that strain 06.21 had a larger rate of transmission
from human to mosquito. In fact, through several experiments, they showed that
βhm increased from 0.37 for the first strain (May 2005) to 0.95 for the second
strain (November 2005). This implies new values for R0, see Table 4. In particular
the basic reproduction number becomes greater than 1, which could explain the
renewal of the epidemic in December 2005 (see Figs. 4 and 5) (see also [13] for
further explanations and simulations).
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Figure 4. Simulation of the evolution of the infected population
per week in Saint-Denis from 2005 till 2008

Of course, this is not the only way to explain the amplitude of the outbreak of
2006, but it seems that this ”optimal” rate of transmission, associated to a small
extrinsic incubation period (only two days! [15]), gives a perfect combination for
a wide and fast spread of the disease, no matter what the number of mosquitoes
was. Indeed, recent models have considered a periodic amplitude in the mosquito
population for vector-borne diseases and this assumption seems to be realistic for
such diseases, like Dengue, for which the extrinsic incubation time is far longer.
But for the special case of Chikungunya, it appears that only a minimal number of
mosquitoes, with an optimal rate of transmission, could be sufficient to spread the
epidemic.
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Figure 5. Simulation of the evolution of the infected population
per week in Saint Pierre from 2005 till 2008

Towns R2
0 R2

G

Saint-Denis 1.78 19.58
Saint-Pierre 1.46 9.64

Table 4. R2
0 and R2

G for the Saint-Denis and Saint-Pierre in No-
vember 2005

These results about the variation of R0 are important because they show that,
in some places, interventions for vector control must be immediate and strong. At
the beginning of an epidemic, it is important to localize places where the basic
reproduction number has a good chance of being large [13].

Tables 3 and 4 indicate clearly that R2
G is only of theoretical interest, because,

practically, it seems quite difficult to get values less than 1. The different simulations
showed that the the parameter to be used is still the basic reproduction number
R0, even if we only proved a local stability result for RDFE.

In particular, in February 2006 and after, the DRASS conducted several inter-
ventions to reduce the number of breeding sites or adult mosquitoes. Thus, consid-
ering recent information on the evolution of virus virulence, we wanted to know if
the epidemic could have been controlled through fast and early interventions, like
“Kass’Moustic” or chemical control tools.
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In the next section, we present various simulations to assess the efficacy of control
tools to reduce the mosquito population.

4.3. Assessing the efficacy of mosquito control tools. In this section, we
consider several control tools that could stop, contain, or eradicate the disease: an
adulticide, Deltamethrin; a larvicide, Bti ; a mechanical control; and combinations
of these. Here, we focus only on Saint-Denis, the capital.

To measure the efficacy of the control tools, we compare the cumulative number

of infected humans, i.e. CH =
∑N

n=0 In
h , over a certain period [0, T ], with and

without control. Thus, we consider the following fraction:

F c
0 = 100

Cc
H

C0
H

,

where C0
H and Cc

H are the cumulative numbers of infected humans without and
with control respectively. Hence, F c

0 indicates the efficacy of the control tools to
reduce the number of infected humans over a certain period: the lower F c

0 is, the
better the control tool is.

Remark 4.2. In the following simulations, we assume that the disease is eradicated
as soon as the number of infected humans per week is less than 0.75. It is possible to
consider another threshold, like 0.5 or 0.25. We have verified that our simulations
are not sensitive to the choice of the threshold, i.e. whatever the threshold, we
obtained the same kind of results.

4.3.1. Adulticide only. The peak of the epidemic was in mid-February 2006, and one
may wonder whether massive spraying was effective and whether it was begun early
enough? In 2005, there was an episode of Chikungunya and thus, maybe, it would
have been preferable to plan massive spraying before the beginning of the rainy
season and just after the episode of 2005. When sprayed in an open environment,
Deltamethrin seems to be effective only during a couple of hours [18].

Several numerical simulations were run to test different possible scenarios to
control or eradicate the disease. In particular, we considered three important pa-
rameters:

• the periodicity of the treatment, τ : we assume that the spraying is done every
τ days, with τ = 15, 30, and 60 (the treatment is not efficient for longer
periods). Note also that 30 days is the minimal time for the DRASS agency
to conduct massive spraying in different large places. But, sometimes, when
the epidemic is highly localized, it is possible to plan a 15-day treatment.

• the start date of the treatment, ti, corresponds to the time lag between the
emergence of the first case, in March 2005 in Saint-Denis, and the beginning
of the treatment. We mainly consider two start dates, namely ti = 100 days,
which corresponds to a couple of days after the peak of the outbreak of 2005,
and ti = 200 days, which corresponds approximately to the beginning of the
rainy season. Sometimes we consider ti = 300, which corresponds to January
2006.

