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Abstract. We consider age-of-infection epidemic models to describe multiple-
stage epidemic models, including treatment. We derive an expression for the
basic reproduction number R0 in terms of the distributions of periods of stay
in the various compartments. We find that, in the model without treatment,
R0 depends only on the mean periods in compartments, and not on the form
of the distributions. In treatment models, R0 depends on the form of the dis-
tributions of stay in infective compartments from which members are removed
for treatment, but the dependence for treatment compartments is only on the
mean stay in the compartments. The results give a considerable simplification
in the calculation of the basic reproduction number.

1. Introduction. The basic reproduction number is a central concept in the study
of disease transmission models. It indicates a threshold for both epidemic models
and endemic situations. Diekmann, Heesterbeek and Metz introduced the next-
generation operator to give a precise definition of the basic reproduction number
[6]. The next-generation operator is a positive linear operator that describes how
many secondary cases arise from an infective individual with a general infectivity
distribution, and how such cases are distributed over different susceptible classes.
R0 is defined as the spectral radius of this operator [6].

Van den Driessche and Watmough [18] did the same for models in the special
case of exponentially distributed periods in each compartment, so that the models
are systems of ordinary differential equations. The next-generation operator is
described in terms of matrices, and in this case R0 is the largest eigenvalue of a
matrix that describes the next-generation operator.

However, in many situations, models with exponential distributions are poor de-
scriptions of actual disease outbreaks [8, 9, 14], and the calculation of reproduction
numbers for general distributions is an important problem. The purpose of this
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paper is to show how to calculate the basic reproduction number for a general class
of disease transmission models, namely age-of-infection models. The calculation of
the basic reproduction number is applicable to both epidemic models (without de-
mographics) and endemic situations where natural births and deaths are included.
In the endemic case, births are not relevant to the calculation of the basic repro-
duction number but natural deaths are included in the rates of passage between
compartments. For simplicity, we confine our attention to epidemic models.

For epidemic models, there is a final size relation connecting the basic reproduc-
tion number with the final size of the epidemic [1, 2, 4, 11, 17]. However, quantities
such as the peak epidemic size, the duration of the epidemic, and the initial growth
rate are not determined by the final size relation and may depend on the nature of
the distribution. In addition, it has been noted that in models including treatment,
such as quarantine, the basic reproduction number depends on the nature of the
infective period distribution and not only on the mean period [7, 8].

2. Age-of-infection models. The Kermack-McKendrick age-of-infection SIR epi-
demic model [4, 15] is a very general compartmental epidemic model. It is formu-
lated in terms of S(t), the number of susceptible members of the population, ϕ(t),
the total infectivity of infected members of the population, and N(t), the total
population size, but the total infectivity may include contributions from multiple
compartments including exposed, asymptomatic and treated compartments. In ad-
dition, the model allows arbitrary distributions of time spent in compartments.

Example 2.1. The simplest example is an SIR epidemic model in a population of
size N with mass action incidence and a single infective stage in which there are no
disease deaths with P (τ) the fraction of individuals who are still infective a time τ
after having become infected. The model is

S′ = −βS(t)I(t)

I(t) =
∫ ∞

0

[−S′(t− τ)]P (τ) dτ.

In this case, ϕ(t) = I(t) and the method of [6] gives

R0 = βN

∫ ∞

0

P (τ) dτ.

We may see this directly since a single infective causes βN new infections in unit
time and

∫∞
0

P (τ)dτ is the mean infective period.

Compartmental models, such as the above SIR model, influenza models, and
other multiple infective or treatment stage models, can all be unified as age-of-
infection models with general distributions of time spent in compartments. Any
compartmental model with a sequence of stages can be written as an age-of-infection
model. For example, SARS can be viewed as an example of a general class of
epidemic diseases for which no treatments were available; only quarantine of those
who were suspected of having been infected, and isolation of the diagnosed infectives
were the available control measures. A model for SARS with quarantined and
isolated compartments can be incorporated into the age of infection structure

Age-of-infection models are general enough to encompass infectious disease mod-
els with multiple compartments and with arbitrary distributions of stay in com-
partments. These are models in which the infectivity of an individual depends on
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the time since becoming infected (that is, the time since the initial infection, not
the time in the particular stage). Some classes of examples are given in Sections 3
and 4. For this reason, age-of-infection models have been gaining more interest as
a real generalization [8, 9, 11, 14].

