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Abstract. In this paper we discuss a model of zebrafish embryo notochord de-
velopment based on the effect of surface tension of cells at the boundaries. We

study the process of interaction of mesodermal cells at the boundaries due to

adhesion and cortical tension, resulting in cellular intercalation. From in vivo
experiments, we obtain cell outlines of time-lapse images of cell movements

during zebrafish embryo development. Using Cellular Potts Model, we calcu-

late the total surface energy of the system of cells at different time intervals at
cell contacts. We analyze the variations of total energy depending on nature of

cell contacts. We demonstrate that our model can be viable by calculating the
total surface energy value for experimentally observed configurations of cells

and showing that in our model these configurations correspond to a decrease

in total energy values in both two and three dimensions.

1. Introduction. In this paper we analyze a model of notochord development of
the zebrafish embryo. Particularly, we are interested in studying factors contribut-
ing to the (mediolateral) intercalation of mesodermal cells. By intercalation we
mean a reordering of the cells resulting in their elongation, alignment in certain
(mediolateral) direction, their insertion in the spaces between other cells, along
with subsequent formation of a column of cells leading to the zebrafish notochord
development.

For the past few years a number of problems related to the modeling of the
morphogenetic movements of different species have been discussed in the literature
[2], [3], [6], [8], [9], [13], [14], [17], [18]. Here we mention two types of approaches
to mathematical modeling of the process of intercalation. Most papers follow the
simulation approach, which is based on assumed initial conditions and testing of
chosen values of model parameters. The validity of this approach is verified by
comparison with experimental data, which generally is not easy to do. In our
approach we do not employ simulation; instead we calculate the total energy values
for those configurations of cells that lead to cell intercalation and discuss the total
energy variation depending on the values of model parameters. Some parameters
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are determined directly from existing experimental data (observation of notochord
formation), and others remain unknown variables of the model. We test our model
by showing a decrease in time of the total surface energy values for configurations
observed in the experiment.

For our analysis we utilize in vivo experimental data showing subsequent changes
in the cell boundary outlines with time. We will show that the process of cell in-
tercalation described by our model is stable in a sense that the total surface energy
of the system decreases with time. According to the model, the total surface ten-
sion energy of the system of cells is determined as the sum of cell adhesion and
cortical tension energies at the cell boundary. The adhesion energy can be defined
as the energy spent by the cell when its boundary sticks to an adjacent structure.
In general, intra-cellular and extra-cellular forces control cell movement. Adhesion
forces are acting at the interface of a cell with another biological structure touching
it. This entity can either be another cell, or can be the surrounding medium. In
both cases the forces acting at the interface between the two biological surfaces
bound to each other are adhesive forces. The cell can either touch another cell
if it is positioned inside the notochord, or it can touch the somites (lying outside
the notochord) if the cell is located at the lateral edge of the notochord. Adhesion
molecules are cadherin molecules expressed by the cell membrane during these in-
teractions. Inside the cell, the polymerized cytoskeleton maintains the convex shape
of the cell boundary. Cortical tension is the intra-cellular tension force acting on the
cell membrane and restraining cell deformations. The cortical tension energy is the
energy released by tension forces exerted by the cortex microfilaments interacting
with the cell membrane. Cortical tension molecules are the molecules involved in
the contractility of the cortex filaments such as actomyosin [12]. Thus, the model
accounts for two different types of cell contacts: cell-to-cell and cell-to-wall; both
resulting in surface tension variations. Note that the cell-to-medium contact is ne-
glected here since the experimental observations reveal very limited space between
cells. It is a general belief that cell intercalation is the main factor contributing
to the notochord formation. The goal of this paper is to find an explanation of a
rather general problem: how the mechanical properties of cells at the boundaries,
particularly adhesion and cortical tension, contribute to intercalation or large scale
remodeling of tissues seen during embryonic development. We examine the role of
differentially distributed surface tension (anisotropic adhesion and cortical tension)
as a possible cause of notochord convergent extension (through cellular intercala-
tion); particularly, we investigate whether anisotropic adhesion and cortical tension
can serve as the main driving mechanism responsible for intercalation in zebrafish
gastrulation. We also aim to test if the changes in cell behavior found in mutant
embryos lacking noncanonical Wnt signaling can be explained by loss of oriented
adhesive function. To examine the effects of loss of adhesion on this system, we use
embryos mutant for the adhesion molecule E-Cadherin, which mediates part of the
cell-cell adhesion (similar to the molecules like Ncad and protocadherins). Embryos
lacking this adhesion molecule (Babb [1], Kane [10], Warga [16], Shimuzu [15]) ex-
hibit delayed and incomplete gastrulation tissue movements of epiboly, convergence
and extension.

