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Abstract. In this paper three different filtering methods, the Extended
Kalman Filter (EKF), the Gauss-Hermite Filter (GHF), and the Unscented
Kalman Filter (UKF), are compared for state-only and coupled state and pa-
rameter estimation when used with log state variables of a model of the im-
munologic response to the human immunodeficiency virus (HIV) in individuals.
The filters are implemented to estimate model states as well as model param-
eters from simulated noisy data, and are compared in terms of estimation ac-
curacy and computational time. Numerical experiments reveal that the GHF
is the most computationally expensive algorithm, while the EKF is the least
expensive one. In addition, computational experiments suggest that there is
little difference in the estimation accuracy between the UKF and GHF. When
measurements are taken as frequently as every week to two weeks, the EKF is
the superior filter. When measurements are further apart, the UKF is the best
choice in the problem under investigation.

1. Introduction. The modeling of the physiologic and immunologic response to
HIV infection in humans is generating a substantial amount of research effort, and
significant progress has been made in the treatment of HIV-infected patients. One
of the most prevalent treatment strategies for acutely infected HIV patients is highly
active anti-retroviral therapy (HAART) which utilizes two or more drugs. However,
despite the success of HAART, patient-specific optimal schemes for its use need to
be considered. Grave side effects of taking drugs, viral mutations and the high cost
of drugs all motivate a substantial research effort in this area.

Open-loop control, a control that is pre-computed for a given dynamic model and
initial conditions, is one technique that has been employed in a number of works
(e.g., [2, 8]) to design treatment therapies for HIV patients. However, this technique
may be inadequate for reasons such as poor patient adherence, increasing drug resis-
tance due to virus mutations, and drug side effects as noted. Another approach that
has been used to design dynamic HIV treatment therapies utilizes feedback controls
such as those based on the state dependent Riccati equation (SDRE) approach used
in [6] and on receding horizon control methodology in [9, 11]. A fundamental char-
acteristic of feedback control is that it depends on the current state of the system.
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Hence, this method can be used to design adaptive treatment schedules for HIV
patients based on the patient’s current status (e.g., current CD4+ T cell count
and viral load). Because HIV modeling generally involves partial observations and
noisy measurements from combined compartments, the method by which the state
is obtained at each sampling time is of special concern, and an efficient estimation
technique is needed to develop a successful implementation of feedback control.

State and parameter estimation and the development of associated adaptive feed-
back control schemes in the setting investigated here offer challenges different from
those in many engineering applications where high frequency uncensored observa-
tions are often the norm. In addition to low frequency sampling in longitudinal data
sets (data points are often very expensive both in financial costs of associated as-
says as well as in emotional/physical costs to patients), the data itself is frequently
censored from below due to limitations on assays in discriminating low values. Thus
a number of challenges include development of filters for state and parameter esti-
mation in the context of low frequency sampling and partial state observations that
are censored. Successful efforts in these areas must be combined with feedback con-
trol of nonlinear dynamics which are often only approximate for patient response.
Here we discuss a first step in development of a needed methodology by attempting
to discover an appropriate filtering approach to use with partial state uncensored
observations that are collected rather infrequently by usual engineering standards.

The model used in this paper was developed and validated as a predictive tool in
[3], wherein two types of target cells, along with their corresponding infected states,
free virus, and immune effector cells (CTL) are included as states in the model.
Fitting with clinical data demonstrated that this model provides reasonable fits
to numerous patient longitudinal data sets and has impressive predictive capability
when comparing model simulations with parameters based on estimation using only
half of the longitudinal observations. For computational ease in our presentation
here, without loss of generality, we omit the noninfectious virus VNI component
from the model in [3]. This will not affect the dynamics of this model as it is
completely decoupled from all the other compartments. The model we use is

Ṫ1 = λ1 − d1T1 − (1 − ǫ1)k1VIT1

Ṫ2 = λ2 − d2T2 − (1 − µǫ1)k2VIT2

Ṫ ∗
1 = (1 − ǫ1)k1VIT1 − δT ∗

1 − m1ET ∗
1

Ṫ ∗
2 = (1 − µǫ1)k2VIT2 − δT ∗

2 − m2ET ∗
2 (1)

V̇I = NT 103δ(T ∗
1 + T ∗

2 ) − [c + (1 − ǫ1)103k1T1 + (1 − µǫ1)103k2T2]VI

Ė = λE + bE
T ∗

1 + T ∗
2

T ∗
1 + T ∗

2 + Kb
E − dE

T ∗
1 + T ∗

2

T ∗
1 + T ∗

2 + Kd
E − δEE,

with a state vector initial condition

(T1(0), T2(0), T ∗
1 (0), T ∗

2 (0), VI(0), E(0))T .

Here the state variables are T1, the uninfected CD4+ T-cells; T2, the uninfected
target cells of a second kind; T ∗

1 , the infected CD4+ T-cells; T ∗
2 , the infected target

cells of a second kind; VI , the infectious virus; and E, the immune effectors. The
units for T1, T2, T ∗

1 , T ∗
2 and E are cells/µl-blood, and the unit for VI is RNA

copies/ml-plasma. The factors 103 are introduced to convert between microliter (µl)
and milliliter (ml) scales, preserving the units from some of the earlier published
papers [1]. The particular target cells of a second kind are not specified, and
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(according to [3, 5]) might be related to macrophages or brain cells or inactivated
memory. The model also includes terms that model drug efficacy. The control term
ǫ1 represents the efficacy of a Reverse Transcriptase Inhibitor (RTI). For a more
detailed description of model parameters and rationale for the model (1) we refer
the reader to the article [3]. While there are somewhat improved and generalized
versions of this model [5], the version we have chosen to use here is representative
and more than adequate for demonstration of the behavior of the classes of filters
we wish to compare.

