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Abstract. It is known that a kinetic reaction network in which one or more
secondary substrates are acting as cofactors may exhibit an oscillatory behav-
ior. The aim of this work is to provide a description of the functional form
of such a cofactor action guaranteeing the onset of oscillations in sufficiently
simple reaction networks.

1. Introduction. Apart from circadian rhythms, many biochemical networks ex-
hibiting oscillations have been intensively studied, such as, for example, cell cycle
[1], Ca+-induced oscillations [8], glycolysis [15, 20, 14], yeast metabolic cycle [19],
genetic oscillators [5, 18]. Given a biochemical reaction network with nonlinear rate
laws, it is in general difficult to predict exactly when oscillations will arise, as this
depends on the “graph” of the reaction network, on the form chosen for the kinetic
equations, and on the values assigned to the parameters. In this context, systems
in dimension 2 (2D) are exceptional in the sense that for them the onset of oscil-
lations can be described almost exhaustively, see [2, 4] for an overview. There is
a number of ways in which oscillations can arise (see [17, 12] for surveys). In this
work we are interested in the case in which they are due to the catalytic effect of a
cofactor substrate acting as a co-enzyme in a reaction. A typical example (and the
inspiration for this work) is given by ATP in the glycolysis pathway [20]. ATP is
a cofactor in some of the reaction steps (e.g. in the step catalyzed by Hexokinase:
glucose −→ glucose-6-phosphate), while a too high concentration of ATP leads to
inhibition of the reaction itself. Since the net production of ATP in the glycolysis
pathway is positive, this activator/inhibitor role may induce the oscillations.

Clearly, the appearance of oscillations on a model of the pathway depends on the
functional form chosen to describe this activation/inhibition mechanism, call it φ.
The aim of this paper is to give explicit conditions on the form of φ, sufficient to
induce oscillations on simple reaction networks. As we are interested in analytically
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302 JULIEN COATLÉVEN AND CLAUDIO ALTAFINI

provable sufficient conditions (the tools we shall use are essentially Hopf bifurca-
tion analysis and Poincaré-Bendixson theorem), our “networks” are limited to very
simple chains of reactions. Nevertheless, once the conditions are given, they can be
applied (and verified numerically) in arbitrarily large networks (see e.g. [16] for a
possible approach in this direction).

2. Oscillations for 2D systems - Background material. The onset of sus-
tained oscillations on nonlinear dynamical systems is fully understood only on 2D
systems, see e.g. [2, 4] for general considerations or [17, 12] for recent reviews deal-
ing with simple reaction networks. In this section we recall some results which are
used in the rest of the paper.

Let (x, y) belong to R2
+ (the positive orthant in R2), and consider the family of

parameters p ∈ Rr
+. In this section, we will consider the system

dx
dt

= f(x, y, p)
dy
dt

= g(x, y, p),
(1)

and, to simplify notations, we will sometimes forget to explicit the dependency on
p of f and g. If the Jacobian of this system at an equilibrium (x̄, ȳ) is

J =

[

fx(x̄, ȳ) fy(x̄, ȳ)
gx(x̄, ȳ) gy(x̄, ȳ)

]

=

[

a11 a12

a21 a22

]

,

the associated characteristic polynomial is s2 − tr(J)s + det(J), where tr(J) =
a11 + a22 and det(J) = a11a22 − a21a12. Its eigenvalues determine the stability of
the equilibrium, and we have:

• If det(J) < 0, then there is one positive and one negative real eigenvalue, so
the steady-state is unstable (saddle point).
• If det(J) > 0 and tr(J) < 0, then the steady-state is stable.
• If det(J) > 0 and tr(J) > 0, then the steady-state is unstable.