In vertebrates cell rearrangements during embryonic development transform a
symmetrical mass of cells into an elongated body rudiment with a recognizable head.
Cells at the future dorsal midline (the notochord precursor) rearrange in order to
convert a short and broad block of cells into a narrow tall one. The morphogenesis of
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the notochord has been extensively studied in ascidians, vertebrate amphibians and
zebrafish (Jiang and Smith [7], Keller et al. [11], Glickman [4]). During this tissue
morphogenesis, cells at the dorsal midline progressively elongate perpendicular to
the midline axis, and intercalate between one another. The movement of a cell
between its medial neighbors displaces the neighboring cells along the midline axis
(see Figures 1A, 1B, and 2). Cells situated along lateral edges of the notochord
touch a boundary wall formed by the cells adjacent to the notochord (somites).
The notochord cells in contact with the wall continue to bleb and show membrane
activity. While their medial edges remain motile, their lateral edges become inactive.
Thus, the intercalation of a cell from lateral edge to midline narrows the tissue,
while the perpendicular displacement of dorsal neighbors lengthens the tissue. Some
aspects of this cell rearrangement are quite complicated. Clearly, there are multiple
mechanisms contributing to morphogenesis, as notochord formation is only impaired
in embryos mutant for the adhesion molecule E-cadherin, or N-cadherin, or the
Wnt signaling pathway, which has been shown to modulate the cell surface density
of E-cadherin. What is the main cause of this morphogenesis? What are the
relative contributions of differential adhesion, elongation and alignment, along with
chemotaxis-driven protrusion and stiffness?

Figure 1. A. Cells intercalating, B. Cells ending intercalation.

Figure 2. Blue Cells=Notochord Cells, Grey Cells=Somites (ad-
jacent to notochord).

In the experiment of the zebrafish embryo during gastrulation in the notochord
region cell movements are observed from time-lapse images. Cells progressively
elongate, intercalate between one and another, and ultimately stack up forming
a cohesive narrow rod-like structure, see Fig.1. According to our model, cellular
adhesion and cortical tension are believed to be prevailing factors in this partic-
ular formation. What is the role of surface tension of cell boundaries when the
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cells are in contact with each other to achieve this particular configuration? In
order to understand the mechanism behind cellular intercalation, we use a simple
mathematical model based on the existence of anisotropic surface tension molecules
and their effect on the process of intercalation. In our model in addition to adhe-
sion molecules (Zajac [18]), we consider the presence of cortical tension molecules
unevenly distributed along each cell boundary. The existence of the competitive
effect of cortex tension has been considered by a number of authors in studying the
development of various species. One example is a mechanical model for the mor-
phogenesis of the Xenopus laevis suggested by M. Weliky et al. [17]. In this model
the adhesive forces are counterbalanced by tension forces at the cell junctions. The
cell boundaries with no protrusive activity have been shown to have more cortex
tension than their active counterparts of apparent protrusions. Similar conclusions
were made by various authors in the study of Drosophila (T. Lecuit, P.F. Lenne
[13], J. Kafer et al. [8] , H. Honda et al. [6]), Dictyostelium (J. Kafer, P. Hogeweg,
A. Maree [9]), and zebrafish embryo (R. Grima, S. Schnell [5], M. Krieg et al. [12]).
Mathematical modeling of intercalation allows one to analyze various factors con-
tributing to the cell movement that are difficult to separate in vivo. In order to
capture the essential factors responsible for convergence and extension movements
(such as cellular intercalation) we use a simplified version (model) of what we believe
is happening in reality. In our model we attempt to describe cellular intercalation
as a collective behavior of simplified cell structures that can drive morphogenetic
tissue organization. According to our model local properties of cells at the cell
boundaries averaged over groups of cells and time intervals contribute to the cell
rearrangements at the large tissue level. Note that in addition to the interaction
of cells that are in contact with each other, chemotaxis as a global interaction can
also be an important contributing factor (chemotaxis was recently shown to be a
dominant effect in a model of adhesion-based cell sorting (Kafer, J. et. al. [9]).
The analysis of the role of chemotaxis for the notochord development will be done
elsewhere.

Let us note that experimental observations of notochord development from em-
bryos include various data regarding the number of cells, cell outlines (elongation,
orientation, perimeter, area or volume), direction of cell migration or intercalation,
and the fact of non-adherence of notochord to somites. Note also that the main
components of our model: anisotropic adhesion and cortical tension are not directly
observed in the experiment. In our analysis, these factors are considered as vari-
ables. We examine variations of the total surface tension energy with respect to
the change of these variables within their range of values for different types of cell
contacts (cell-to-cell or cell-to-wall).