We observe that our model (1) is nonlinear and hence we must explore nonlinear
estimation methods. The Extended Kalman Filter (EKF) was used in [10] for state
estimation for the HIV model of [3] (also without the VNI component and with-
out the scaling factor). Unlike the nonlinear least squares approach this technique
does not require all the data at once. That is, this methodology only uses data
as it is received and thus it can be used “online” to estimate the parameters in
an adaptive approach. However, the EKF was found in [10] to have difficulty with
state estimation even when the time span between measurements is only five days.
This motivates a need to consider alternative filtering methods. Accordingly, we
introduce the Gauss-Hermite Filter (GHF) and Unscented Kalman Filter (UKF)
as possible alternatives. Even though all three of these methods are based on a
Gaussian assumption (that is, the posterior distribution can be approximated by a
Gaussian distribution), the process by which this approximation is obtained is dif-
ferent and therefore leads to different filter performance. It has been demonstrated
(e.g., [12, 17]) that the performance of both the GHF and UKF are superior to the
EKF in numerous other nonlinear problems.

Even though this paper might be considered an extension of the efforts in [10],
we have made a significant modification here when applying these filters to our
problem. Instead of using the model directly as in [10], we applied the filters to a
log-scaled version of our model. This was done because log-transformation is a stan-
dard technique to render the transformed observation error more nearly normally
distributed. This is in agreement with the experience that measurement errors in
observations of CD4+ T-cells and viral loads can be assumed to be well approxi-
mated by log normal distributions. Moreover, from a numerical and computational
point of view, by using a log-transformed system one can resolve the problem of
states becoming unrealistically negative due to round-off errors. More importantly,
all these filters are derived for systems where the states are defined on R

n; this may
lead to some difficulties when one apples the filters to a system such as (1) where
the states are only defined in R

n
+; log-scaling mitigates this potential difficulty.

The remainder of this paper is organized as follows. In Section 2 we give a
brief introduction of the EKF, UKF and GHF and their application to a general
nonlinear continuous system with discrete observations. In Section 3, the filters are
implemented to estimate model states as well as model parameters from simulated
noisy data, and compared in terms of estimation accuracy and computational time.
We conclude the paper in Section 4 with some remarks and suggestions for future
efforts.

2. Filter descriptions. In this section we will use a capital italic letter to denote
a random variable or random vector unless otherwise indicated, and use the corre-
sponding small letter to denote its realization. A capital Roman letter is used to
denote a non-random matrix. In addition, we may occasionally use the following
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shorthand notations to ease the presentation: Xt for X(t), P tk

tk+1
for Ptk(tk+1), etc.

We will use E{·} to denote the expectation of a random variable or vector.
Next we give a brief introduction of the three filters that we use, the EKF, GHF

and UKF, and their application in the context of a general nonlinear continuous
system

dX(t) = f(X(t), t)dt + σ(t)dB(t), t ≥ t0, (2)

with discrete observations taken according to the measurement equation

Yk = h(X(tk), tk) + Vk, tk+1 > tk ≥ t0, k = 1, 2, 3, . . . .

Here X(t), assumed to satisfy an Ito stochastic differential equation, is a n di-
mensional column vector random variable for any fixed time t with Xt0 being nor-
mally distributed with mean x̂t0 and covariance matrix Pt0 , i.e., Xt0 ∼ N (x̂t0 , Pt0),
f : R

n ×R → R
n is a non-random function of x and t, B(t) is r-dimensional Brow-

nian motion with E [(dB(t))(dB(t))T ] = Q(t)dt, where Q(t) is an r × r matrix, and
σ : R → R

n×r is a non-random function of time t. The random variable Yk is
a l-dimensional column vector, h : R

n × R → R
l is a non-random function of x

and t, and Vk are white Gaussian random sequence with covariance matrix Rk, i.e.,
Vk ∼ N (0, Rk), where Rk is a l× l matrix. In addition, we assume that Xt0 , {B(t)}
and {Vk} are independent.

Let Yτ = {yk : tk ≤ τ} denote the information available by observing the process
up to time τ , where yk is a realization of Yk. The filtering problem is to find the
“best” estimate x̂τ (t) of X(t) based on Yτ . The “best” is understood in the sense
of minimum mean-squared error (MMSE) for each fixed t

x̂τ (t) = argmin
ξ

E
{

(X(t) − ξ)T (X(t) − ξ)|Yτ

}

,

where the superscript in x̂τ is determined by the subscript in Yτ . The MMSE
estimate x̂τ (t) of X(t) based on Yτ is the conditional mean

x̂τ (t) = E {X(t)|Yτ} ,

and the covariance matrix of this estimate, denoted by Pτ (t), is given by

Pτ (t) = E{(X(t) − x̂τ (t))(X(t) − x̂τ (t))T |Yτ}.
Hence, to determine the best estimate x̂τ (t) of X(t) based on Yτ as well as the
conditional covariance matrix, we need to find the conditional probability density
function p(x, t|Yτ ) of X(t) at any time t. However, this density p(x, t|Yτ ) satisfies
the Fokker-Planck equation

∂p(x, t|Yτ )

∂t
+

n
∑

i=1

∂(p(x, t|Yτ )fi(x, t))

∂xi
=

1

2

n
∑

i=1

n
∑

j=1

∂2[(σ(t)Q(t)σT (t))ijp(x, t|Yτ )]

∂xi∂xj
,

between any observation period tk < t < tk+1, and then is updated using Bayes for-
mula with a measurement due to a new observation at tk+1. Thus in general, it can
not be obtained in closed form. Therefore in many applications it is conventionally
assumed that the distribution is Gaussian so that the distribution is completely
parameterized by just the mean and covariance; this is precisely the assumption
made in the EKF, GHF and UKF.

All three filters, the EKF, UKF and GHF, utilize a “predictor-corrector” im-
plementation. Given current state estimate x̂tk

tk
= x̂tk(tk) and covariance matrix

estimate Ptk

tk
= Ptk(tk) at time tk, the filter first predicts the states at time tk+1

by using only model dynamics to obtain the predicted quantities x̂tk

tk+1
= x̂tk(tk+1)
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and Ptk

tk+1
= Ptk(tk+1). When new data yk+1 is available at time tk+1, a linear

update rule is specified to obtain the updated quantities x̂
tk+1

tk+1
and P

tk+1

tk+1
, where the

weights are chosen to minimize the mean squared error of the estimate.

2.1. The extended Kalman filter. In the EKF, the expected values occurring
in time and measurement updates are computed by linearization of the system
function f and measurement function h at the current state estimate.