If there are no disease deaths, the total population size N is constant and β(N)
is a constant β. In this case, the general age-of-infection epidemic model is

S′(t) = −βS(t)ϕ(t) (1)

ϕ(t) =
∫ ∞

0

[−S′(t− τ)]A(τ), dτ.

Here, A(τ) = π(τ)B(τ), with B(τ) representing the fraction of infected individuals
still infected at infection age τ and π(τ) representing the infectivity of an infected
individual at infection age τ . Thus A(τ) is the mean infectivity of an individual
τ time units after having been infected. In general, the contact rate β(N) is a
saturating function of total population size N = S + I + R. Using the method of
Diekmann et al [6], we obtain

R0 = βN

∫ ∞

0

A(τ) dτ.

However, calculation of the basic reproduction number requires the calculation of∫∞
0

A(τ) dτ , which presents more difficulty in models with non-exponential distri-
butions.

If the total population size is not constant, the age-of-infection model consists
of the pair of equations (1), with the constant β replaced by the function β(N(t))
together with an equation for N(t).

The number of infective members of the population at time t in the model is
given by

I(t) =
∫ ∞

0

β(N(t− τ))S(t− τ)ϕ(t− τ)B(τ) dτ

=
∫ t

−∞
β(N(s))S(s)ϕ(s)B(t− s) ds.

To find the rate of departure from the infected class, we differentiate I(t) under the
integral sign:

I ′(t) = β(N(t))S(t)ϕ(t) +
∫ t

−∞
β(N(s))S(s)ϕ(s)B′(t− s) ds.

The first term is the rate of new infections, and the second term is the negative of
the rate of recoveries and disease deaths. If a fraction f of infectives recovers from
infection while the complementary fraction (1− f) dies of disease,

N ′(t) = (1− f)
∫ t

−∞
β(N(s))S(s)ϕ(s)B′(t− s) ds

= (1− f)
∫ t

−∞
[−S′(s)]B′(t− s) ds.
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Thus the general age-of-infection model is

S′(t) = −β(N(t))S(t)ϕ(t)

ϕ(t) =
∫ ∞

0

[−S′(t− τ)]A(τ), dτ

N ′(t) = (1− f)
∫ ∞

0

[−S′(t− τ)]B′(τ) dτ.

Since the calculation of the basic reproduction number is relative to the initial
state and is not affected by disease deaths, the same calculation as was used for (1)
gives

R0 = βN

∫ ∞

0

A(τ) dτ.

3. Staged progression models. In epidemic models there is often a sequence of
stages of different lengths and infectivities, known as staged progression models [13],
where individuals pass from one stage to the next. The simplest example is an SEIR
model with an exposed stage, possibly with some infectivity, before the development
of symptoms. To describe such a model, we suppose that there is a finite sequence
of n infected stages I1(t), . . . , In(t), with relative infectivity parameters ε1, . . . , εn,
and infectivity distributions P1(τ), . . . , Pn(τ). Figure 1 shows the flow chart for
such a model with two infected stages. It should be noted that Pi(τ) represents the
fraction of members who were infected initially τ time units earlier who are in the
stage Ii.

..

Figure 1. SI1I2R model flowchart

The total infectivity at time t is the sum of the infectivities of each infected
compartment,

ϕ(t) =
n∑

i=1

εiIi(t).

The general age-of-infection model with a sequence of infected stages is

S′(t) = −βS(t)ϕ(t)

ϕ(t) =
∫ ∞

0

[−S′(t− τ)]
n∑

i=1

εiAi(τ) dτ.