2. The model. Our model is based on the leading role played by anisotropic sur-
face tension (cellular adhesion and cortical tension) in the process of intercalation.
The idea of an important role played by anisotropic adhesion for cell intercalation of
the frog Xenopus laevis was first developed in the work of Zajac, Jones and Glazier
[18]. In our model the cortical tension is defined as the surface tension caused
by the contraction of the cortex microfilaments interacting with the cell boundary.
Using the Cellular Potts Model (CPM) [3], we consider the cells as a group of clus-
tered sites defined on a lattice grid. We assume that adjacent cells intercalate by
sticking to each other in a particular manner, and the strength of their adhesion
varies along their boundaries. As noted above, our model considers the presence of
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anisotropic surface tension molecules that are unevenly distributed along each cell
boundary. Each contact point on the boundary is assigned a certain energy value
corresponding to its surface tension. Note that this assignment is not dictated by
parameters of the model and is model dependent. There are various approaches
in the literature both within CPM models [12] as well as models using other tech-
niques, e.g. those based on differential equations [6]. The energy of each cell is
calculated depending on the type of cellular contact, cell elongation, and relative
orientation of the cell with respect to its neighbors. The energy values assigned to
the contact (boundary) sites vary along the cell boundary, with greater values on
the short sides and smaller values on the long sides of the cell [18]. The total energy
of the system can be calculated by adding the energies of all cells. We verify that
our cell rearrangements follow the general rule of minimization of the total energy
of the system. We assume that the total energy variations depend only upon the
surface tension of the cells that are in direct contact with each other and all other
factors such as chemotaxis, apoptosis or division of cells are considered secondary
and ignored. The calculations of our model of zebrafish embryo development are
performed in both two and three dimensions using Mathematica programming; the
details of our analysis are given for two-dimensional cell configurations.

2.1. Two-dimensional model. According to the cellular automata theory we dis-
cretize our domain with a two-dimensional grid of square lattice sites (pixels). The
size of each site is determined by the resolution chosen for the picture. A finer
resolution better represents the cell outline but involves more extensive computa-
tions since each cell is represented by a larger set of pixels. Experimental data
from time-lapse images consist of a list of (x,y) coordinates of vertices in 2D (and
(x,y,z) coordinates for 3D case) for all cells. Cell outlines are drawn for each cell
and lattice sites are obtained by covering all cell outlines. Each cell is represented
by an assembly of sites. The behavior of each site is determined by its interaction
with the neighboring sites. This formalism is based on the Cellular Potts Model,
see Glazier and Graner [3]. According to this formalism, cells cover multiple sites
on the lattice and have some of the properties of real biological cells that we assume
relevant to the observed behavior. In the experiment we can observe changes in
cell outlines at different time intervals. Since experimentally it is difficult to sep-
arate the energies of surface adhesion and cortical tension at the cell boundaries,
in our model we calculate their sum: the combined surface tension energy. Since
the surface adhesion energy is determined by the cell adhesiveness, and the cortical
tension energy is determined by the cell stiffness, our total energy is the function
of both variables combined: adhesiveness and stiffness of the cells. The details of
total energy calculation are given below.

Each cell has interior and boundary lattice sites (see Figure 7). The surface
tension energy between two interior sites is 0, according to our assumption of no
adhesiveness or stiffness inside the cell. The surface tension energy of a boundary
lattice site at a contact point is represented by the function Z[σ(r), σ(rk)]. For
each boundary site of the cell the position vector r = (x, y) is defined as the vector
connecting the center of the cell G with the point M of its contact with an adjacent
cell (see Figure 3). Each cell and all its sites (with different r) are assigned the same
index δ = σ(r) . For an adjacent cell we can introduce in a similar manner σ(rk)
as the index value of an adjacent cell with position vector rk at the contact site M ,
where k = 1, ..., 4 (Figure 4). All boundary sites of the adjacent cell to the north of
our cell are assigned a value k = 1, to the east of it k = 2, etc. (Figure 4b). The
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computer program picks one particular cell and calculates the total contribution to
the surface tension energy with all its adjacent cells at all contact points. Then the
program sums the contributions from all cells in the domain. The surface tension
energy Z[σ(r), σ(rk)] is evaluated according to the following expression,

Z[σ(r), σ(rk)] = J [σ(r), σ(rk)]−Q[r, rk], (1)

where J [σ(r), σ(rk)] > 0 represents the isotropic part of the surface tension energy
(adhesion and cortical tension) of the two sites in contact, and Q[r, rk] is the polar
term reflecting the anisotropic part of the surface tension energy, see Zajac [3]:

Q[r, rk] = ααkεεkrrk sinθ sinθk. (2)

Note that the term J [σ(r), σ(rk)] depends only on the type of contact and is constant
along the cell boundary. In our model we approximate every cell as an ellipse and by
elongation vector we mean a vector along its major axis a (Figure 5). In expression
(2) θ is the angle between the elongation vector v of our cell and the position vector
r at the contact point M (see Figure 3). Correspondingly, θk is the angle between
the elongation vector vk of an adjacent cell and the position vector rk at the contact
point M.