In general, tr(J) and det(J) depend continuously on p. Oscillations can appear at
the transition between stability and instability of the equilibrium. If by varying one
of the parameters (call it p1), we can carry tr(J) from negative to positive values,
while keeping det(J) > 0, then the steady state passes through a bifurcation. As
tr(J) is close to 0, we have two complex conjugated eigenvalues, with real part
approaching zero. At the bifurcation point (p1 = pcrit), tr(J) = 0, and the eigenva-
lues are purely imaginary s = ±iω. Close to the bifurcation point, i.e., p1 ≈ pcrit,
small amplitude limit cycle solutions surround the steady state, and the period of
oscillation is close to 2π

ω
: we say that periodic solutions arise by a Hopf bifurcation

at p1 = pcrit (see e.g. [9] for more details on Hopf bifurcations).
If, in addition, the trajectories of (1) are confined in a closed bounded set inside

which the system has at most a repelling equilibrium point, then the Poincaré-
Bendixson theorem can be applied.

Theorem 2.1 (Poincaré-Bendixson theorem). Consider the system (1). If for t > 0
a trajectory of (1) is confined to a closed, bounded set D and does not approach any
critical point in D, then it is either a closed periodic orbit or it approaches one.

If (1) represents two chemical species, then in order to have a Hopf bifurcation
it is required that at least one of the two reactants x and y is acting on itself with
an effect that varies as we change p in a neighborhood of pcrit. For example if on
the diagonal we have just one or more degradation terms e.g. x→ 0 and/or y → 0,
then a11 + a22 < 0, and no oscillation can appear. Likewise if both diagonal terms
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are autocatalytic, x → ξx, ξ > 1, and/or y → ψy, ψ > 1 (a11 + a22 > 0 in this
case). Combinations of the two cases can already induce oscillations, provided that
tr(J) changes sign when varying some of the parameters.

The conclusion is that for 2D systems a necessary condition for the appearance
of a Hopf bifurcation is that at least one of the variables involved experiences an
autocatalysis for some values of the parameters but not for others. The arising of
sustained oscillations is guaranteed in the case Theorem 2.1 is applicable. For a
more thorough discussion about oscillating 2D chemical reactions see e.g. [4].

3. An elementary mechanism inducing oscillations. The context in which
we are interested to investigate the appearance of oscillations is that of biochemical
reaction kinetics modeled to a large extent by means of mass-action laws, with some
nonlinear, non mass-action terms providing the necessary autocatalytic/inhibitory
mechanisms. This is a very common setting in literature, see [2, 15, 19, 20] and
many others. Our attention is in particular focused on the case in which the non
mass-action term involves a secondary substrate of a reaction.

In order to apply the exact 2D-results, we shall consider the simple mechanism
depicted in {1}. In the graph {1}, A ←→ B represents the principal branch of

A B

FE

FE {1}

the reaction and the cofactors E,F are required for the reaction to take place (e.g.
through allosteric regulation). The action of E on A is non-linear and unknown.
The other rate-laws are assumed to be of mass-action form, leading to the following
dynamics















dA
dt

= −k+
1 Aφ(E) + k−1 BF

dB
dt

= k+
1 Aφ(E) − k−1 BF

dE
dt

= −k+
1 Aφ(E) + k−1 BF − k+

2 E + k−2 F
dF
dt

= k+
1 Aφ(E) − k−1 BF + k+

2 E − k−2 F,
(2)

where φ is the unknown function (at least C1) modeling the nonlinear action of E
on A, φ(0) = 0, k±1 , k±2 ∈ R+. Although simple, this system is e.g. non-monotone
for non-monotonic choices of φ [7] and, by construction, not treatable by means
of mass-action formalism [6]. For such system, we have two moiety conservations
(dA

dt
+ dB

dt
= 0 and dE

dt
+ dF

dt
= 0), so by writing A + B = M1 and E + F = M2, it

simplifies to the 2D-system

{

dA
dt

= −k+
1 Aφ(E) + k−1 (M1 −A)(M2 − E)

dE
dt

= −k+
1 Aφ(E) + k−1 (M1 −A)(M2 − E)− k+

2 E + k−2 (M2 − E).
(3)

For an equilibrium point (Ā, Ē), we have the conditions
{

−k+
1 Āφ(Ē) + k−1 (M1 − Ā)(M2 − Ē) = 0

−k+
1 Āφ(Ē) + k−1 (M1 − Ā)(M2 − Ē)− k+

2 Ē + k−2 (M2 − Ē) = 0,

which imply






k
+
1

k
−

1

Ā
M1−Ā

φ(Ē) = M2 − Ē
Ē =

k
−

2

k
+
2 +k

−

2

M2

(4)
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i.e.,

(

Ā, Ē
)