Then

R0 = βN

n∑

i=1

εi

∫ ∞

0

Ai(τ)dτ,

and to calculate R0 we need to find∫ ∞

0

Ai(τ) dτ.
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For the first infective stage we have

I1(t) =
∫ ∞

0

[−S′(t− τ)]P1(τ) dτ

=
∫ t

−∞
[−S′(u)]P1(t− u) du.

Thus A1(τ) = P1(τ). Differentiating, we obtain

I ′1(t) = −S′(t) +
∫ ∞

0

[−S′(t− τ)]P ′1(τ) dτ.

Therefore,

I2(t) =
∫ ∞

0

[∫ ∞

0

[S′(t− τ − σ)]P ′1(τ) dτ

]
P2(σ) dσ

=
∫ ∞

0

[∫ ∞

σ

S′(t− u)P ′1(u− σ) du

]
P2(σ) dσ

=
∫ ∞

0

[−S′(t− u)]
∫ u

0

[−P ′1(u− σ)]P2(σ) dσ du

=
∫ ∞

0

[−S′(t− u)]A2(u) du,

with

A2(u) =
∫ u

0

[−P ′1(u− σ)]P2(σ) dσ.

We have ∫ ∞

0

A2(u)du =
∫ ∞

0

∫ u

0

−P ′1(u− σ)P2(σ) dσ du

=
∫ ∞

0

∫ ∞

0

−P ′1(τ) dτ P2(σ) dσ

=
∫ ∞

0

P2(σ)dσ.

We see that, by induction, this holds true for every infective stage. The integral
of the kernel will be the sum of the integrals of the infective distribution, where each
integral is weighted by the infectivity of each distribution. Thus, the reproduction
number is simply

R0 = βN

n∑

i=1

εi

∫ ∞

0

Pi(τ) dτ.

We have established the following result:

Theorem 3.1. The basic reproduction number R0 depends only on the mean pe-
riod in each infective stage, regardless of its distribution. General epidemic models
without treatment behave the same as models with exponentially distributed periods.

There is no difficulty in extending the approach of this section to models, in
which at the end of a stage individuals may proceed to one of two stages, such as
the influenza model of [1, 2]. In this model, there is a latent period after which
a fraction p of latent individuals L proceeds to an infective stage I, while the
remaining fraction (1 − p) proceeds to an asymptomatic stage A, with infectivity
reduced by a factor δ and a different period 1/η. A flow chart is shown in Figure
2.
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..

Figure 2. Influenza model flowchart

With exponentially distributed latent, infective and asymptomatic periods, the
model is

S′ = −βS[I + δA]
L′ = βS[I + δA]− κL (2)
I ′ = pκL− αI

A′ = (1− p)κL− ηA

and

R0 = βN

[
p

α
+

δ(1− p)
η

]

According to Theorem 3.1, for a model with the same mean periods the basic
reproduction number has the same value.

The model (2) is an example of a differential infectivity model. In such models,
also used in the study of HIV/AIDS [13], individuals enter a specific group when they
become infected and stay in that group over the course of the infection. Different
groups may have different parameter values. For example, for influenza infective
and asymptomatic members may have different infectivities and different periods of
stay in the respective stages. Theorem 3.1 is applicable to such models, and shows
that the basic reproduction number depends on the mean stay in each compartment,
not on the specific form of the distribution.

In the next section, we examine treatment models that include the rate at which
members are removed during a stage and transferred to a treatment stage. Such
models differ from staged progression models in that members are removed from a
compartment during their stay in the compartment rather than proceeding at the
end of their stay in the compartment.

4. Treatment models as age-of-infection models. We now take the above age-
of-infection model and include a finite sequence of n treatment stages with different
treatment distributions. Treatment may be a medical intervention, isolation, or
changes in behavior by infectives to reduce contacts. In [12], behavior change is
modeled by removal from an infective compartment at a rate that depends on time
since infection. We assume a constant removal rate in each infective compartment,
which is less general but allows for a simpler model.
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We begin with a simple example that has one infective stage and one treatment
stage, both with exponentially distributed periods.