Figure 3. Red cell and its neighbor blue cell at the contact point
M. The position vectors are GM = r and GkM = rk. The cell
elongation vectors are v and vk.

From the cell outlines we can compute the total energy of the system of cells at
different time intervals:

H =
∑
r∈Ω

4∑
k=1

kD (J [σ(r), σ(rk)]− ααkεεkrrk sinθ sinθk)

=
∑
r∈Ω

4∑
k=1

kDZ[σ(r), σ(rk)], (3)

where

kD =
{

0, σ(r) = σ(rk)
1, σ(r) 6= σ(rk)

and Ω is the domain of lattice sites. The case kD = 0 means that the two sites of the
same cell have zero surface tension. And Z[σ(r), σ(rk)] is the surface tension energy
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between two lattice sites of coordinates r = (x, y) and rk = (xk, yk) either inside
the notochord between two distinct cells, or at the lateral border of the notochord
between one cell at the edge and the wall. Let σ(r) = δ, σ(rk) = δk, where δ and δk

represent two different index values, meaning that the lattice site r and its adjacent
site rk belong to distinct boundaries of two biological contact surfaces, otherwise the
terms in the first sum of (1) would all be zeros. The value of the isotropic surface
energy J [σ(r), σ(rk)] = J(δ, δk) changes depending on the nature of the surfaces in
contact since we have two different cellular contacts: cell-to-cell and cell-to-wall.
The two-dimensional lattice site of index δ also called the center site, has a 4-point
neighborhood that contains the other sites of index δk, 1 ≤ k ≤ 4, see Figure 4.
Usually in the Cellular Potts Model there is also a contribution to the total energy
from the volume and surface-area constraints which in the CPM simulations prevent
cells from disappearing and losing their roundness, respectively. Since this work
does not simulate cell movements, the energy contribution from these CPM terms
is effectively constant and it does not affect the total energy change. In our model
we do not simulate cell movements but rather use cell movement experimental data
to calculate total surface energy. Therefore no additional constraints are needed in
equation (3).

Figure 4. A. Cluster of 7 cells. Cell 1 is the set of yellow pixels
(sites=circles). Each circle is represented by σ(r) = δ, i.e. cell num-
ber (yellow=1, green=2). B. Center site (yellow pixel) surrounded
by its four adjacent sites.

In the model we approximate every cell as an ellipse of eccentricity ε, and by
elongation vector we mean a vector along its major axis a (cell elongation). The
parameter ε is the cell elongation measure, ε =

√
1− (b/a)2 , where a is determined

as the maximum distance between two opposite boundary points in the direction of
the cell elongation vector and b is the minimum distance in the direction perpendic-
ular to the elongation vector, so that b/a represents the width-to-length ratio. Cell
polarity characterizes how different the cell is from the circular shape, it is related
to eccentricity of the ellipse approximating the cell: if the ratio b/a is close to 1 (ε
is close to zero) then we say that the cell is not polarized but more rounded; if b/a
is close to zero (ε is close to 1) then the cell is very elongated and polarized.

The parameter α > 0 (or αk > 0) is the weight of the polar term in its contribu-
tion to the total energy of the cell. When the angles θ and θk at the contact point
are 90o, the polar term is maximum, and the total energy is minimum which makes
it a favorable contact for the cells. Therefore cells tend to position themselves in
contact along their long sides, see Fig. 6.
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Figure 5. A cell approximated by an ellipse.

Figure 6. Two cells (approximated by ellipses) are in contact with
each other along their longer sides.

The observations of the zebrafish embryo development in vivo during gastrulation
in the notochord region provide data on cell contours for a group of notochord cells
at different time points. We analyze a subset of this data, taken from the mid-region
(cluster) to avoid interference with the top and bottom open boundaries where the
cell outlines are not completely defined. In order to reduce the amount of data
we superimpose a two-dimensional lattice over the cell outlines and choose a larger
scale of resolution 8x8 where now 8x8 pixels of experimental data are represented
by a 1x1 big numeric pixel (Figure 8), and similarly for a 4x4 resolution, 4x4 pixels
of experimental data are represented by a 1x1 numeric pixel (Figure 9). As an
example, Figure 7 presents the values of the surface tension energy calculated for
one cell at its boundary contact points. The cell is located inside the notochord
away from the wall, and therefore is touching other notochord cells (not shown in
the figure). The x and y axes measure the width and the length of the notochord
tissue, respectively. The isotropic surface tension energy J is set to 6 for cell-to-
cell contacts, and the values of total anisotropic energy are calculated according
to equations (1) and (2). We observed that due to the polar term Q the surface
tension energy values are no longer uniformly distributed along the cell boundary
sites (yellow) and reach a minimum along the longer sides of the cell.