=







M1M2k
+
2

(k+
2 + k−2 )

k
+
1

k
−

1

φ(Ē) +M2k
+
2

,
k−2

k+
2 + k−2

M2






. (5)

At the equilibrium, the corresponding Jacobian matrix J = (Jij) has elements

J11 = −k+
1 φ(Ē)− k+

1

Ā

M1 − Ā
φ(Ē),

J12 = −k+
1 Āφ

′

(Ē)− k−1 (M1 − Ā),

J21 = −k+
1 φ(Ē)− k+

1

Ā

M1 − Ā
φ(Ē),

J22 = −k+
1 Āφ

′

(Ē)− k−1 (M1 − Ā)− k+
2 − k−2 ,

and the associated characteristic polynomial is

χ(s) = s2 + ∆s+ Ω,

where ∆ = k+
1 φ(Ē) + k+

1
Ā

M1−Ā
φ(Ē) + k+

1 Āφ
′

(Ē) + k−1 (M1 − Ā) + k+
2 + k−2 and

Ω = k+
1 φ(Ē)(1 + Ā

M1−Ā
)(k+

2 + k−2 ). The determinant of the Jacobian is Ω, and

its trace is −∆. As we have seen before, the interesting case for Hopf bifurcations

is Ω > 0. But Ω = k+
1 φ(Ē)(1 + Ā

M1−Ā
)(k+

2 + k−2 ), so if φ is positive for positive

entries, then Ω > 0 (as Ē 6= 0). Our aim is to make the real part of the eigenvalues
evolve from negative values to positive values (or the contrary) by modifying only
the parameters (k±i ), thereby inducing a Hopf bifurcation. From the expression of

∆, the only term that can assume a negative sign is k+
1 Āφ

′

(Ē), meaning that φ
must be decreasing at Ē.

The following proposition provides conditions sufficient in order for φ to induce
oscillations.

Proposition 1. If the function φ is C1, positive, non identically zero, and corre-
sponds to one of the following situations:

• Activator/Inhibitor case:
φ is increasing on [0, α], decreasing on [α,∞[ for some α in ]0,∞[, φ(0) = 0
and limx→∞ φ(x) = 0, and fulfills the following conditions:
1. α < M2,
2. φ

′

(0) > 0,
3. ∃(k±i ) ∈ R4

+, i = 1, 2, for which xm = Ē, and

∆0 = k+
1 φ(xm)

(

1 +
k−1
k+
1

(M2 − xm)

φ(xm)

)

+
k+
1 k

−

1 M1(M2 − xm)φ
′

min

k+
1 φ(xm) + k−1 (M2 − xm)

+ k+
2 + k−2

+ k−1

(

M1 −
k−1 M1(M2 − xm)

k+
1 φ(xm) + k−1 (M2 − xm)

)

< 0

where xm = max{x ∈ R+|φ
′

(x) = φ
′

min}, with φ
′

min the minimum of φ
′

.
• Inhibitor/Activator case:
φ is decreasing on [0, α], increasing on [α,∞[ for some α in ]0,∞[, tends to
a constant when x→∞, and fulfills the following conditions:
1. α < M2,

2. φ(0) 6
k
−

2 M2

k
+
1 M1

,
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3. ∃(k±i ) ∈ R4
+, i = 1, 2, for which xm (defined as above) is such that

xm = Ē ∈ [0, α] and

∆0 = k+
1 φ(xm)

(

1 +
k−1
k+
1

(M2 − xm)

φ(xm)

)

+
k+
1 k

−

1 M1(M2 − xm)φ
′

(xm)

k+
1 φ(xm) + k−1 (M2 − xm)

+ k+
2 + k−2

+ k−1

(

M1 −
k−1 M1(M2 − xm)

k+
1 φ(xm) + k−1 (M2 − xm)

)

< 0,

then oscillations must occur in the elementary reaction network {1} obeying to (3)
for some values of the parameters k±i .