4.1. A simple treatment model. Consider a treatment model in which a fraction
γ per unit time of infectives are selected for treatment, and the treatment reduces
infectivity by a fraction δ. Suppose that the rate of removal from infective class is
η. The SITR model, where T is the treatment class, is given by

S′ = −β(N)S[I + δT ]
I ′ = β(N)S[I + δT ]− (α + γ)I (3)
T ′ = γI − ηT

N ′ = −(1− f)αI − (1− fT )ηT.

A flow chart is shown in Figure 3.

..

Figure 3. Flow chart for the SITR model

Then R0, calculated by the method of [18], is

R0 =
βN

α + γ

[
1 +

δγ

η

]
. (4)

While both the flowcharts shown in Figure 2 and Figure 3 contain bifurcations,
there is an important difference. In Figure 2 the splitting between the compartments
I and A comes at the end of the stay in the compartment L, while in Figure 3, some
individuals are removed from the compartment I during their stay and are sent to
the compartment T , while others remain in the compartment I until the end of
their stay and then proceed to the compartment R.

We now extend this to an age-of-infection model with general infective and treat-
ment stage distributions. Assume that the distribution of infective periods is given
by P (τ), and the distribution of periods in treatment is given by Q(τ). Then the
SITR model becomes

S′(t) = −β(N)S(t)[I(t) + δT (t)]

I(t) =
∫ ∞

0

[−S′(t− τ)]e−γτP (τ) dτ (5)

T (t) =
∫ ∞

0

γI(t− σ)Q(σ) dσ.
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Then

ϕ(t) = I(t) + δT (t).

We see from the second equation of (5) that the contribution to R0 from I(t) is

βN

∫ ∞

0

e−γτP (τ) dτ.

To find the contribution from T (t), we need to write the equation in the form

T (t) =
∫ ∞

0

[−S′(t− τ)]Y (τ) dτ,

so that the contribution from T (t) would be

δβN

∫ ∞

0

Y (τ) dτ

and we would obtain

R0 = βN

[∫ ∞

0

e−γτP (τ) dτ + δ

∫ ∞

0

Y (τ) dτ

]
.

We rewrite T (t) to find Y (τ), obtaining

T (t) =
∫ ∞

0

γI(t− σ)Q(σ) dσ

=
∫ ∞

0

γ

[∫ ∞

0

[−S′(t− u− σ)]e−γuP (u) du

]
Q(σ) dσ

=
∫ ∞

0

γ

[∫ ∞

σ

[−S′(t− τ)]e−γ(τ−σ)P (τ − σ) dτ

]
Q(σ) dσ

=
∫ ∞

0

γ[−S′(t− τ)]
∫ τ

0

e−γ(τ−σ)P (τ − σ)Q(σ) dσ dτ

=
∫ ∞

0

[−S′(t− τ)]B(τ) dτ,

with

B(τ) = γ

∫ τ

0

e−γ(τ−σ)P (τ − σ)Q(σ) dσ.

Now
∫ ∞

0

B(τ) dτ = γ

∫ ∞

0

∫ τ

0

e−γ(τ−σ)P (τ − σ)Q(σ) dσ dτ

= γ

∫ ∞

0

∫ ∞

σ

e−γ(τ−σ)P (τ − σ) dτ Q(σ) dσ (6)

= γ

∫ ∞

0

∫ ∞

0

e−γωP (ω) dω Q(v) dv

= γ

∫ ∞

0

e−γωP (ω) dω

∫ ∞

0

Q(σ) dσ.



CALCULATION OF R0 FOR AGE-OF-INFECTION MODELS 593

Thus,

R0 = βN

∫ ∞

0

[A(τ) + δB(τ)] dτ

= βN

[∫ ∞

0

e−γτP (τ) dτ + δγ

∫ ∞

0

e−γτP (τ) dτ

∫ ∞

0

Q(τ) dτ

]
(7)

= βN

∫ ∞

0

e−γτP (τ) dτ

[
1 + δγ

∫ ∞

0

Q(τ) dτ

]
.