2.2. Three-dimensional model. The group of cells is considered in a three-
dimensional grid, where each cell is represented by a set of 3D-lattice sites. The
neighborhood of a center site is expanded to six points by adding top and bottom
adjacent sites. The position for each center site is represented by r = (x, y, z) and
its adjacent sites are located at rk = (xk, yk, zk), with 1 ≤ k ≤ 6. Cells are approx-
imated by ellipsoids where center of mass and elongation vectors are calculated in
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Figure 7. An uneven distribution of surface tension energy values
for one cell inside the notochord where x measures the notochord
width and y measures its length. Boundary lattice sites (yellow)
are assigned energy values computed according to Z[σ(r), σ(rk)] =
J − ααkεεkrrk sinθ sinθk, where J = 6, α = 1, αk = 1, r = (x, y),
14 ≤ x ≤ 24, 29 ≤ y ≤ 36.

three dimensions. Similar to the 2D case the total energy is computed using the
equation (3).

2.3. Computational outcomes. Since the goal of the paper is to analyze the
stability of the process of intercalation described by our model, we compute the
total energy of the system of cells at 44-minute intervals. The computation of the
variations of the total energy in time will show how realistic our model is. For a
selected cluster of cells in the experiment we observe the changes in cell shapes at
different time points. Each cell is discretized (presented as a set of lattice sites), and
approximated by an ellipse. The direction of elongation vector of a cell is defined as
the direction of the major axis of the corresponding ellipse and can be obtained by
calculation of the cell moments of inertia about the coordinate axes, and subsequent
diagonalization of the matrix of moments of inertia, see Zajac et al. [18] for details.
The results of a cluster of 45 cells with cell outlines and corresponding directions of
elongation are shown in Fig. 8.

2.3.1. Effect of Surface Tension on Total Energy at Different Cell Contacts. The
analysis of the first cluster of 45 cells selected over a square lattice of 8x8 resolution
is performed at three different time points (Fig.8) of 44-minute intervals. Figure 9
shows cell outlines for the second cluster of 28 cells and their direction of elongation.
This second cluster is analyzed at a finer resolution 4x4 during four time points for
shorter time intervals: t1 = 0, t2 = 13, t3 = 29, t4 = 44 minutes. We first
observe that the direction of elongation for all cells from both Figures 8 and 9
becomes more aligned and perpendicular to the notochord axis. For both clusters
we evaluate the total energy as a function of two variables, x: cell-to-cell contact
energy density (energy per unit surface area per lattice site), and y: cell-to-wall
contact energy density. Both variables include densities of the surface adhesion
energy and cortical/cytoskeleton tension at each contact. The total surface tension
energy is calculated as the sum of cell-to-cell contact energy density and cell-to-wall
contact energy density over the entire square lattice. Figure 10 shows the variation
of the total energy with respect to the variables x (cell-to-cell contact energy density:
horizontal axis) and y (cell-to-wall contact energy density: vertical axis) from time
point 1 (Tp1) to time point 3 (Tp3). Total energy values are marked with a color;
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Figure 8. Portion of notochord showing cell outlines at three dif-
ferent time points (44-minute interval) over a lattice square of 8x8
resolution, where 0 ≤ x ≤ 35, 0 ≤ y ≤ 60. (x is the notochord
width and y is the notochord length). Scale: 1 pixel= 2µm.

Figure 9. Portion of notochord (x -width, y -length) showing cell
outlines from time point 1 to time point 4 (44-minute interval) over
a lattice square of 4x4 resolution; 0 ≤ x ≤ 90, 0 ≤ y ≤ 80. Scale:
1 pixel= 1µm.

light colors account for lower energies and dark colors for higher energies. On Figure
10 the energy varies from -2,300 to 20,000. A negative energy value means that the
changes in the surface area of the cell resulting in the breakage of molecular bonds
in the cell membrane are followed by a release of energy. We can see that the total
energy is decreasing with time from Time point 1 to Time point 3; for example,
at (x, y) = (30, 30) the total energy reduces from black (here 20,498) to grey (here
16,824). Since the darker areas are located in the upper right corners of the window,
we can conclude that higher values of total energy occur for larger energy densities
(higher values of x and y) at both cell-to-cell and cell-to-wall contacts. Note that
the total energy variation is more sensitive to variations in x (cell-to-cell contact
energy) than in y (cell-to-wall contact energy). A negative slope of all slanted lines
means that y varies in opposite direction to x for all time points when the total
energy is kept constant. For example, if x decreases from 7 to 5, then in order to
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keep the same value of the total energy (0) y should increase from -10 to -5. This
difference in behavior of x and y suggests that different factors contribute to the
total energy at cell-to-wall interface compared to cell-to-cell interface. Note that
at the cell-to-wall boundary the contribution of the cortical tension to the total
energy is greater than that of the adhesion; while inside the cell the contribution
of adhesion prevails according to experimental observations. The case where the
surface tension is zero means that there are no tension forces exerted by the cortex
filaments.