• the adulticide killing rate, cm: we considered different rates, i.e. c∗ = 0.2,
0.5, and 0.8. In the laboratory, the killing rate is about 1 but in real con-
ditions it is not; a DRASS study in 2006 showed that the mortality of the
mosquitoes after spraying varied between 20% and 80%, depending on pa-
rameters like the distance from the truck-mounted sprayer and the weather.
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This is why it is necessary to consider various killing rates in the simulations.
Moreover, Deltamethrin has a very short residual action [18]. From the ento-
mologists’ point of view, it is also not realistic to consider that an adulticide,
like Deltamethrin, can be efficient no more than one day. Thus, we will con-
sider that the adulticide is active only one day. The parameter cm can be
defined as follows

cm (t) =

{

c∗, if t = ti + jτ
0, elsewhere,

where j depends on the duration of the treatment. Thus, in the case of
massive spraying, we consider in fact ”pulse control”, i.e. the control is not
continuous in time but is effective only one day every τ days. This control is
what happened in real conditions. Our aim is to consider simulations that are
as close as possible from real experiments.

Remark 4.3. Our ”pulse” adulticide control can be compared to ”pulse vac-
cination” strategy considered in SIR and SEIR epidemic models (see [12, 39],
for instance).

We ran simulations for a period of 600 weeks, which corresponds approximately
to 11 years. After some runs, two important facts appeared clearly: the periodicity
and the start date are of utmost importance in the control of the epidemic. Clearly,
the sooner the interventions begin, the quicker the outbreak will stop or decrease.

We considered the start date ti = 100 and a treatment duration of 150 days.
Figure 6(a) shows the evolution of F c

0 (the level lines) with respect to the adulticide
killing rate and the periodicity of the treatment. If the adulticide killing rate is
between 0.5 and 0.8, and the periodicity is 15 days, then, the number of infected
humans is decreased by 95%, i.e. F c

0 ≈ 5%. Note also, that for entomologists, the
adulticide killing rate in field experiments is expected to be in the interval [0.2; 0.5]
[18]. Thus, with the previous treatment, the decay in the infected human population
should vary between 0% and 80%, depending on the periodicity of the spraying.
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Figure 6. Evolution of F c
0 with respect to the killing rate and

the periodicity of the treatment . The start date of the adulticide
treatment is 100, and the duration of the treatment equal to: (a)
150 days; (b) 300 days

If the duration of the treatment is 300 days (Figure 6(b)), then, the number of
infected humans can decrease by 95% even if the adulticide rate is about 0.3.
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Note that the treatment and the way to use it can have severe drawbacks: if we
increase the number of sprayings or the duration of the treatment, we can obtain
a delay of the epidemic or a kind of periodic behavior during the years following
the begining of the epidemic. If the treatment duration is not sufficiently long,
an epidemic can rise again. Thus, it appears clearly that this type of control tool
should be used with care and the best way to have a large and ”permanent” impact
is to use it as a short periodic treatment, like 15 days, in particular if the adulticide
killing rate is low. In fact, this is now the procedure in Réunion Island: very
localized interventions with a 15-day periodicity. Since March 2007, there have
been no new Chikungunya cases in Réunion Island, despite an estimated prevalence
of about 37% (for epidemiologists, as long as the prevalence of the population, i.e.
the percentage of the population infected by the virus, is less that 60− 65%, a risk
of a new epidemic exists).

In fact, the later the start date of the adulticide treatment is (for instance ti =
200, 300), the higher the killing rate must be to give satisfactory results.

Another important factor is the reaction time needed to plan field interventions.
Figure 6 shows that if the control in 2005 had been planned sufficiently early dur-
ing the first episode of Chikungunya, then, then the huge epidemic of 2006 could
have been avoided. Of course, this does not indicate that we are done with the
Chikungunya virus. As long as a large fraction of the population is susceptible, a
new outbreak can appear as soon as an infectious host or an infectious mosquito
appears. Moreover, spraying can in some cases just delay the epidemic and not
necessarily prevent the rise of a new outbreak several years later. This is why it is
so important to develop a sentinel network to alert the authorities when new cases
appear in order to focus land interventions against a localized outbreak.

After the peak of the epidemic of 2006, the treatment becomes unnecessary: first
because a sufficient fraction of the population (more than half of the population)
has become resistant, second because infected mosquitoes die quickly.

4.3.2. Larvicide only. Larvicide alone seems not to be as efficient as adulticide alone.
Here, based on real experiments, we assume that the maximal rate is effective during
the spraying time and the day after and then decreases over the next 13 days. The
efficacy and the duration of a larvicide strongly depend on water quality, exposure,
and even the type of breeding sites [27]. Thus, the duration can vary between a
couple of days and two weeks. We suppose that rA is defined as depicted in Figure
7, page 331, that is

rA (t + ti) =







1, with 0 ≤ t ≤ 1,
14−t
13 , with 1 < t ≤ 14,
0, with 14 < t.