With exponentially distributed infective and treatment periods, P (τ) = e−ατ ,
Q(τ) = e−ητ we use (7) to calculate R0, obtaining

R0 = βN

∫ ∞

0

e−(α+γ)τ dτ

[
1 + δγ

∫ ∞

0

e−ητ dτ

]

=
βN

α + γ

[
1 +

δγ

η

]
,

the same result as (4).
An arbitrary choice of treatment period distribution with mean 1/η does not

affect the quantity R0, but different infective period distributions may have a sig-
nificant effect. For example, let us take γ = 1 and assume the mean infective period
is 1. Then, with an exponential distribution, P (τ) = e−τ ,

∫ ∞

0

e−τP (τ) dτ =
∫ ∞

0

e−2τ dτ =
1
2
.

With an infective period of fixed length 1,
∫ ∞

0

e−τP (τ) dτ =
∫ 1

0

e−τ dτ = (1− e−1) = 0.632.

Thus a model with an infective period of fixed length would lead to a basic reproduc-
tion number more than 25% higher than a model with an exponentially distributed
infective period that has the same mean.

4.2. Multi-stage treatment models. We begin by considering a model with two
infective stages I1, I2 and two treatment stages T1, T2. A fraction γ1 of members of
I1 is transferred to T1 in unit time and a fraction γ2 of members of I2 is transferred
to T2 in unit time. Treated individuals pass from T1 to T2. We assume distributions
Pi in Ii and Qi in Ti, and we assume relative infectivity parameters εi in the infective
stages and δi in the treatment stages. Then

S′(t) = −βS(t)ϕ(t),

with

ϕ(t) =
2∑

i=1

[εiIi + δiTi].

A flow chart is shown in Figure 4.
We have

I1(t) =
∫ ∞

0

[−S′(t− τ)]e−γ1τP1(τ) dτ

=
∫ ∞

0

[−S′(t− τ)]A1(τ) dτ,
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..

Figure 4. A two-stage treatment model flow chart

with

A1(τ) = e−γ1τP1(τ) (8)∫ ∞

0

A1(τ) dτ =
∫ ∞

0

e−γ1τP1(τ) dτ.

Also,

T1(t) =
∫ ∞

0

γ1I1(t− σ)Q1(σ) dσ

=
∫ ∞

0

γ1[−S′(t− τ)]
∫ τ

0

e−γ1(τ−σ)P1(τ − σ)Q1(σ) dσ dτ

=
∫ ∞

0

[−S′(t− τ)]B1(τ) dτ,

with, using the same calculation as in (6),

B1(τ) =
∫ τ

0

e−γ1(τ−σ)P1(τ − σ)Q1(σ) dσ (9)
∫ ∞

0

B1(τ) dτ = γ1

∫ ∞

0

e−γ1ωP1(ω) dω

∫ ∞

0

Q1(σ) dσ.

Again, to find the input from I1 to I2, we differentiate I1, obtaining

I2(t) = −
∫ ∞

0

∫ ∞

0

[−S′(t− τ − σ)]e−γ1τP ′1(τ) dτ e−γ2σP2(σ) dσ

= −
∫ ∞

0

[−S′(t− u)]
∫ u

0

e−γ1(u−σ)P ′1(u− σ)e−γ2σP2(σ) dσ du

=
∫ ∞

0

[−S′(t− u)]A2(u) du, (10)

with

A2(u) = −
∫ u

0

e−γ1(u−σ)P ′1(u− σ)e−γ2σP2(σ) dσ.
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Then, using (10) and integration by parts, we have
∫ ∞

0

A2(τ) dτ = −
∫ ∞

0

∫ τ

0

e−γ1(τ−σ)P ′1(τ − σ)e−γ2σP2(σ) dσ dτ

= −
∫ ∞

0

e−γ2σP2(σ) dσ

∫ ∞

0

e−γ1ωP ′1(ω) dω (11)

=
∫ ∞

0

e−γ2σP2(σ) dσ

[
1− γ1

∫ ∞

0

e−γ1ωP1(ω) dω

]
.