Proof.

• Activator/Inhibitor case:
Under the assumptions above, the rectangle D = [0, M1]× [0, M2] is invariant
to the flow of the system as ∀E ∈ [0, M2]

dA

dt

∣

∣

∣

∣

A=0

= k−1 M1(M2 − E) > 0, (6)

dA

dt

∣

∣

∣

∣

A=M1

= −k+
1 Aφ(E) 6 0, (7)

and ∀A ∈ [0, M1]

dE

dt

∣

∣

∣

∣

E=0

= −k+
1 Aφ(0) + k−1 (M1 −A)M2 + k−2 M2 > 0 (8)

dE

dt

∣

∣

∣

∣

E=M2

= −k+
1 Aφ(M2)− k+

2 M2 6 0. (9)

In correspondence of the point in the parameter space for which

xm = Ē =
k
−

2

k
+
2 +k

−

2

M2,

we have

∆ = k+
1 φ(Ē)(1 +

Ā

M1 − Ā
) + k+

1 Āφ
′

(Ē) + k−1 (M1 − Ā) + k+
2 + k−2 = ∆0 < 0

as Ā =
k
−

1 M1(M2−xm)

k
+
1 φ(xm)+k

−

1 (M2−xm)
and Ā

M1−Ā
=

k
−

1

k
+
1

(M2−xm)
φ(xm) . This implies that the

two eigenvalues corresponding to the equilibrium have positive real parts.
We can use k+

2 as bifurcation parameter, and leave the other parameters
unchanged. As from (4)







limk
+
2 →∞

Ē = limk
+
2 →∞

k−

2

k
+
2 +k

−

2

M2 = 0

limk+
2 →∞

M2 − Ē = limk+
2 →∞

k
+
2

k
+
2 +k

−

2

M2 = M2

and also

lim
k
+
2 →∞

Ā = M1,

then as φ
′

(0) > 0, for k+
2 large enough, k+

1 Āφ
′

(Ē) + k−1 (M1 − Ā) > 0, and
consequently ∆ > 0, implying that the eigenvalues corresponding to the equi-
librium have negative real parts.
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• Inhibitor/Activator case:
The invariance of the flow on D follows from (6)-(9). Notice in particular that
from (8) the condition

φ(0) 6
k−1 (M1 −A)M2 + k−2 M2

k+
1 A

follows from the assumption φ(0) 6
k
−

2 M2

k
+
1 M1

since 0 6 A 6 M1. Concerning the

Hopf bifurcation, the scheme above can be followed also in this case, but with
k−2 as bifurcation parameter. Let us begin from a point in parameter space
for which xm = Ē and

∆ = k+
1 φ(Ē)(1 +

Ā

M1 − Ā
) + k+

1 Āφ
′

(Ē) + k−1 (M1 − Ā) + k+
2 + k−2 = ∆0 < 0

as Ā =
k
−

1 M1(M2−xm)

k
+
1 φ(xm)+k

−

1 (M2−xm)
and Ā

M1−Ā
=

k
−

1

k
+
1

(M2−xm)
φ(xm) . This implies that the

two eigenvalues corresponding to the equilibrium have positive real parts.
Since from (4)







limk
−

2 →∞
Ē = limk

−

2 →∞

k
−

2

k
+
2 +k

−

2

M2 = M2

limk−

2 →∞
M2 − Ē = limk−

2 →∞

k
+
2

k
+
2 +k

−

2

M2 = 0

and also

lim
k
−

2 →∞
Ā = 0,

so, as M2 > α there exists a η such that k−2 > η ⇒ Ē > α, which means

φ
′

(Ē) > 0⇒ ∆ > 0 and the two eigenvalues have negative real parts.