To start the filter algorithm, we set k = 0 initially and set x̂t0
t0 = x̂t0 and Pt0

t0 =
Pt0 for given initial conditions x̂t0 , Pt0 . We then compute the predicted state
x̂tk

tk+1
= x̂tk(tk+1), by solving the following ordinary differential equations

dx̂tk(t)

dt
= f(x̂tk(t), t), tk < t < tk+1,

x̂tk(tk) = x̂tk

tk
.

We simultaneously compute the predicted error covariance matrix Ptk

tk+1
= Ptk(tk+1),

by solving the ordinary differential equations in the time interval (tk, tk+1)

dPtk(t)

dt
= Ptk(t)

[

∇f(x̂tk(t), t)
]T

+ ∇f(x̂tk(t), t)Ptk(t) + σ(t)Q(t)σT (t),

Ptk(tk) = Ptk

tk
.

Here Q and σ are the parameters of the noise in the stochastic process X(t) as
described above. Once this prediction step is complete, we can incorporate the
new data information at time tk+1. We compute the updated state and updated

error covariance matrix with the observation yk+1 by computing solutions to the
equations

x̂
tk+1

tk+1
= x̂tk

tk+1
+ Gk+1(yk+1 − h(x̂tk

tk+1
, tk+1)),

and

P
tk+1

tk+1
=

[

I − Gk+1∇h(x̂tk

tk+1
, tk+1)

]

Ptk

tk+1
,

respectively, where Gk+1 is defined by

Gk+1 = P
tk

tk+1

(

∇h(x̂
tk

tk+1
, tk+1)

)T
[

∇h(x̂
tk

tk+1
, tk+1)P

tk

tk+1

(

∇h(x̂
tk

tk+1
, tk+1)

)T

+ Rk+1

]

−1

.

Recall that Rk is the covariance matrix in the noise for the observation process. We
thus have the updated state values and covariance matrix at time tk+1. We then
move to the next time step, so we increment k by 1 and return to the predictor
step.

The EKF has been successfully applied to numerous nonlinear filtering problems
in the engineering and physical sciences. However, its performance can be extremely
poor when nonlinear dynamics are significant between observations. Moreover, it
is not a good choice for some application problems where Jacobian matrices are
difficult to calculate (or may not even exist). For more discussions on the EKF, the
interested reader can consult [13] among numerous other texts.

2.2. The unscented Kalman filter. Instead of linearization of the system func-
tion f and measurement function h at current state estimates as required by the
EKF, in order to compute the expected values occurring in time and measurement
updates, the UKF is based on the principle that a discrete distribution composed
of a set of deterministically chosen sampled points with the corresponding weights
can be used to approximate the standard normal distribution. It is founded on



218 H. T. BANKS, S. HU, Z. R. KENZ AND H. T. TRAN

intuition: “it is easier to approximate a probability density function than it is to
approximate an arbitrary nonlinear function”. Given a function f̃(τ), the UKF
approximates integrals by

∫

Rn

f̃(τ)
1

(2π)n/2
e−

1
2
|τ |2dτ ≈

N
∑

i=1

f̃(qi)wi. (3)

Here N = 2n + 1. The values for the sampling points qi and the weights wi (see
[14, 15, 16] for more details) are defined by

qi =







√
n + κei, 1 ≤ i ≤ n,

−qi−n, n + 1 ≤ i ≤ 2n,
0, i = 2n + 1,

and wi =















1

2(n + κ)
, 1 ≤ i ≤ 2n,

2κ

2(n + κ)
, i = 2n + 1,

where ei is the ith unit vector in R
n, and κ ∈ R can be any number providing

n + κ 6= 0. The variable κ provides an extra degree of freedom to “fine tune” the
higher order moments of the approximation and can be used to reduce the overall
predication error. This discrete distribution has the same first, second, and higher
odd moments as the standard normal distribution.

The UKF was originally designed for a discrete system with discrete observations.
To apply to the continuous model (2) we need to discretize the model over each time
frame (tk, tk+1). We first subdivide the interval (tk, tk+1) into the M subintervals
(tk + (j − 1)δt, tk + jδt) where 1 ≤ j ≤ M and δt = (tk+1 − tk)/M . Then we use an
Euler method approximation

Xk,j = Xk,j−1 +δtf(Xk,j−1, tk +(j−1)δt)+σ(tk +(j−1)δt)W
k,j , 1 ≤ j ≤ M (4)

with W k,j = B(tk + jδt)−B(tk +(j−1)δt), where Xk,j denotes the finite difference
approximation of X(tk + jδt).

To begin the filter algorithm, we set k = 0 and set x̂t0
t0 = x̂t0 and Pt0

t0 = Pt0 . We

then compute the predicted state x̂tk

tk+1
= x̂tk(tk+1), and the predicted covariance

matrix Ptk

tk+1
= Ptk(tk+1) through the time frame tk < t < tk+1. To begin the

predictor step, we set j = 0, pick M > 0, and let δt = (tk+1 − tk)/M . Then
compute the factorization Ptk

tk+(j−1)δt
= ST S using the Cholesky decomposition.

Set x̃i = ST qi + x̂tk

tk+(j−1)δt
. We then compute the following sums to obtain the

states and the covariance matrix

x̂tk

tk+jδt
=

N
∑

i=1

(x̃i + δtf(x̃i, tk + (j − 1)δt))wi,

Ptk

tk+jδt
= Pxx + σ(tk + (j − 1)δt)Q(tk + (j − 1)δt)σ(tk + (j − 1)δt)

T .

where Pxx is defined by

Pxx =

N
∑

i=1

(x̃i+δtf(x̃i, tk+(j−1)δt)−x̂tk

tk+jδt
)(x̃i+δtf(x̃i, tk+(j−1)δt)−x̂tk

tk+jδt
)T wi.

After the sums have been computed, we increment j and repeat the preceding steps
beginning with the factorization of Ptk

tk+(j−1)δt
. We continue iterating until j = M ,

which will yield x̂tk

tk+1 and Ptk

tk+1
.

Once this prediction step is complete, we can incorporate the new data informa-
tion at time tk+1 to update the state and covariance matrix. First, we compute the
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factorization Ptk

tk+1
= S̃T S̃ as before and set x̃i = S̃T qi + x̂tk

tk+1
. Then compute

x̂
tk+1

tk+1
= x̂tk

tk+1
+ Lk+1(yk+1 − zk+1),

P
tk+1

tk+1
= Ptk

tk+1
− Lk+1P

T
xz,

where

zk+1 =

N
∑

i=1

h(x̃i, tk+1)wi,

Pxz =

N
∑

i=1

(x̃i − x̂tk

tk+1
)(h(x̃i, tk+1) − zk+1)

T wi,

Pzz =

N
∑

i=1

(h(x̃i, tk+1) − zk+1)(h(x̃i, tk+1) − zk+1)
T wi,

Lk+1 = Pxz(Rk+1 + Pzz)
−1.