The second treatment stage, T2, has two inputs: a fraction of people who come
from I2 and a fraction of people who continue treatment from T1. We have

T2(t) =
∫ ∞

0

γ2I2(t− σ)Q2(σ) dσ (12)

−
∫ ∞

0

γ1

∫ t

−∞
I1(u)Q′(t− u− σ) du‘Q2(σ) dσ.

For simplicity, we let

B2(τ) = B2I(τ) + B2T (τ),

with B2I(τ) coming from the input of I2, and B2T (τ), coming from the input of T1.
To find B2I , we rewrite the first term of(12), We have
∫ ∞

0

γ2I2(t− σ)Q2(σ) dσ =
∫ ∞

0

[−S′(t− τ)]γ2

∫ τ

0

A2(τ − σ)Q2(σ) dσ dτ

=
∫ ∞

0

−S′(t− τ)B2I(τ) dτ.

Now
∫ ∞

0

B2I(τ) dτ =
∫ ∞

0

γ2

∫ τ

0

A2(t− σ)Q2(σ) dσ dτ

= γ2

∫ ∞

0

Q2(σ) dσ

∫ ∞

0

A2(v) dv. (13)

To find B2T , we rewrite the second term of (12),
∫ ∞

0

∫ t

−∞
−γ1I1(u)Q′1(t− u− σ) duQ2(σ) dσ

=
∫ ∞

0

∫ ∞

0

−γ1I1(t− v − σ)Q′
1(v) dv Q2(σ) dσ

=
∫ ∞

0

γ1

∫ ∞

σ

∫ ∞

s

[S′(t− ω)A1(ω − s)] dω Q′
1(s− σ) dsQ2(σ) dσ

=
∫ ∞

0

S′(t− ω)γ1

∫ ω

0

∫ ω

0

A1(ω − s)Q′
1(s− σ) dsQ2(σ) dσ dω

=
∫ ∞

0

[−S′(t− ω)]B2T (ω) dω,

with

B2T (ω) = −γ1

∫ ω

0

A1(ω − s)Q′
1(s− σ) dsQ2(σ) dσ.
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Now,∫ ∞

0

B2T (τ) dτ = −γ1

∫ ∞

0

∫ τ

0

∫ τ

0

A1(τ − s) Q′1(s− σ) dsQ2(σ) dσ dτ

= −
∫ ∞

0

γ1Q2(σ)
∫ ∞

σ

Q′1(s− σ)
∫ ∞

s

A1(τ − s) dτ ds dσ

= γ1

∫ ∞

0

Q2(σ) dσ

∫ ∞

0

A1(v) dv. (14)

Combining (13) and (14), we obtain
∫ ∞

0

B2(τ) dτ =
∫ ∞

0

Q2(τ) dτ

[
γ2

∫ ∞

0

A2(τ) dτ + γ1

∫ ∞

0

A1(τ) dτ

]
. (15)

We obtain the basic reproduction number for the two-stage treatment model,

R0 = βN

2∑

i=1

[
εi

∫ ∞

0

Ai(τ) dτ + δi

∫ ∞

0

Bi(τ) dτ

]
, (16)

with the integrals given by (8),(9), (11) and (15).
For a treatment model with n infective and treatment stages, we assume distri-

butions Pi in Ii and Qi in Ti, and we assume relative infectivity parameters εi in
the infective stages and δi in the treatment stages. Then

S′(t) = βS(t)ϕ(t),

with

ϕ(t) =
n∑

i=1

[εiIi + δiTi].