In Figure (8), we show the evolution of F c
o with respect to the periodicity τ ,

for various start dates and various treatment durations. It is clear that the impact
strongly depends on the start date and the duration of the treatment: for the start
dates ti = 100 and ti = 200, the same kind of result is obtained. The treatment
seems better when used later, i.e. since ti = 300, during the explosive epidemic: in
that case, the duration of the treatment has a real impact (compare the green lines
in Figures (8)(a) and (b)). Actually, the dynamic of the system is very complicated
because, during the computations, N (ti) has values less or greater than 1 and,
thus, the approximation will converge either to TE or to RDFE. It seems also
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Figure 7. The larvicide killing rate.
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Figure 8. Efficacy of Bti with respect to the start date. The
treatment duration is: (a) 150 days, (b) 300 days.

that significative results are obtained with the 300-day treatment, and for large
periodicities.

Altogether, in comparison with the adulticide, the larvicide does not have a large
impact on the epidemic: the intensity decreases only slightly. This is not surprising
because only breeding sites are treated. And from land experiments, we know that
most of the breeding sites are ”small”, like outdoor flower pots, bamboo holes, and
bottles [9]. Thus, it seems that the larvicide should be used with an adulticide to
optimize the treatment and to minimize the adulticide impact on the environment.

4.3.3. Adulticide and larvicide. We consider a Deltamethrin-Bti combination. We
use the same values for the parameters cA, cm, τ , and ti for various adulticide
treatment durations. We consider two start dates for the adulticide treatment :
ti = 100, and ti = 300. Of course, following the previous result, we only consider
a larvicide treatment of 300 days. In Figure 9, we show that the Deltamethrin-Bti
combination gives very interesting results: in comparison with the results obtained
in Figure 6, page 329, the improvements are clear even for small adulticide killing
rates and large periodicities. For instance, in Figure 9(b), with cm ≈ 0.3 and τ = 25
days, the result is about 97% better than without treatment.

The best results are obtained when we consider a 300-day adulticide treatment
(Figure 9(b)). Thus, with an early start date, i.e. ti = 100, the adulticide-larvicide
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Figure 9. Combination of Deltamethrin-Bti. The start date is
day 100 and the treatment durations are: (a) 150 − 300 days, (b)
300 − 300 days

combination provides an important improvement, indicating that the combination
is very useful.

Finally, taking into account the improvement observed with the larvicide treat-
ment (see Figure (8)(b), green line), we consider the start date ti = 300. In Figure
10, we compare the adulticide treatment with the adulticide-larvicide combination.
As expected, the combination clearly improves the results and it seems that the
combination is a very interesting way to (partly) control the epidemic even if it is
used ”‘too late”’, i.e. after the begining of the explosive epidemic. This simulation
showed that the campaign by the DRASS agency in February 2006 helped to stop
the epidemic.
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Figure 10. Comparison of (a) Deltamethrin and (b) combination
of Deltamethrin-Bti. The start date is day 300 and the treament
duration is 150 days for the adulticide, and 300 days for the larvi-
cide.

4.3.4. Mechanical control only. This type of intervention was conducted in 2006 (it
was called “Kass’Moustik”). It consists in reducing the number of breeding sites,
at least near inhabited areas. Because of the amount of work, it is necessary to
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involve the local population: the aim for inhabitants is to keep their gardens and
neighborhood clean and in particular to reduce the number of breeding sites. It
is now admitted that Aedes albopictus stays in the area of its birth place if it has
suitable conditions to develop and to survive (blood and sugar meals).

Simulations show that the start date of the mechanical control tool is very impor-
tant, as for the other control tools, as is the duration (see Figure 11). Clearly, if the
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Figure 11. Efficacy of the mechanical control tool with respect to
the efficacy of the control, the duration of the treatment, and with
start dates: (a) ti = 100, (b) ti = 200.

larval capacity is not halved , i.e. α = 0.5, there will be no impact on the disease.
The best results are obtained with α = 1

3 , which means that the larval capacity
is reduced by 66%, but this seems unrealistic. Then, the duration of mechanical
control is important too: there should be a long and permanent effort to maintain
the capacity as low as possible but, in practice, this is not the case. Finally, as for
the other control tools, the start date is important: the sooner the breeding sites
are removed, the better the control is.

The final idea is to consider the combination of mechanical control tool with
chemical control tools.

4.3.5. Combining adulticide, larvicide, and mechanical control tools. Following the
results obtained in the previous sections, it seems that a combination of massive
spraying and mechanical control should give interesting results. In Figure 12, we
consider an adulticide-mechanical control combination with a start date at day 100
with two durations for the adulticide treatment and a 300-day treatment for the
mechanical control. Considering that in real conditions the larval capacity can
only be reduced by 25%, this leads to α = 0.75 (Figure 12). We obtain even
better results with the adulticide-mechanical control combination than with the
adulticide-larvicide combination(compare also Figure 9 and Figure 12). Thus, for
both mechanical control values, if the periodicity of the treament and the adulticide
killing rate are low, then the number of infected humans is low.