Following the update step, we have the updated state values and covariance
matrix at time tk+1. We then move to the next time step, so we increment k by 1
and return to the predictor step above.

We note that the UKF is easier to implement than the EKF as it does not require
the calculation of Jacobian matrices. However, the UKF may require some “fine
tuning” in order to prevent the propagation of a non-positive definite covariance
matrix for a state vector dimension higher than three [4]. For a more extensive
treatment of the UKF, see [14, 15, 16].

2.3. The Gauss-Hermite filter. Similar to the UKF approach, the GHF does not
linearize the system function and measurement function at the current state esti-
mate to obtain the expectation values occurring in time and measurement updates.
However, the expectation values in the GHF are calculated by using a Gaussian-
Hermite quadrature rule instead of by approximating the standard normal distri-
bution as used in the UKF. Given a function f̃(τ), the quadrature rule for expected
values is expressed by

∫

Rn

f̃(τ)
1

(2π)n/2
e−

1
2
|τ |2dτ ≈

m
∑

i1=1

· · ·
m

∑

in=1

f̃(̺i1 , ̺i2 , . . . , ̺in
)ωi1ωi2 · · ·ωin

, (5)

where m is the number of quadrature points used in a one-dimensional quadrature
rule. The quadrature points and their corresponding weights are calculated as
follows. Let A ∈ R

m×m be a symmetric tridiagonal matrix with zero diagonal

elements and its (j, j + 1)th element defined by Aj,j+1 =

√

j

2
, j = 1, 2, . . . , m − 1.

Then A has m eigenvalues, which are denoted by ρj , j = 1, 2, . . . , m. Let vj be
the normalized eigenvector of A corresponding to the eigenvalue ρj , j = 1, 2, . . . , m.
Then the quadrature points and its corresponding weights are given by

̺j =
√

2ρj , ωj = (vj1)
2, j = 1, 2, . . . , m,

where vj1 is the first element of normalized eigenvector vj . Hence, in order to
evaluate the integral in (5) we need mn-point function evaluations. To have a
notation consistent with (3), we may rewrite the right side of (5) into one sum
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notation as in (3), and express it as

∫

Rn

f̃(τ)
1

(2π)n/2
e−

1
2
|τ |2dτ ≈

N
∑

i=1

f̃(qi)wi,

where N = mn, qi = (̺i1 , ̺i2 , . . . , ̺in
) and wi = ωi1ωi2 · · ·ωin

, i = 1, 2, . . . , N .
The GHF was also originally designed for a discrete system with discrete obser-

vations. Hence, in order to apply the GHF to a continuous system with discrete
observations, we again need to discretize the continuous model, and we will use
the same approximation scheme as we used in the UKF. The algorithm for the
GHF is exactly the same as that for the UKF except for the choice of qi and its
corresponding weight wi in evaluating the integral.

Like the UHF, the GHF does not require the calculation of Jacobian matrices.
However, the obvious disadvantage of the GHF is that the required number of points
to evaluate the integral scales geometrically with the number of dimensions. For
more detailed information on the GHF, the interested reader is referred to [12].

3. Numerical simulations. As mentioned in the introduction, we will apply the
EKF, GHF and UKF to the log-scaled HIV system instead of the original system.
We first rewrite the HIV model (1) as vector system

˙̄x = g(x̄; θ̄), (6)

where x̄ = (T1, T2, T
∗
1 , T ∗

2 , VI , E)T , and θ̄ is the vector for model parameters given
by

θ̄ = (λ1, d1, ǫ1, k1, λ2, d2, µ, k2, δ, m1, m2, NT , c, λE , bE, Kb, dE , Kd, δE).

The available measurements (based on our current collaborative efforts with clinical
researchers) are assumed to include total CD4+ T-cell count, number of viral load
copies, and immune effector T-cell count. In this model (6), the total CD4+ T-
cell counts are represented by x̄1(t; θ̄) + x̄3(t; θ̄) (i.e., T1(t; θ̄) + T ∗

1 (t; θ̄)), viral load
copies are represented by x̄5(t; θ̄) (i.e., VI(t; θ̄)), and immune effector T-cell counts
are represented by x̄6(t; θ̄) (i.e., E(t; θ̄)).

Because the values of model parameters are in dramatically different scales (var-
ied from 10−7 to 102), we also transform all the model parameters into their log-
scaled counterparts except parameters ǫ1 and µ. The values of these two param-
eters can be zero and they are already on the scale of 10−1. Let xi = log10 x̄i,
i = 1, 2, . . . , 6, θi = log10 θ̄i for i = 1, 2, 4, 5, 6, 8, 9, 10, . . . , 19, and θi = θ̄i for
i = 3, 7. Then we have

ẋ = f(x; θ), (7)

where

fi(x) =
10−xi

ln(10)
gi(x̄, θ̃), i = 1, 2, . . . , 6

with θ̃ = (10θ1 , 10θ2, θ3, 10θ4, 10θ5, 10θ6, θ7, 10θ8 , . . . , 10θ19). The observation process
is given by

Yk = h(x(tk)) + Vk,

where h is defined by

h(x) =







log10 (10x1 + 10x3)

x5

x6






,
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and {Vk} is a white Gaussian sequence with covariance matrix Rk, i.e., Vk ∼
N (0, Rk). However, in our simulations (for data generation and filter computa-
tion), we use the following stochastic model instead of (7)

dX(t) = f(X(t); θ)dt + dB(t), (8)

that is, we append white noise to (7) with E [(dB(t))(dB(t))T ] = Qdt. The obser-
vation process is then given by

Yk = h(X(tk)) + Vk. (9)

The additional model noise is included because it can reduce the chance of the
covariance matrix being non-positive definite in both the UKF and GHF. To ensure
this new model has similar dynamics as (7) (i.e., to provide only small perturbations
to the states) we choose Q = 10−6I.