Figure 10. Contour plots of total energy H as a function of x and
y at 3 time points of 44-minute intervals of resolution 8x8, where x
is the surface cell-to-cell contact energy, and y is the surface cell-
to-wall contact energy: 0 ≤ x ≤ 30, 0 ≤ y ≤ 30. Value of total
energy H is indicated by color in color bar chart.

From both observations and calculations we see that the total number of sites
covering the cluster of cells (total surface area of the cluster) decreases over time.
We can also observe that the number of cells from Time point 1 to Time point 3
decreases from 43 to 35. It means that the 2D-analysis does not capture the third
dimension; some cells are not seen in the two-dimensional cross-section (z-layer) of
the domain because they moved to a different layer. This observation suggests the
need for a 3-D analysis to more accurately account for all cells.

From our calculations we observe that the total energy evaluated at cell-to-cell
contacts decreases over time, unlike the total energy at cell-to-wall contacts. With
time, the cell configurations change to follow the reduction in total energy. In our
model the total energy decreases with the decrease of both x and y, which represent
the energy densities at the cell-to-cell and cell-to-wall contact lattice sites. Notice
however, that the reduction in total energy is more significant with the decrease of
x (cell-to-cell contact energy) than y (cell-to-wall contact energy). This finding tells
us that the cell-to-cell contact is the prevailing contact contributing to the decrease
of the total energy.

2.3.2. Polar term and Anisotropy of Total Energy. According to the expression (3)
the dependence of the total energy polar term on the cell elongation and relative
cell orientation determines the anisotropy of total energy (uneven distribution of
surface tension). In our calculations we set the weight of the negative polar term
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to be α = 1. In general, α can be a function of time. For α = 1 the absolute value
of the anisotropic adhesion energy term decreases with time. Since the polar term
is negative it contributes to the decrease of the total energy of the system of cells,
however this negative effect is reduced over time as the magnitude of the polar term
decreases from Time point 1 to Time point 3. The contribution of the polar term
as time varies is of course, determined by the form of the function α = α(t).

2.3.3. Analysis of a Smaller Cluster. Similar analysis has been performed for a
smaller group of cells (28) during 4 time points with resolution 4x4 see Fig. 11.

Figure 11. Contour plots of the total energy of the system at four
different time points: t1 = 0, t2 = 13, t3 = 29, t4 = 44 minutes, for
4x4 resolution. x is the surface cell-to-cell contact energy, y is the
surface cell-to-wall contact energy: 0 ≤ x ≤ 30, 0 ≤ y ≤ 30. The
value of the total energy H is indicated by color in color bar chart.

As in the previous case with 8x8 resolution, we observe that the energy related to
cell-to-cell contact decreases over time while the energy of the cell-to-wall contact in
general, increases with time. The total energy of the system is decreasing function
of time and the decrease is more significant for large x- and small y-values. Similar
to the previous case, polar term here decreases with time from point 1 to point 4.
As in the case of 8x8 resolution, the total number of cells in the cluster decreases
with time.

2.3.4. Three Dimensional Analysis. Three dimensional analysis is performed using
the same experiments as in the previous 2D case. For the 3-D case data of cell
outlines at different z layers are collected at four time intervals. For each horizontal
cross-section of the notochord at a particular z-level (z represents the thickness of
notochord), we calculate the total number of sites covering all cell outlines of the
corresponding 2D-layers at each time interval (color). This number is not constant
and is represented graphically in Figure 12 by the horizontal width (x value); as we
can see this value changes along the vertical direction (z). This observation justifies
a need for 3-D analysis.

Notice that on Fig. 12 the number of sites decreases with time, meaning that the
notochord becomes narrower and thicker. The advantage of the 3-D analysis is that
it takes into account all the cells in the domain, and does not have any invisible
cells as in the 2-D picture. Similar to the 2-D case in 3-dimensions we observe the
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Figure 12. 3-D representation of total number of sites where
z=const is the level corresponding to a 2-D layer of cells, and x=0
is the midline axis (notochord). Time point 1 is shown in red, Time
point 2 in yellow, Time point 3 in green, Time point 4 in blue.