In Figure 13, we consider the adulticide starts at day ti = 300 and the mechanical
control starts at day 100, with α = 0.75. The results are very interesting, but this
is possible only if we start the mechanical control as soon as possible.
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Figure 12. Combination of Deltamethrin and mechanical control
with α = 0.75. The start date is 100 days, and the duration of
adulticide treatment is: (a) 150 days, (b) 300 days.
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Figure 13. Combination of Deltamethrin and mechanical control
with α = 0.75. The start date of the adulticide treatment is day
300, the start date of mechanical control is day 100, and the dura-
tion of adulticide treatment is: (a) 150 days, (b) 300 days.

Finally, in Figures 14 and 15, we show simulations with the full combination of
Deltamethrin, Bti, and mechanical control tools. Following the previous simula-
tions, we consider that the mechanical control begins at day 100 with α = 0.75,
the larvicide control begins at day 300, with a duration of 300 days. Clearly, the
addition of larvicide improves the previous results: compare Figure 12 with Figure
14, and Figure 13 with Figure 15.

It appears clearly that a suitable use of the different control tools with appropriate
start dates and treatment durations can stop or contain the epidemic.

5. Conclusion. We have presented a study on various mosquito control tools that
were used in Réunion Island during the explosive Chikungunya epidemic of 2006. It
seems obvious that eradication is reached as soon as the reproduction number R0 is
below unity. But, in fact, if N diminishes below unity and R0 > 1, then the disease
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Figure 14. Combination of Deltamethrin, Bti, and mechanical
control (α = 0.75). The start date of the adulticide, and the me-
chanical control is day 100, the start date of the larvicide is day
300, and the duration of the adulticide treatment is: (a) 150 days,
(b) 300 days.
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Figure 15. Combination of Deltamethrin, Bti, and mechanical
control (α = 0.75). The start dates of the adulticide and the lar-
vicide are day 300, the start date of the mechanical control is day
100, and the duration of the adulticide treatment is: (a) 150 days,
(b) 300 days.

can disappear, in other words, the system can converge to the Trivial Equilibrium,
TE.

Some important elements appear:

• we have introduced new observations made by Dubrulle et al. [15] about the
life-span of infected mosquitoes: the Chikungunya virus halves the lifespan of
infected mosquito. In some sense, the virus has a “positive effect” because it
kills the infected mosquito, which has less chance to propagate the virus. This
is a very important result that can be helpful to explain the following fact:
in 2006, the health authorities indicated that the estimated prevalence in the
human population was (only) about 37%; i.e. 37% of the human population
was infected by the virus. Surprisingly, the disease died out and apart from
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some isolated cases no more (small) outbreaks appeared since the huge epi-
demic of 2006. Of course, all the control tools implemented since 2006 helped
to prevent the rise of new epidemics, but the risk still exists because we are
far away from an expected prevalence of 60−65%, like in Comoros, where the
prevalence was estimated to be about 63%.

• a combination of several control tools seems to be the best way, from the
ecological and environmental point of view, to stop or to contain an epidemic
like the one in 2006.

• the adulticide-mechanical control combination gives satisfactory results but it
seems better to use the full combination, i.e. combining larvicide, adulticide,
and mechanical control. As we have showed, the impact of the larvicide is
limited but seems more efficient if used later, i.e. with a start date ti = 300.
Moreover, the influence of the larvicide is very complicated to determine be-
cause Bti kills only the larval stage in the aquatic state. It might be better
to split the differential equation associated to the aquatic state into three
differential equations for the eggs, larvae, and pupae. Unfortunately, this
complicates the model and can lead to serious mathematical difficulty. More-
over, we need more data about the larvicide killing rate for each sub-stage
and for each type of breeding site [27].

• the start date of any treatment has a fundamental role and the sooner the
authorities decide or plan land interventions, the more efficient the control
tool is. In particular, it appears clearly that planning mechanical control as
soon as possible can greatly improve the results.

• the duration of the treatment is important and it depends on the start date.
If the duration is not long enough, then the epidemic will rise later or become
periodic. Of course, the periodicity of the treatment is important too: it seems
preferable to consider a 15-day treatment; this can be done in very localized
areas. The start date, the duration, and the periodicity will determine the
amount of adulticide and/or larvicide to use. Obviously, to preserve endemic
species, only the smallest quantities of adulticide and/or larvicide should be
used. As far as we know, the mosquito population in Réunion Island is sensi-
tive to Deltamethrin (the only authorized adulticide in the European Union).
Thus, it is necessary to use the adulticide as little as possible to avoid the
emergence of resistant mosquitoes.

• Also, mechanical control, with the help of the local population, is a very good
alternative: both ”cheap” and sustainable. If it is done for a long time, it is
efficient and then massive spraying can be used from time to time to prevent
an “explosion” of the epidemic.