Under the regularity assumptions, in both cases ∆ = k+
1 φ(Ē)(1+ Ā

M1−Ā
)+k+

1 Āφ
′

(Ē)+

k−1 (M1 − Ā) + k+
2 + k−2 is at least C0 in k+

2 (resp. k−2 ) (parametric version of the
Cauchy-Lipschitz theorem). Since ∆ takes both positive and negative values with
the evolution of k+

2 (resp. k−2 ), it must be zero for some intermediate value of k+
2

(resp. k−2 ). In a sufficiently small neighborhood of this value, the eigenvalues will
be complex as ∆ is small whereas Ω remains positive. Then a Hopf bifurcation
must occur. Since in both cases the dynamics of (3) is confined to D and, from
(5), the unique equilibrium point in D is a repeller for the range of parameters for
which ∆ < 0, the Poincaré-Bendixson Theorem is applicable, implying that ∃ k±i
for which the system trajectories must approach a closed periodic orbit.

The proof of the above Proposition emphasizes (through the parameters k+
2 and

k−2 ) the important role of the secondary reaction involving only E and F . As a
matter of fact, the pathway {1} without this secondary reaction cannot produce
oscillations (the Jacobian in that case has a row rank equal to 1). In fact, without
the E ←→ F reaction, the nonlinear φ would quickly exhausts the concentration of
E in the activator phase or F in the inhibitory phase.

Remark 1. Relaxing monotonicity properties on φ. In the Activator/Inhibitor case,
the monotonicity properties required above for φ in the two intervals [0, α], [α,∞[
can be in part relaxed. If we assume only that φ is decreasing in [α,∞[ (the other

assumptions remaining unchanged), then with xm = max{x ∈ [α,∞[ s.t. φ
′

(x) =

φ
′

min} and φ
′

min minimum of φ
′

in [α,∞[, the previous result still holds.
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Remark 2. Relaxing a moiety constraint. The hypothesis of the above Proposition
uses the explicit values of A and A

B
at the equilibrium, values linked by a moiety

constraint. The same Proposition can be formulated without the hypothesis A+B =
M1.

• Activator/Inhibitor case: By writing

∆0 = k+
1 φ(xm)

(

1 +
k−1

k+
1

(M2 − xm)

φ(xm)

)

+ k+
1 Āφ

′

(xm) + k−1 B̄ + k+
2 + k−2

(with B̄ the steady state value of B), the same Hopf bifurcation appears, as
at the equilibrium we still have







k
+
1

k
−

1

Ā
B̄
φ(Ē) = M2 − Ē

Ē =
k
−

2

k
+
2 +k

−

2

M2

and B̄ goes to 0 when k+
2 goes to +∞ in the same way as M1 − Ā did.

However, the Poincaré-Bendixson theorem is no longer applicable in general
to a preassigned rectangle D.
• Inhibitor/Activator case: The same kind of reasoning leads to replacing

the former expression of ∆0 by

∆0 = k+
1 φ(xm)(1 +

k−1
k+
1

(M2 − xm)

φ(xm)
) + k+

1 Āφ
′

(xm) + k−1 B̄ + k+
2 + k−2 .

Then Proposition 1 still holds for this new system.

As φ(·) depends on E, analogous arguments allowing to relax the other moiety
E + F = M2 are not easy to find and may not even exist. In fact, in the proof of
Proposition 1 the constraint E +F = M2 is used heavily to show the occurrence of
a bifurcation.

4. Examples of φ functions.

4.1. Activator/Inhibitor case.

• The first example of φ function, is the one suggested by [20] for the glycolytic
oscillations

φ1(x) =
x

1 + ( x
Ks

)n

with n > 1 (if n = 1, φ is a monotonically increasing Michaelis-Menten’s

law)(cf Figure 1). Such a function is increasing in [0,Kse
−

1
n

ln(n−1)], and

0 2 4 6
−0.5

0

0.5

1

x

 

 

φ
1

φ
1
‘

Figure 1. Qualitative behavior of the φ1 function, Ks = 0.4 and
n = 3.
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decreasing in [Kse
−

1
n

ln(n−1),∞[. We are in the Activator/Inhibitor case, with

α = Kse
−

1
n

ln(n−1) ≈ 1.518. The derivative of φ is

φ
′

1(x) =
1

1 + ( x
Ks

)n
−

n( x
Ks

)n

(1 + ( x
Ks

)n)2
.