We point out that there are some model parameters that are patient specific in
that the values of these parameters may vary from patient to patient. Hence, we do
not know the values of these parameters in advance. In this effort we also wish to
test the performance of these filters in adaptively estimating the model parameters
as well as model states. To do this, we append the parameters to the model (8) as
additional states. We obtain

dX(t) = f(X(t); θ)dt + dB(t),

θ̇e = 0,
(10)

where θe are the model parameters that are to be estimated.
Simulated data sets were generated in the following manner. We used (8) or (10)

with θ set to the “true” values in Table 1 below to generate N realizations (we
used N = 20 for the results reported here) of the state vector X(t). We used these
realizations in (9) along with N different realizations for Vk to generate realizations
of Yk. This provides N longitudinal data sets for the state vector and corresponding
observations. We used each of these in the filter algorithms to generate estimates
or realizations of the filters. These were then compared using the N realizations by
taking the average (over the N differences) root mean square (RMS) of the difference
between data and estimated states. In order to demonstrate the differences in filter
state estimation based on frequency of observations, we used the simulated data
with measurements taken 1, 7, 14 and 28 days apart, respectively. The filter results
are then examined and compared using the average RMS error for each observed
state and each model compartment. The average RMS error for the jth model
compartment RMSm,j at time tk is defined by

RMSk
m,j =

( 1

N

N
∑

i=1

[

xi
j(tk) − x̂i

j(tk)
]2

)1/2

, (11)

which is based on the N different simulation runs. Here the subscript j denotes
the jth component of the “true” noisy state vector x(tk) (the data) and the corre-
sponding state estimate x̂(tk), and the superscript i denotes the ith simulation run.
The average RMS error for the jth observed state RMSo,j at time tk is defined by

RMSk
o,j =

( 1

N

N
∑

i=1

[

hj(x
i(tk)) − hj(x̂

i(tk))
]2

)1/2

, (12)
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where the subscript j denotes the jth component of the observation function
h(x(tk)), j = 1, 2, 3. Since real time feedback is also important, we examine the
computational expense of each filter.

3.1. Generation of simulated data. In order to test our three filters, we needed
to create simulated data based on a “true” state value. To do this, we used Euler
method approximation (the method used in the predictor step of the UKF), which
guarantees nontrivial system noise in the simulated data, to numerically solve model
equations (8) through a specified time span (0 to 364 days in our simulation runs)
with time mesh size chosen to be 0.001, and then used (9) to obtain simulated data
with additional observation noise at the relevant observation times (every 1, 7, 14,
or 28 days) with constant noise covariance matrix Rk ≡ diag([0.12, 0.252, 0.072]).
In general, the numbers in Rk are motivated by our experience with experimental
data [1, 3, 5]. Here they are chosen based on the values of model states.

The initial states were set to be x0 = (log10(800), log10(3.198),−4,−6, 1,−2)T .
The values of model parameters (“true values”) used to generate the simulated
data are given in Table 1. We simulated a treatment schedule for 364 days, with

parameter value unit parameter value unit

λ1 10
cells

µl-blood · day
λ2 0.03198

cells

µl-blood · day

d1 0.01
1

day
d2 0.01

1

day

k1 8e-7
ml-plasma

copies · day
k2 1e-4

ml-plasma

copies · day

m1 0.01
µl-blood

cells · day
m2 0.01

µl-blood

cells · day

δ 0.7
1

day
c 13

1

day

µ 0.34 - NT 100
copies · ml-blood

cells · ml-plasma

λE 1e-3
cells

µl-blood · day
δE 0.1

1

day

bE 0.3
1

day
dE 0.25

1

day

Kb 0.1
cells

µl-blood
Kd 0.5

cells

µl-blood

ǫ1 0.8 -

Table 1. Values of parameters in the HIV model.

treatment off for the first 30 days, then alternating on for 15 days and off for 45
days, and then off treatment for the last 34 days of the year. This is shown in Figure
1, and also appears at the bottom of every graph of states or parameters that are

100 150 200 250 300 35050
 

 
On Treatment
Off Treatment

Figure 1. The treatment schedule used in the experiments.
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run on data with treatment. The data is thus fairly dynamic, i.e., the values of
states are within a fairly wide range, for example, the value of VI varies from 10−1

to 107.

3.2. Examination of simulation results. We will examine the observed states
average RMS error defined in (12) as well as the model compartments average RMS
error defined in (11), each when measurement data is taken 1 day, 7 days, 14 days
or 28 days apart, respectively. Each of the simulated data sets for a given sampling
frequency was taken from the same N “true” data sets, but taken at the specified
measurement frequency.

In order to test the filters under “poor” starting conditions with relative uncer-
tainty, we set x̂t0

t0 = 0.6x0 and Pt0
t0 = 0.01I for all the simulation results presented

in this section. In both the UKF and GHF, we set δt = 0.005 in the discretization
scheme (4). In some of our efforts, we also included parameter estimation as part
of the filtering process; the results are illustrated in Section 3.2.2. The parame-
ters that are estimated were given initial values of 90% of the value in Table 1,
and the variance of each of these parameters was set to be 0.005 multiplied by the
value of the parameter squared, and then these additional values were added into
an extended P matrix.

3.2.1. State Estimation. In this section, numerical results are obtained by applying
the filtering algorithms to model (8) for state-only estimation with measurements
frequency varying from 1 day, 7 days, 14 days to 28 days.

Figure 2 depicts the results for the average RMS error of observed states defined
by (12) (i.e., scaled CD4+ T-cells, scaled viral load VI , and scaled immune effector
T-cells E), where the plots in the left column, middle column and right column
are the results obtained by using the EKF, UKF and GHF, respectively. Even
though this figure reveals that the UKF and GHF appear to adjust to the data
slightly faster than the EKF, the average RMS errors obtained by the EKF are
much smaller than those obtained by the UKF and GHF after the filters adjust
to the data (around day 100) for all the measurement frequencies that we have
investigated. In addition, we observe that there is not much difference in terms
of estimation accuracy between the UKF and GHF as the average RMS errors
obtained by them are almost on the same level (this observation can be further
confirmed in Tables 2 and 3 shown below). Also note that the UKF and GHF
appear to oscillate, whereas the EKF is much smoother. We believe that this is due
to the discretization of the continuous model during the predictor step of the UKF
and GHF. In addition, Figure 2 indicates that the measurement frequency has no
significant effect on the performance of the filters after day 100. This is probably
because for this case the nonlinearity in the dynamics is not so important.