Of course, it is not possible to give a definitive answer. The previous examples
show that vector control is a very complex problem and more real experiments are
needed to measure the efficacy of the control tools. As a first attempt, the model
could be improved by taking into account more biological factors or by considering
delay differential equations.

Another improvement would be to take into account the periodicity in some of
the parameters in the mosquito population. Indeed, in Réunion Island, the mean
temperature during the dry season is about 21oC at sea-level, where most of the
cities are located. Yet, H. Delatte [8] showed adult survival is inversely correlated
to the temperature: the highest survival rate is obtained at 15oC, while the lowest
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is obtained at 35oC. Of course, humidity is an important factor too. The previous
results indicate clearly that at sea-level, Aedes albopictus is able to survive the dry
season and this explains why the virus Chikungunya survived from June to October
2005. Experiments are currently being conducted to estimate the evolution of the
wild population according to the season and the weather parameters.

Temporal models assume homogeneity in the dispersal of the mosquitoes. Yet,
this is untrue. Thus, another improvement, more difficult to achieve, would be to
add spatial variables in the equations to take into account the fact that mosquitoes
move to favorable environments, searching for breeding sites or blood meals.

Finally, it would be interesting to investigate a biological control like the release
of sterile insects and to compare it with the control tools studied here.
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6. Appendices.

6.1. Appendix A. We solve system (1), with dSh

dt
(t) = 0 = dEh

dt
(t) = dIh

dt
(t) =

dRh

dt
(t) = 0 , and we obtain the following relations



















Eh = µh+ηh

νh
Ih,

Rh = ηh

µh
Ih,

Sh = Nh − (µh+νh)(µh+ηh)
µhνh

Ih,
Ih

Nh
= νhµhBβmhIm

(µh+νh)(µh+ηh)(µhNh+BβmhIm) .

(16)

Then, we solve system (2), with dLm

dt
(t) = 0 = dSm

dt
(t) = dEm

dt
(t) = dIm

dt
(t) = 0 and

we obtain the following relations


























(ηA + µA + cA)Am = µb

(

1 − Am

αK

)

(Sm + Em + Im)
Sm = ηA

µm+cm+Bβhm
Ih
Nh

Am,

Em = Bβhm

µE+cm+ηm

Ih

Nh
Sm = Bβhm

µE+cm+ηm

Ih

Nh

ηA

µm+cm+Bβhm
Ih
Nh

Am,

Im = ηm

µmoi+cm
Em = ηm

µmoi+cm

Bβhm

µE+cm+ηm

Ih

Nh

ηA

µm+cm+Bβhm
Ih
Nh

Am.

(17)

In fact, there is a more simple relation: multiplying (2)2 by 1
µm+cm

, (2)3 by 1
µE+cm

and (2)4 by 1
µmoi+cm

, setting dSm

dt
(t) = dEm

dt
(t) = dIm

dt
(t) = 0, and using the fact

that Im = ηm

µmoi+cm
Em, and Bβhm

Ih

Nh
Sm = (µE + cm + ηm)Em, we deduce

Im + Em + Sm =
ηA

µm + cm

Am + ηmEm

µE − µmoi

(µmoi + cm)(µE + cm)

−Bβhm

Ih

Nh

Sm

µE − µm

(µE + cm)(µm + cm)
−,

= Im

(

µE − µmoi

µE + cm

− (µE − µm)(µE + cm + ηm)(µmoi + cm)

ηm(µm + cm)(µE + cm)

)

+
ηA

µm + cm

Am,
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that is

Im + Em + Sm = −Im

(

µmoi − µE

µE + cm

+
(µE − µm)(µE + cm + ηm)(µmoi + cm)

ηm(µm + cm)(µE + cm)

)

+
ηA

µm + cm

Am

Let us first compute the equilibrium without Disease, i.e. Im = Ih = 0. Thus
using (18), with Im = 0, and (17)1, we obtain

(ηA + µA + cA)Am = µb(1 − Am

αK
)

ηA

µm + cm

Am.

We deduce that either Am = 0 or Am = Am0 =
(

1 − 1
N

)

αK if N > 1.When Am =
Im = Ih = 0, we easely deduce from (16) and (17) that Sm = Em = 0, Eh = Rh = 0,
and Sh = Nh. Thus, we recover the Trivial Equilibrium TE = (Nh, 0, 0, 0, 0, 0, 0, 0).

Since N > 1, and Am = Am0 =
(

1 − 1
N

)

αK, using (16) and (17), we deduce

Sm0 = ηA

µm+cm
Am0 = ηA

µm+cm

(

1 − 1
N

)

αK, Em = 0, Eh = Rh = 0, and Sh = Nh.

Thus, since N > 1, there exists a non trivial Disease Free Equilibrium RDFE =
(Nh, 0, 0, 0, Am0, Sm0, 0, 0).