We know that the derivative φ
′

is positive in [0,Kse
−

1
n

ln(n−1)] and negative

in [Kse
−

1
n

ln(n−1),∞[. Its minimum depends only on n

φ
′

min =
−(n− 1)2

4n

and is reached at the point xm = Kse
1
n

ln n+1
n−1 ≈ 1.929. If we consider the

reaction network {1}, then, for the set of parameters

M1 = 7, M2 = 2,
k+
1 = 0.8, k−1 = 0.2,
k−2 = 0.1, Ks = 0.4,
n = 3, k+

2 ≈ 0.425,

where k+
2 is chosen according to the equilibrium conditions, so

M2 > xm =
k−2

k+
2 + k−2

M2 ≈ 0.5040,

the condition M2 > α ≈ 0.3175 is fulfilled, and we have ∆0 ≈ −0.0237 < 0.
We also have φ

′

(0) > 0, and consequently our Proposition can be applied.
Numerical simulations are shown on Figure 2.
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Figure 2. Solutions for A and E, in correspondence of φ1, for 3
values of the bifurcation parameter : from left to right: k+

2 = 0.25,
0.3, 0.35.

• Another example of function is φ2(x) = Cxe−(x−η)2 . The shape of the function
an its derivative are shown on Figure 3, and reveal that we are again in the
Activator/Inhibitor case.

The derivative is φ
′

2(x) = C(−2x2 + 2ηx + 1)e−(x−η)2 . The point xm in

which φ
′

reaches its minimum (for positive entries) is in the interval [η
2 +√

η2+2

2 ,∞[. Hence we must have M2 > xm + η
2 +

√
η2+2

2 (which implies

M2 > η +
√

η2 + 2 as xm > η
2 +

√
η2+2

2 ).
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0 5 10
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x

 

 

φ
2

φ
2
‘

Figure 3. Qualitative behavior of φ2 and its derivative, C = 1,
η = 1.

For {1} with the parameters

M2 = 4, M1 = 7,
k+
1 = 1, k−1 = 1,
k+
2 = 0.516, k−2 = 0.416,
η = 1,

we obtain xm ≈ 2 < M2, and α ≈ 1.367 < M2. For k+
2 ≈ 0.416, the

equilibrium value of E corresponds to the minimum of φ
′

, and ∆0 ≈ −0.197 <
0. The hypotheses of Proposition 1 are satisfied, and we obtain the results
shown on Figure 4.
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Figure 4. Solutions for A and E, in correspondence of φ2, for 3
values of the bifurcation parameter k+

2 = 0.356 (left), k+
2 = 0.436

(middle) and k+
2 = 0.7 (right)

4.2. Inhibitor/Activator case. As an example of the Inhibitor/Activator case,

consider φ3(x) = n−1
n
Kse

−
ln(n−1)

n − x
1+( x

Ks
)n . The behavior of this function is shown

on Figure 5.
Considering again {1} with the parameters

M1 = 2, M2 = 6,
k+
1 = 10, k−1 = 1,
k−2 ≈ 0.083, Ks ≈ 1.79,
n = 4, k+

2 = 5
12 ,

we have xm ≈ 1, ∆0 ≈ −2.70, and α ≈ 1.36 < M2. Hence such a function fulfills
the assumptions of Proposition 1. The results of a simulation for these values of
the parameters is shown on Figure 6.
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Figure 5. Qualitative behavior of the φ3 function, Ks ≈ 1.89, n = 10.
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Figure 6. Solutions for A and E, in correspondence of φ3, for 3
values of the bifurcation parameter k−2 = 0.089 (left), k−2 = 0.103
(middle) and k−2 = 0.108 (right)