Figure 13. Contour plots of the 3D-total energy H(x,y) of the
system at four different time points: t1 = 0, t2 = 13, t3 = 29,
t4 = 44 minutes, for 8x8x5 resolution. x is the surface cell-to-
cell contact energy, y is the surface cell-to-wall contact energy:
0 ≤ x ≤ 30, 0 ≤ y ≤ 30. The value of the total energy H is
indicated by color in color bar chart.

decrease of the total energy over time (see Fig. 13), again confirming the viability
of our model.

Figure 14 shows the cell outlines for the time points: t1 = 0, t2 = 13, t3 = 29,
t4 = 44 minutes, at resolution 8x8x5. Similar analysis can be performed for mutant
embryo with impaired E-cadherin function, see Fig. 15. We expect the cells to loose
their ability to adhere effectively to each other. We observe that the notochord does
not narrow or elongate properly (as for the non-mutant case). We compute the total
energy between time point 1 and time point 4 and compare with our previous results
obtained from wild type embryos. The total energy here also decreases over time,
although the decrease is less significant than in the case of normal cells. In addition
we observe that the total number of sites over time at the cell-to-wall contact stays
almost the same, which can explain the improper elongation of the notochord and
therefore impaired extension movement.
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3. Conclusion. We have observed that the total energy of the system decreases
over time. We have also noticed from the total energy point of view that cell-to-cell
contacts have a greater influence on the total energy calculation than the cell-to-
wall interface. The reason behind this observation is the fact that the number of
sites contributing to cell-to-cell interaction is considerably greater than the number
of cell-to-wall contact sites. Therefore cell-to-cell contacts have a greater effect on
the energy decrease and on cell system stability than the cell-to-wall contacts. Both
2D and 3D studies show a decrease of the total energy with time, mainly due to
the reduction of cell-to-cell contact energy. We conclude therefore, that the cell
configuration changes are mainly determined by the cell-to-cell interactions rather
than cell-to-wall contacts. Experimental observations show that cell boundaries at
the wall remain inactive showing no signs of protrusion, and cell boundaries inside
the notochord experience extensive protrusive activity. These facts suggest that
cortical tension would be prevailing factor at the wall while adhesion would become
an important factor inside the notochord at the cell-to-cell contacts. Despite the
fact that we could not separate the adhesion energy from the cortical tension energy,
our analysis (computation of total energy) shows that the variations in energy at
the cell-to-wall interface are opposite to the variations in energy at the cell-to-cell
contacts. This fact is in agreement with the idea that adhesion and cortical tension
at the cell boundary balance each other out. Opposite situation occurs at the cell-
to-cell interface with prevailing role of adhesion energy inside the domain compare
to the cell-to-wall interface with prevailing cortical tension effect.

We have formulated a mathematical model describing a notochord formation due
to cell intercalation and cell motion. The main consideration in our model was given
to the mechanism of cellular intercalation as a result of anisotropic cellular surface
tension. The total energy computed from real data at 3 time points of resolution
8x8, and at 4 different time points of resolution 4x4 decreases with time. This is a
positive indication that our model can be a true approximation of what happens in
reality, and anisotropic adhesion and cortical tension at cell-to-cell and cell-to-wall
contacts could serve as the main driving mechanism for intercalation in zebrafish
gastrulation. We concentrated on the modeling of zebrafish notochord embryo for-
mation due to availability of experimental data and simplicity of the structure. The
model however, can be applied to more general developmental biological structures.

Possible future development:

i) Analysis of other factors contributing to the intercalation of cells. Understand-
ing of the nature of chemotaxis effect.

ii) The effect of the open top and bottom domain boundary.
iii) Simulation of the cellular behavior, numerical outcomes and comparison with

experimental data.

Acknowledgments. We thank Dr. Lilianna Solnica-Krezel and Dr. Vladimir
Rosenhaus for their support and encouragement. We are also grateful to anonymous
Referees for a number of useful suggestions. This work was partially supported by
NIH/NIGMS grant GM-055101.

REFERENCES

[1] S. G. Babb and J. A. Marrs, E-cadherin regulates cell movements and tissue formation in
early zebrafish embryos, Dev. Dyn., 230 (2004), 263–267.



SURFACE TENSION CELLULAR INTERCALATION IN ZEBRAFISH 273

Figure 14. 3D-portion of notochord showing cell outlines (x: no-
tochord width, y: length, z: thickness) at four time points: t1 = 0,
t2 = 13, t3 = 29, t4 = 44 minutes, of resolution 8x8x5, where
0 ≤ x ≤ 40, 0 ≤ y ≤ 40, 0 ≤ z ≤ 6. Scale in x and y-axes: 1 pixel
= 2µm, scale in z-axis: 1.22µm.