6.2. Appendix B. We follow [42] and [13]. We consider only the terms in which
the disease is in progression, which leads to the following subsystem















dEh

dt
(t) = Bβmh

Im

Nh
Sh − (νh + µh)Eh

dIh

dt
(t) = νhEh − (ηh + µh)Ih

dEm

dt
(t) = Cβhm

Ih

Nh
Sm − (µE + ηm + cm)Em

dIm

dt
(t) = ηmEm − (µmoi + cm) Im

(18)

that can be rewritten as dx
dt

= F(x) − V(x), where xT = (Eh, Ih, Em, Im) and

F(xI) =









Bβmh
Im

Nh
Sh

0

Cβhm
Ih

Nh
Sm

0









, V(x) =









(νh + µh)Eh

−νhEh + (ηh + µh)Ih

(µm + ηm + cm)Em

−ηmEm + (µmoi + cm) Im









In [42], the authors showed that the general basic reproduction number is given
by R0 = ρ(JFJ−1

V ), where ρ(A) denotes the spectral radius of A. JF and JV are
the Jacobian matrices associated with F and V and describe the linearization of
the reduced system around RDFE.

We compute the Jacobian matrices associated with F and V . A direct compu-
tation gives

JV(x) =









νh + µh 0 0 0
−νh ηh + µh 0 0
0 0 µE + ηm + cm 0
0 0 −ηm µmoi + cm









and

JF(x) =









0 0 0 Bβmh
Sh

Nh

0 0 0 0
0 Bβhm

Sm

Nh
0 0

0 0 0 0









.
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Then, computing J−1
V , we deduce at xRDFE : JF (xRDFE)J−1

V (xRDFE) =










0 0 Bβmhηm

(µmoi+cm)(µE+ηm+cm)
Bβmh

(µmoi+cm)

0 0 0 0
Bβhmνh

(µh+ηh)(µh+νh)
Sm0

Nh

Bβmh

µh+νh

Sm0

Nh
0 0

0 0 0 0











We deduce the characteristic polynomial

p(λ) = λ2

(

λ2 − Bβmh

ηm

(µmoi + cm) (µE + ηm + cm)
Bβhm

νh

(µh + νh)(µh + ηh)

Sm0

Nh

)

which implies that ρ(JFJ−1
V ) =

√

ηmB2βmhβhmνh

(µmoi+cm)(µE+ηm+cm)(µh+νh)(µh+ηh)
Sm0

Nh
and thus,

we deduce

R2
0 =

ηmB2βmhβhmνh

(µmoi + cm) (µE + ηm + cm)(µh + νh)(µh + ηh)

Sm0

Nh

.

or, equivalently

R2
0 =

ηmB2βmhβhmνhηAαk

(µmoi + cm) (µE + ηm + cm)(µh + νh)(µh + ηh)(µm + cm)

(

1 − 1

N

)

.

6.3. Appendix C. Using (16) and (17), we now compute the endemic equilibrium,
if any, i.e. we are looking for an equilibrium such that Ih 6= 0 and Im 6= 0. In that
case, we will have two cases to study. We assume that N > 1 and R2

0 > 1.

1. If µm = µE = µmoi, then, from (18), we deduce

Im + Sm + Em =
ηA

µm + cm

Am. (19)

Thus, like before, we obtain the following equation in Am

(ηA + µA + cA)Am = µb(1 − Am

αK
)

ηA

µm + cm

Am, (20)

from which we deduce that either Am = 0 or Am = Am0 =
(

1 − 1
N

)

αK. Of
course, we consider Am 6= 0, otherwise we recover TE. Using (17)2 and (19),
we have

Sm =
ηA

µm + cm + Bβhm
Ih

Nh

(

1 − 1

N

)

αK (21)

Im + Sm +
µmoi + cm

ηm

Im =
ηA

µm + cm

(

1 − 1

N

)

αK

which gives

Im =
ηmBβhm

Ih

Nh
ηA

(ηm + µm + cm) (µm + cm)
(

µm + cm + Bβhm
Ih

Nh

)

(

1 − 1

N

)

αK. (22)

Then, using (16)4 with (22), we deduce
(

µm + cm + Bβhm

Ih

Nh

)

(µhNh + BβmhIm) =

ηmνhµhB2βmhβhmηA

(

1 − 1
N

)

αK

(µh + νh)(µh + ηh) (ηm + µm + cm) (µm + cm)
,
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or equivalently
(

µhNhBβhm +
ηmB2βmhβhmηA

(ηm + µm + cm) (µm + cm)

(

1 − 1

N

)

αK

)

Ih

Nh

=

(µm + cm)µhNh

(

R2
0 − 1

)

,

with R2
0 defined in (5).