We also examine and compare the filtering results obtained for the first observed
state (scaled CD4+ T-cells) and each model compartment by averaging its average
RMS errors over time (this obtained error will be termed as ARMS error in the
following presentation). The ARMS errors for the observed state (scaled CD4+
T-cells) and the jth model compartment are defined by

ARMSo,1 =
1

nt

nt
∑

k=1

RMSk
o,1, and ARMSm,j =

1

nt

nt
∑

k=1

RMSk
m,j , j = 1, 2, . . . , 6 (13)

respectively, where nt denotes the total number of observation time points. The
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Figure 2. State estimation with different measurement frequen-
cies for the observed states: scaled CD4+ T-cells (top row), scaled
viral load VI (middle row), and scaled immune effectors E (bottom
row); average RMS errors for each observed state as obtained using
the EKF (left column), UKF (middle column) and GHF (right col-
umn).

measurement filtering scaled scaled scaled scaled scaled scaled
frequency algorithm T1 T2 T

∗

1 T
∗

2 VI E

EKF 0.0178 0.0263 0.0464 0.0356 0.0396 0.0091
1 day UKF 0.0312 0.0404 0.0814 0.0594 0.0732 0.0206

GHF 0.0311 0.0403 0.0813 0.0600 0.0731 0.0206

EKF 0.0487 0.1241 0.1492 0.1360 0.1136 0.0336
7 days UKF 0.0642 0.1264 0.1842 0.1644 0.1516 0.0427

GHF 0.0643 0.1289 0.1840 0.1680 0.1505 0.0428

EKF 0.0761 0.1355 0.2531 0.1980 0.1964 0.0529
14 days UKF 0.0910 0.1253 0.2546 0.2253 0.1996 0.0583

GHF 0.0916 0.1342 0.2563 0.2253 0.2005 0.0588

EKF 0.1050 0.1493 0.3117 0.2403 0.2180 0.0836
28 days UKF 0.1184 0.1449 0.3440 0.2780 0.2495 0.0861

GHF 0.1196 0.1425 0.3434 0.2793 0.2488 0.0872

Table 2. The ARMS error for each model compartment with state estimation.
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ARMS errors for the model compartments obtained at different measurement fre-
quency are given in Table 2, while those for the first observed state (scaled CD4+
T-cells) are listed in Table 3. From these two tables, we see that for all the measure-

filtering measurement frequency
algorithm 1 day 7 days 14 days 28 days

EKF 0.0145 0.0407 0.0730 0.1010
UKF 0.0271 0.0533 0.0855 0.1136
GHF 0.0270 0.0532 0.0863 0.1155

Table 3. The ARMS error for the observed scaled CD4+ T-cells
with state estimation.

ment frequencies that we have investigated there is little difference in the estimation
accuracy between the UKF and GHF as the ARMS errors obtained by them are
pretty much similar to each other. In addition, we observe that the ARMS errors
obtained by EKF are in general smaller than those obtained by the UKF and GHF.
This means that the EKF performs better than both of the UKF and GHF in terms
of estimation accuracy.

To have a good idea of the dynamics of the average RMS errors for all the target
cell model compartments (scaled version of T1, T ∗

1 , T2 and T ∗
2 ) with the state-only

estimation, we present in Figure 3 the filtering results obtained for measurements
taken 1 day apart with time plots of the average RMS errors for these model com-
partments. Interested readers can refer to Section 3.2.1 and the Appendix in [7] for
similar plots obtained for other measurement frequencies (7, 14, 28 days).

In order to also have a good idea of the dynamics of the data, observed states
and model compartments, as well as the performance of each filter in estimation of
the observed states and model compartments, we present the results with the time
plots for the estimated values versus the true values obtained by applying the filters
to a typical data set in Figures 4 and 5. For demonstration purposes, here we
only present the results obtained for measurements taken 1 day and 14 days apart.
Interested readers can refer to Section 3.2.1 and the Appendix in [7] for similar plots
obtained for measurements taken 7 days and 28 days apart. The plots in the left
column of Figure 4 are for the observed states (CD4+ T-cells, viral load level VI

and immune effector T-cells E) with measurements taken 1 day apart, and those
in the right column are for these observed states with measurements 14 days apart.
Figure 5 contains the results for model compartments (T1, T2, T ∗

1 and T ∗
2 ), where

the plots in the left column are obtained with measurements 1 day apart and those
in the right column for measurements 14 days apart. From these two figures, we
can see that all three filters give pretty good estimates for both observed states and
model compartments. Moreover this conclusion is also true when measurements are
taken 7 days and 28 days apart, as has been presented in [7].

3.2.2. State and Parameter Estimation. In this section, numerical results obtained
by applying the filtering algorithms to model (10) for state estimation as well as
parameter estimation of λ1 and NT with different measurement frequencies (1 day,
7 days, 14 days and 28 days) are given. The results presented in this section are
typical for different combinations of parameters that we estimated in a number of
simulation studies.

In Figure 6 we depict the results for the average RMS error of observed states
(scaled CD4+ T-cells, scaled viral load VI , and scaled immune effector T-cells E),
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Figure 3. Average RMS errors for model compartments (scaled
version of T1, T ∗

1 , T2 and T ∗
2 ) with measurements 1 day apart for

state-only estimation.

where the plots in the left column, middle column and right column are the re-
sults obtained by using the EKF, UKF and GHF, respectively. From this figure,
we see that with measurements taken at 1 day apart the average RMS errors for
the observed states obtained by using the EKF are still much smaller than those
obtained by using the UKF and GHF. However, as the measurements are taken less
frequently, the performances of the EKF deteriorate much more rapidly than do
those of either the UKF or GHF. Hence, the measurement frequency has a signifi-
cant effect on the estimation accuracy of the EKF, but has less effect on the GHF
and UKF. Thus with parameter estimation included in the filtering process, the be-
havior of the filters is significantly different from that we observed in Section 3.2.1.
This is likely because the nonlinearities in this new problem (state plus parameter
estimation) become more significant as the measurement frequency decreases, which
renders the EKF less effective than either the GHF and UKF. This type of decline
in EKF performance is observed in numerous other nonlinear problems.