5. A few extensions treatable analytically.

5.1. Adding reactions to the elementary kinetic network. Typically, the
extension of the scheme of Proposition 1 to higher dimensional systems cannot
be treated analytically. Consider for example the linear pathway in {2} with the
dynamics given in (10):

FEA

FE

C B D {2}























dC
dt

= −k+
3 C + k−3 A

dA
dt

= −k+
1 Aφ(E) + k−1 B(M2 − E) + k+

3 C − k−3 A
dB
dt

= k+
1 Aφ(E) − k−1 B(M2 − E)− k+

4 B + k−4 D
dE
dt

= −k+
1 Aφ(E) + k−1 B(M2 − E)− k+

2 E + k−2 (M2 − E)
dD
dt

= k+
4 B − k−4 D.

(10)

Even taking into account the conservation of A + B + C + D, the characteristic
equation associated to the equilibrium of the system is of order 4, and consequently
too complicated to be treated analytically in general. However, if instead of {2}
we consider the extra reactions as irreversible, we get the same dynamics (10) but
with k−3 = 0 and k+

4 = 0. Then using Remark 2, a sufficient condition for the
oscillations to appear can be provided. Looking again at the complete system {2},
if the reaction constants of the two “outflows” C

k
−

3←− A and B
k
+
4−→ D are small,

the complete Jacobian can be seen as a perturbation of the Jacobian arising in the
irreversible case, and consequently, for small enough coefficients k−3 and k+

4 , we
can again use the sufficient condition given in Proposition 1. Under this “small
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coefficients” assumption, the argument can be extended to arbitrarily long (linear)
chains. In the general case, however, one must resort to numerical simulation.

5.2. A further coupling mechanism. A further elementary reaction scheme, of
the same complexity as {1}, is shown in {3}. In nuce, this scheme is inspired by the

A B

FE

E {3}

model of the sulfur assimilation pathway of [19] in which the final product, cysteine,
at high concentrations has a negative feedback effect on the initial sulfate uptake.
The scheme {3} reproduces a drastic simplification of this pathway, with the final
output E inducing the negative feedback action on the initial reaction step of the
pathway. By writing a system of ODEs as in (2), it is straightforward to see that
the reaction graph {3} is such that A + F = M1 and B + E = M2. Hence the
system has two free variables only, A and E, and we have

{

dA
dt

= −k+
1 Aφ(E) + k−1 (M2 − E)φ(M1 −A)

dE
dt

= −k+
1 Aφ(E) + k−1 (M2 − E)φ(M1 −A)− k+

2 E + k−2 (M2 − E)
(11)

for which the equilibrium conditions are






Ē =
k
−

2

k
+
2 +k

−

2

M2

M1 − Ā =
k
+
1 (k+

2 +k
−

2 )

k
−

1 k
+
2

Ā
M2
φ(Ē).

(12)

The characteristic equation is consequently

s2 + ∆̂s+ Ω̂ = 0,

where ∆̂ = k+
1 φ(Ē) + k−1 (M1 − Ā) + k+

1 Āφ
′

(Ē) + k−1 (M2 − Ē) + k+
2 + k−2 and

Ω̂ = (k+
1 φ(Ē) + k−1 (M2 − Ē)(M1 − Ā))(k+

2 + k−2 ). The equations are very similar
to those of section 3. Equation (12) also shows that one of the two equilibrium

constraints is modified. In the Activator/Inhibitor case, with ∆̂0 = k+
1 φ(Ē)(1 +

k
+
1 (k+

2 +k
−

2 )

k
+
2

Ā
M2

) + k+
1 Āφ

′

(xm) + k−1 (M1 − Ā) + k+
2 + k−2 as a new value for ∆0, the

same result will still hold.

6. Conclusion. The aim of this paper is to provide a set of sufficient conditions
for an allosteric cofactor action to induce sustained oscillations in a simple reaction
network. Although analytically provable mechanisms inducing oscillations can be
found only in low dimensional reaction networks, their study is important also for
the understanding of (more realistic) higher dimensional systems, as the oscillatory
behavior is typically observed also for these last.
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