Finally, we explicitely deduce the coordinates of the endemic equilibrium
EE:



























I∗h =
(µm+cm)µh(R2

0−1)
µhBβhm+

ηmB2βmhβhmηA
(ηm+µm+cm)(µm+cm)(1−

1
N )αk

Nh,

E∗
h = µh+ηh

νh
I∗h,

S∗
h = Nh − (µh+νh)(µh+ηh)

µhνh
I∗h,

R∗
h = ηh

µh
I∗h.

and






























A∗
m = Am0 =

(

1 − 1
N

)

αK
S∗

m = ηA

µm+cm+Bβhm

I∗
h

Nh

(

1 − 1
N

)

αK,

I∗m =
ηmBβhm

I∗
h

Nh
ηA

(ηm+µm+cm)(µm+cm)

(

µm+cm+Bβhm

I∗
h

Nh

)

(

1 − 1
N

)

αK.

E∗
m = µmoi+cm

ηm
I∗m.

We recover the results obtained in [13] (appendix A).
2. This is the tedious case. Here, we will consider µm ≤ µE ≤ µmoi with µm 6=

µmoi. Using (18) in (17)1, we have

(ηA + µA + cA)Am = µb(1 − Am

αK
)

(

ηA

µm + cm

Am − ImX

)

,

with

X =
µmoi − µE

µE + cm

+
(µE − µm)(µE + cm + ηm)(µmoi + cm)

ηm(µm + cm)(µE + cm)
. (23)

Then, we deduce

Im =
1

X

ηA + µA + cA

µb

(

N − αK

αK − Am

)

Am, (24)

=
1

X

ηA + µA + cA

µb(αK − Am)
N

((

1 − 1

N

)

αK − Am

)

Am,

=
1

X

ηA + µA + cA

µb(αK − Am)
N (Am0 − Am)Am,

Because Im 6= 0, we necessarely are looking for Am such that

0 < Am < Am0. (25)

Multiplying (16)4 by Bβhm leads to

Bβhm

Ih

Nh

=
νhµhB2βhmβmhIm

(µh + νh)(µh + ηh)(µhNh + BβmhIm)
. (26)
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Then using (17)4, we deduce

Im =
ηAηmνhµhB2βmhβmh

(µE + cm + ηm) (µmoi + cm)
×

ImAm

(µm + cm) (µh + νh)(µh + ηh)(µhNh + BβmhIm) + νhµhB2βmhβmhIm

,

which simplifies as follows (Im 6= 0)

Am =
(µE + cm + ηm) (µmoi + cm)

ηAηmνhµhB2βmhβmh

×
(

(µm + cm) (µh + νh)(µh + ηh)(µhNh + BβmhIm) + νhµhB2βmhβmhIm

)

that is

Am =
(µE + cm + ηm) (µmoi + cm)

ηAηm

Im +
(µE + cm + ηm) (µmoi + cm)

νhηAηmµhB2βmhβmh

×

(µm + cm) (µh + νh)(µh + ηh)(µhNh + BβmhIm).

Since N > 1, and using the fact that
(

1 − 1
N

)

αk
R2

0
= (µE+cm+ηm)(µmoi+cm)(µm+cm)(µh+νh)(µh+ηh)

νhηAηmB2βmhβmh
,

= Am0

NhR
2
0
,

we can rewrite Am in the following way

Am = Am0

µhNh

1
R2

0
(µhNh + BβmhIm) + (µE+cm+ηm)(µmoi+cm)

ηAηm
Im

= Am0

R2
0

+
(

Am0

R2
0

Bβmh

µhNh
+ (µE+cm+ηm)(µmoi+cm)

ηAηm

)

Im.

From the previous equality we deduce that Am ≥ Am0

R2
0

. Using (24), we replace

Im in the previous equality to get

Am(αK − Am) = Am0

R2
0

(αK − Am) + ηA

µm+cm

1
X
×

×
(

Am0

R2
0

Bβmh

µhNh
+ (µE+cm+ηm)(µmoi+cm)

ηAηm

)

(Am0 − Am) Am,

which leads to solve P (Am) = 0, with

P (Am) = aA2
m + bAm + c, (27)

where

c =
1

R2
0

αKAm0 > 0,

b =
ηA

(µm + cm)X

(

Am0

Nhµh

Bβmh

R2
0

+
(µE + cm + ηm) (µmoi + cm)

ηAηm

)

Am0

−
(

αK +
1

R2
0

Am0

)

,

and

a = 1 − 1

X

ηA

µm + cm

(

Am0

R2
0

Bβmh

µhNh

+
(µE + cm + ηm) (µmoi + cm)

ηAηm

)

≤ 1 − 1

X

ηA

µm + cm

(µE + cm + ηm) (µmoi + cm)

ηAηm

.
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We will now show that a < 0. In particular we will find a lower bound for

1

X

ηA

µm + cm

(µE + cm + ηm) (µmoi + cm)

ηAηm

.