We also examine and compare the filtering results for each model compartment,
each estimated parameter and observed state (scaled CD4+ T-cells) by averaging
its average RMS errors over time (defined the same as that in (13)). The ARMS
errors for the observed state (scaled CD4+ T-cells) with different measurement
frequencies are summarized in Table 4, and those for model compartments (scaled
version of T1, T2, T ∗

1 , T ∗
2 , VI and E) and estimated parameters (scaled version of λ1

and NT ) are listed in Table 5. From these two tables, we can see that for all the
measurement frequencies that we have investigated the performance of the UKF is
still quite similar to that of the GHF as the difference in the ARMS errors obtained
by them is small. We also observed that with measurements taken 1 day apart,
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Figure 4. The estimated values versus the true values for the total
CD4+ T-cell count, viral load level (VI) and immune effector T-
cell count (E) obtained by applying the filters to a typical data set
for the state estimation. (left): results are obtained with measure-
ments 1 day apart; (right): results are obtained with measurements
14 days apart.

filtering measurement frequency
algorithm 1 day 7 days 14 days 28 days

EKF 0.0229 0.0773 0.1177 0.1541
UKF 0.0307 0.0739 0.1028 0.1350
GHF 0.0308 0.0723 0.1167 0.1373

Table 4. The ARMS error for the observed state, scaled CD4+ T-
cells, with state-and-parameter estimation, where the measurement
frequency varies from 1 day, 7 days, 14 days to 28 days.

the ARMS errors obtained by EKF are much smaller than those obtained by the
UKF and GHF. However, when measurements are taken 7 and 14 days apart, we
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Figure 5. The estimated values versus the true values for model
compartments T1, T ∗

1 , T2 and T ∗
2 obtained by applying the filters

to a typical data set with state estimation. (left): results for mea-
surements 1 day apart; (right): results for measurements 14 days
apart.

see that all three filters have similar performance as the ARMS errors obtained by
them are similar to each other. When measurements are taken 28 days apart, we
observe that the EKF begins to perform worse than do either the UKF or GHF;
i.e., the ARMS errors obtained by the EKF are much larger than those obtained
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Figure 6. State estimation as well as parameter estimation with
different measurement frequency for the observed states: scaled
CD4+ T-cells (top row), scaled viral load level VI (middle row), and
scaled immune effector T-cells E (bottom row); average RMS errors
for each observed state as obtained using the EKF (left column),
UKF (middle column) and GHF (right column).

by the UKF and GHF. This further confirms that when parameter estimation is
included in the filtering process, the behavior of the filters is different from what
we observed in Section 3.2.1.

To investigate the dynamics of the average RMS errors for all the other model
compartments (scaled version of T1, T2, T ∗

1 and T ∗
2 ) and estimated parameters

(scaled version of λ1 and NT ) with the state-and-parameter estimation, we present
in Figure 7 the results obtained for measurements taken 1 day apart with time plots
of the average RMS errors for these model compartments and estimated parameters.
Interested readers can refer to Section 3.2.2 in [7] for similar plots obtained for other
measurement frequencies.

To also consider the dynamics of the data, observed states and model compart-
ments, as well as the performance of each filter in estimation of the observed states,
model compartments and parameters, we present in Figures 8-10 the filtering re-
sults with the time plots for the estimated values versus the true values obtained
by applying the filters to a typical data set. Here we only present representative re-
sults obtained for measurements taken 1 day and 14 days apart. Interested readers
can refer to Section 3.2.2 in [7] for similar plots obtained for measurements taken
7 days and 28 days apart. The plots in the left column of Figure 8 are for the
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meas. filter scaled scaled scaled scaled scaled scaled scaled scaled
freq. alg. T1 T2 T

∗

1 T
∗

2 VI E λ1 NT

EKF 0.0234 0.0271 0.0537 0.0380 0.0537 0.0095 0.0148 0.0186
1 day UKF 0.0323 0.0418 0.0848 0.0599 0.0832 0.0208 0.0181 0.0194

GHF 0.0323 0.0412 0.0843 0.0589 0.0823 0.0206 0.0191 0.0191

EKF 0.0852 0.1453 0.1616 0.1676 0.1423 0.0308 0.0689 0.0513
7 days UKF 0.0858 0.1406 0.1878 0.1868 0.1666 0.0435 0.0760 0.0444

GHF 0.0837 0.1456 0.1854 0.1891 0.1601 0.0428 0.0713 0.0406

EKF 0.1214 0.1820 0.3598 0.3100 0.2966 0.0613 0.1043 0.0423
14 days UKF 0.1098 0.1446 0.2666 0.2309 0.2150 0.0611 0.1061 0.0339

GHF 0.1224 0.1353 0.2743 0.2192 0.2255 0.0626 0.1323 0.0435

EKF 0.1592 0.4311 0.5250 0.6826 0.4286 0.0969 0.1030 0.0774
28 days UKF 0.1433 0.1480 0.3126 0.3479 0.2314 0.0958 0.0824 0.0526

GHF 0.1449 0.1823 0.3086 0.3931 0.2243 0.0916 0.0875 0.0628

Table 5. The ARMS error for each model compartment and esti-
mated parameter with state-and-parameter estimation, where the
measurement frequency varies from 1 day, 7 days, 14 days to 28
days.

observed states (CD4+ T-cells, viral load level VI and immune effector T-cells E)
with measurements taken 1 day apart, and those in the right column are for these
observed states with measurements taken 14 days apart. Figures 9 and 10 are for
model compartments T1, T2, T ∗

1 , T ∗
2 and estimated parameters λ1 and NT with

measurements taken at 1 day and 14 days apart, respectively. These three figures
reveal that all three filters produce excellent estimates for both the observed states
and model compartments with measurements taken 1 day apart, and provide good
estimates with measurements 14 days apart. Actually the filters still provide rea-
sonable estimates with measurements 28 days apart (this is detailed in [7]). This
conclusion was not obtained in [10], where the EKF was reportedly unable to accu-
rately estimate the states even when the measurements were taken five days apart.
We suspect that this may be because in our effort here the filters were applied to
the log scaled version of the HIV model instead of the original system as was used
in [10].