274 COLETTE CALMELET AND DIANE SEPICH

Figure 15. 3D-portion of notochord showing cell outlines (x: no-
tochord width, y: length, z: thickness) from mutant embryo with
E-cadherin deficiency at time point 1 and time point 4 (95 minute
interval) of resolution 8x8x6, where 0 ≤ x ≤ 60, 0 ≤ y ≤ 50,
0 ≤ z ≤ 4. Scale in x and y-axes: 1pixel = 2µm, scale in z-axis:
1.5µm.

[2] T. M. Backes, R. Latterman, S. A. Small, S. Mattis, G. Pauley, E. Reilly and S. R. Lubkin,

Convergent extension by intercalation without mediolaterally fixed cell motion, J. Theor. Bio.,

256 (2009), 180–186.
[3] J. A. Glazier and F. Graner, Simulation of differential driven adhesion rearrangement of

biological cells, Phys. Rev. E., 47 (1993), 2128–2154.
[4] N. S. Glickman, Shaping the zebrafish notochord, Development, 130 (2003), 873–887.

[5] R. Grima and S. Schnell, Can tissue surface tension drive somite formation?, Develop. Biol.,
307 (2007), 248–257.

[6] H. Honda, T. Nagai and M. Tanemura, Two different mechanisms of planar cell intercalation

leading to tissue elongation, Develop. Dyn., 237 (2008), 1826–1836.

[7] D. Jiang and WC. Smith, Ascidian notochord morphogenesis, Develop. Dyn., 236 (2007),
1748–1757.

[8] J. Kafer, T. Hayashi, A. F. Mare, R. W. Carthew and F. Graner, Cell adhesion and cortex
contractility determine cell patterning in the Drosophila retina, Proc. Natl. Acad. Sci., 104
(2007), 18549–18554. arXiv:0705.1057

[9] J. Kafer, P. Hogeweg and A. F. Maree, Moving forward backward:directional sorting of chemo-

tactic cells due to size and adhesion differences, Comput. Biol., 2 (2006), 518–529.
[10] D. A. Kane, K. N. McFarland and R. M. Warga, Mutations in half baked/E-cadherin block

cell behaviors that are necessary for teleost epiboly, Development, 132 (2005), 1105–1116.
[11] R. Keller, L. Davidson, A. Edlund, T. Elul, M. Ezin, D. Shook and P. Skoglund, Mechanisms

of convergence and extension by cell intercalation, Philos. Trans. R. Soc. Lond B. Biol. Sci.,

355 (2000), 897–922.

http://arxiv.org/pdf/0705.1057


SURFACE TENSION CELLULAR INTERCALATION IN ZEBRAFISH 275

[12] M. Krieg, Y. Arboleda-Estudillo, P-H. Puech, J. Kafer, F. Graner, D. J. Muller and C-P.
Heisenberg, Tensile forces govern germ-layer organization in zebrafish, Nature Cell Biol., 10

(2008), 429–436.
[13] T. Lecuit and P. Lenne, Cell surface mechanics and the control of cell shape, tissue patterns

and morphogenesis, Nature Reviews, Molecular Cell Biology, 8 (2007), 633–644.

[14] D. Sepich, C. Calmelet, M. Kiskowski and L. Solnica-Krezel, Initiation of convergence and
extension movements of lateral mesoderm during zebrafish gastrulation, Develop. Dyn., 234

(2005), 279–292.

[15] T. Shimizu, T. Yabe, O. Muraoka, S. Yonemura, S. Aramaki, K. Hatta, Y. K. Bae, H. Nojima
H and M. Hibi, E-cadherin is required for gastrulation cell movements in zebrafish, Mech.

Dev., 122 (2005), 747–763.

[16] RM. Warga and DA. Kane, A role for N-cadherin in mesodermal morphogenesis in gastru-
lation, Dev Biol., 310 (2007), 211–225.

[17] M. Weliky, S. Minsuk, R. Keller and G. Oster, Notochord morphogenesis in Xenopus lae-

vis: Simulation of cell behavior underlying tissue convergence and extension, Develop., 113
(1991), 1231–1244.

[18] M. Zajac, G. L. Jones and J. A. Glazier, Simulating convergent extension of anisotropic
differential adhesion, J. Theor. Bio., 222 (2003), 247–259.

Received July 25, 2009; Accepted November 26, 2009.
E-mail address: ccalmelet@csuchico.edu

E-mail address: diane.s.sepich@vanderbilt.edu


	1. Introduction
	2. The model 
	2.1. Two-dimensional model
	2.2. Three-dimensional model
	2.3. Computational outcomes

	3. Conclusion
	Acknowledgments
	REFERENCES