In order to obtain this lower bound, we will consider the following function

XµE
(x) =

µmoi − x

x + cm

+
(x − µm)(x + cm + ηm)(µmoi + cm)

ηm(µm + cm)(x + cm)

=
1

(µm + cm)ηm

(−(µm + cm)ηm + (µmoi + cm)(x + ηm − µm)) ,

such that XµE
(µE) = X , defined in (23), page 342. For all x ∈ [µm, µmoi], we

set

Y (x) =
1

XµE
(x)

ηA

µm + cm

(x + cm + ηm) (µmoi + cm)

ηAηm

,

that can be simplified as follows

Y (x) =
(x + cm + ηm) (µmoi + cm)

(µmoi − µm)ηm + (µmoi + cm)(x − µm)
.

Y (x) is a smooth function for all x in [µm, µmoi], and thus

Y ′ (x) = (µmoi + cm)
(

1
(µmoi−µm)ηm+(µmoi+cm)(x−µm)

)2

×
× ((µmoi − µm)ηm + (µmoi + cm)(x − µm)) − (µmoi + cm) (x + cm + ηm)) .

Thus to study the sign of Y ′(x), it suffices to study

(µmoi − µm)ηm + (µmoi + cm)(x − µm) − (µmoi + cm) (x + cm + ηm)

= (µmoi − µm)ηm − (µmoi + cm)µm − (µmoi + cm) (cm + ηm)

= −µmηm − (µmoi + cm)µm − µmoicm − cm (cm + ηm)

< 0,

from which we deduce that Y ′ (x) < 0. Thus, we have

Y (µmoi) ≤ Y (x) ≤ Y (µm) , ∀x ∈ [µm, µmoi].

In particular we have:

Y (µE) ≥ (µmoi + cm + ηm) (µmoi + cm)

(µmoi − µm)ηm + (µmoi + cm)(µmoi − µm)

≥ µmoi + cm

µmoi − µm

= 1 +
µm + cm

µmoi − µm

which implies that a < 1 − Y (µE) < 0.
Moreover, we have

b = (1 − a)Am0 −
(

αK +
1

R2
0

Am0

)

,

= Am0

(

1 − a − N
N − 1

− 1

R2
0

)

,

= −Am0

(

1

N − 1
+ a +

1

R2
0

)

.
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Finally, with a < 0, and c > 0, equation (27) has only one positive solution
given by the following well known formula

A∗
m =

−b −
√

b2 − 4ac

2a
> 0.

Because a < 0, we have P (Am) ≥ 0 if Am ∈ [0, A∗
m]. Then, computing

P (Am0) leads to

P (Am0) = aA2
m0 + bAm0 + c = Am0 (αK − Am0)

(

1

R2
0

− 1

)

< 0,

which implies that A∗
m < Am0. Finally, using some of the previous formula,

we deduce the coordinates of the endemic equilibrium EE.

Altogether, since N > 1 and R2
0 > 1, an endemic equilibrium exists.

6.4. Appendix D. The two main assumptions to verify in Theorem 3.3 are D2 and
D4. Thus we have to show that ρ (Id + φA1 (XS , 0)) < 1 and ρ

(

Id + φA2 (X)
)

< 1.
We first show the following useful lemma

Lemma 6.1. Let A (x) be a stable Metzler matrix on a compact subset K ⊂ R
n
+,

i.e. such that α(A(X)) < 0 for all X ∈ K. Let φ(∆t) be a time-step function such
that Id + φ (∆t)A

¯
is a non-negative matrix, i.e. Id + φ (∆t)A

¯
≥ 0, then we have

ρ (Id + φ (∆t)A (X)) = 1 + φ (∆t)) α (A (X)) < 1, for all X ∈ K.

Proof. We have Id+φ (∆t)A (X) ≥ 0 for all X ∈ K. Then, using Perron-Frobenius
theory, we know that there exists rX , a positive real, and a non negative right
eigenvector vX for all X ∈ K, such that

(Id + φ (∆t)A (x)) vX = rXvX .

In particular ρ (Id + φ (∆t)A (X)) = rX . Moreover, we have

A (X) vX =

(

rX − 1

φ (∆t)

)

vX .

Thus, rX−1
φ(∆t) is an eigenvalue of A (x). But rX−1

φ(∆t) is real and negative because

α (A (X)) < 0, which necesseraly implies that

0 < rX < 1, for all x ∈ K.

Previously, we have showed that A1(XS , 0) is a stable Metzler Matrix, that
is α(A(XS , 0)) < 0. Moreover we have choosed φ(∆t) in (14), such that Id +
φ(∆t)A1(X) > 0, for all X ∈ D, which implies that Id+φ(∆t)A1(XS , 0) > 0, for all
(XS , 0) ∈ D. Thus, from the previous lemma, we deduce that ρ(Id+φ(∆t)A1(X)) <
1 and thus ρ(Id + φ(∆t)A1(XS , 0)) < 1, which implies D2.

Similarly, we have showed that A2 is a stable Metzler matrix if RG < 1. Thus,
using the previous Lemma and the time step-function (14), imply that ρ(Id +
φ(∆t)A2(X)) < 1 for all X ∈ D, and thus ρ(Id + φ(∆t)A2) < 1 for all ∆t > 0.
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