3.3. Filtering summary. Note that in order to apply the GHF and UKF we need
first to discretize the model. To investigate the effect of the discretization time step
δt on the performance of the UKF and GHF, we used several different values for
δt. We found that if we choose δt too small, then we see more oscillation, which
is especially obvious for the case when the solution is in the equilibrium state. In
addition, a smaller δt will dramatically increase the computational time, which is
undesirable. On the other hand, if δt is taken too large, then we may obtain a
non-positive definite covariance matrix P which is not factorable, and the worst
scenario is that it does not capture the true dynamics. As a result, when using the
GHF and UKF it is important to take care when choosing δt to obtain the best
performance while still being able to actually carry out the filter computations.

To examine the computational expense of the filters, we list in Table 6 the com-
putational times for the EKF, UKF and GHF when they are applied to a typical
data set with measurement frequency varying from 1 day, 7 days, 14 days to 28
days. All the simulations are run on the same regular Dell computer with 3 GB of
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Figure 7. Average RMS errors for model compartments (scaled
version of T1, T2, T ∗

1 and T ∗
2 ) and estimated parameters (scaled

version of λ1 and NT ) with measurements 1 day apart for state-
and-parameter estimation.

Measurement Computational times (seconds)
frequency EKF UKF GHF

1 Day 44.748693 231.815131 10746.288109
7 Days 15.874674 226.688416 10724.935096
14 Days 13.207722 230.456907 10801.656850
28 Days 15.074135 233.797818 10826.238094

Table 6. The computational times (in seconds) for the EKF, UKF
and GHF when they are applied to a typical data set with different
measurement frequency.

RAM total and Intel Core 2 Quad Q6600 at 2.40GHz processor. From Table 6 we
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Figure 8. The estimated values versus the true values for the total
CD4+ T-cell count, viral load level (VI) and immune effector T-
cell count (E) obtained by applying the filters to a typical data set
for the state-and-parameter estimation. (left): results are obtained
with measurements 1 day apart; (right): results are obtained with
measurements 14 days apart.

see that in all cases the GHF is the most computational expensive algorithm, and
EKF is the least expensive one.

The simulation results in Sections 3.2.1 and 3.2.2 suggest there is little differ-
ence in the estimation accuracy between the UKF and GHF. Since the GHF is the
most computationally expensive algorithm and the required number of points to
evaluate integrals scales geometrically with the number of dimensions, it makes the
GHF computationally infeasible when dealing with estimation of a large number
of parameters. As a result, the GHF is not a preferred choice for this particular
problem. As for the EKF and UKF, the simulation results in Section 3.2.1 (when
only estimating model states) suggest that the EKF performs better than the UKF
in terms of estimation accuracy in all the measurement frequencies that we investi-
gated. When estimating parameters as well as model states, the results in Section



COMPARISON OF FILTERING APPROACHES IN AN HIV MODEL 233

0 50 100 150 200 250 300 350
10

1

10
2

t (day)

T
1

 

 

True Value
EKF Estimate
UKF Estimate
GHF Estimate

0 50 100 150 200 250 300 350
10

−6

10
−4

10
−2

10
0

10
2

t (day)

T
1*

 

 

True Value
EKF Estimate
UKF Estimate
GHF Estimate

0 50 100 150 200 250 300 350
10

−4

10
−3

10
−2

10
−1

10
0

t (day)

T
2

 

 

True Value
EKF Estimate
UKF Estimate
GHF Estimate

0 50 100 150 200 250 300 350
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t (day)

T
2*

 

 

True Value
EKF Estimate
UKF Estimate
GHF Estimate

0 50 100 150 200 250 300 350
10

0

10
1

t (day)

λ 1

 

 

True Value
EKF Estimate
UKF Estimate
GHF Estimate

0 50 100 150 200 250 300 350
10

1

10
2

t (day)

N
T

 

 

True Value
EKF Estimate
UKF Estimate
GHF Estimate

Figure 9. State estimation as well as parameter estimation with
measurements 1 day apart. The estimated values versus the true
values for model compartments T1, T2, T ∗

1 , T ∗
2 and estimated pa-

rameters λ1 and NT obtained by applying the filters to a typical
data set.

3.2.2 reveal that the EKF still performs better than the UKF with measurements
1 day apart, has comparable performance as the UKF with measurements 7 days
and 14 days apart, but performs worse than the UKF with measurements 28 days
apart. Note that parameter estimation is essential to this particular problem as
the values of a number of the parameters cannot be obtained from laboratory or
clinical standards, in part because values of some of the parameters are very much
patient-specific. Hence, the decision on which of these two filters should be used
relies on the conclusions in Section 3.2.2, that is, on the measurement frequency.
Another consideration is that the UKF requires “fine tuning” in order to prevent
the propagation of non-positive definite covariance matrices, while there is no such
problem with the EKF. Based on all this, we conclude that the EKF is our best
choice when the measurement frequency is sufficiently high (such as sampling every
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Figure 10. State estimation as well as parameter estimation with
measurements 14 days apart. The estimated values versus the true
values for model compartments T1, T2, T ∗

1 and T ∗
2 and estimated

parameters λ1 and NT obtained by applying the filters to a typical
data set.

one or two weeks), but when the measurement frequency is as low as data points 4
weeks apart then the UKF is the better choice.

4. Concluding remarks. As a first step in designing adaptive treatment thera-
pies for HIV patients, in this paper we have applied the Extended Kalman Filter,
the Unscented Kalman Filter and the Gauss-Hermite Filter to the log-scaled ver-
sion of an HIV model, and then compared the performance of these filters in terms
of estimation accuracy and computational time for estimation of both states and
parameters. Numerical results suggest that the EKF is our best choice when the
measurements are taken as frequently as every week or two, but when the mea-
surement frequency is as low as every 4 weeks then the UKF is most likely the
best choice. Because monthly sampling in clinical longitudinal settings is a likely
scenario, our future efforts on development of adaptive schemes will be focused on
the UKF.
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In the clinical data available to us at present, the measurements of the viral load
data are censored because the assay can accurately detect only down to some lower
limit (400 copies/ml-plasma for a standard assay and 50 copies/ml-plasma for an
ultra-sensitive assay). Hence, one of our immediate future efforts is to investigate
how effectively one can apply these filters in examples with censored data.
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