The kernels for both the infective and treatment compartments are formed in the
same manner as A2(τ) and B2(τ) in the two-stage model. Using induction, we see
that the basic reproduction number for an age-of-infection model with n infective
and treatment stages is given by

R0 = βN

n∑

i=1

[∫ ∞

0

εiAi(τ) dτ + δi

∫ ∞

0

Bi(τ) dτ

]
, (17)

with ∫ ∞

0

Ai(τ) dτ =
∫ ∞

0

e−γiτPi(τ) dτ

[
1−

∫ ∞

0

γi−1e
−γi−1τPi−1(τ) dτ

]
, (18)

and ∫ ∞

0

Bi(τ) dτ =
∫ ∞

0

Qi(τ) dτ

[∫ ∞

0

γiAi(τ) dτ +
∫ ∞

0

γi−1Ai−1(τ) dτ

]
, (19)

taking γ0 = 0.
The contributions to R0 of treatment stages depend only on the mean periods of

the stages, not on the form of the distribution. The contributions of infective stages,
beginning with the first stage from which members are removed for treatment,
depend on the form of the distributions as well as the mean periods of these stages.

We have established the following result.

Theorem 4.1. For the general age-of-infection treatment model, the basic repro-
duction number is given by (17) with the integrals given recursively by (18) and
(19).
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This result simplifies the calculation of the basic reproduction number for an
age-of-infection treatment model considerably as it eliminates the need to explicitly
calculate the age-of-infection kernel A(τ).

5. Example: The gamma distribution. There is ample evidence that expo-
nential distributions of stay in compartments are much less realistic than gamma
distributions [7, 8, 16, 19]. A gamma distribution P (τ) with parameter n and pe-
riod 1/α can be represented as a sequence of n exponential distributions Pi(τ) with
period 1/nα. Then

∫ ∞

0

P (τ)dτ =
i=n∑

i=1

∫ ∞

0

Pi(τ)dτ =
1
α

∫ ∞

0

e−γτP (τ)dτ =
i=n∑

i=1

∫ ∞

0

e−γτPi(τ)dτ (20)

=
i=n∑

i=1

∫ ∞

0

e−γτe−αnτdτ =
1

α + γ
n

.

The calculation of R0 for a treatment model requires calculation of integrals of the
form ∫ ∞

0

e−γτP (τ)dτ.

This integral can be calculated explicitly in terms of the mean period and the
parameter if P (τ) is given by a gamma distribution. The value of the parameter
depends on the disease being modeled.

For example, for a treatment model (5) if P (τ) is a gamma distribution with
parameter n and Q(τ) is arbitrary, we see from (7), (20) that

R0 = βN
1

α + γ
n

[1 + δγ

∫ ∞

0

Q(τ) dτ ].

The value of
1

α + γ
n

is obviously an increasing function of the parameter n. The limiting case as n →∞
of a gamma distribution is a distribution

P (t) = 1(0 ≤ t ≤ 1
α

), P (t) = 0(t >
1
α

),

for which ∫ ∞

0

e−γtP (t)dt =
1− e−γ/α

γ
.

Then
1

α + γ
n

<
1− e−γ/α

γ
. (21)

To prove (21), we let γ = nαx. Then (21) is equivalent to

x

1 + x
<

1− e−nx

n
.

The function (1 − e−nx)/n is a decreasing function of n for x ≥ 0 and thus its
minimum is its limit as n → ∞, namely x. Since x/(1 + x) ≤ x if x ≥ 0, the
estimate (21) follows.
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6. Discussion. We have formulated age-of-infection models, with and without con-
trol measures. Our age-of-infection models can encompass a broad range of infec-
tious diseases, and allow a sequence of infective and treatment compartments with
general infective and treatment distributions.

In the past, the calculation of the basic reproduction number for age-of-infection
models has required direct calculation of the kernel A(τ) [3, 4]. This is feasible but
complicated for ordinary differential equation models with exponentially distributed
periods, but is a forbidding task for general distributions. We have shown how to
calculate the basic reproduction number of multi-stage age-of-infection and treat-
ment models explicitly in terms of the rates of flow between compartments. Also,
we have obtained a result that if the model does not include any treatment com-
partments into which infectives are moved, then the reproduction number depends
only on the mean period in a compartment, not the actual distribution. However,
the reproduction number for models with treatment compartments depends both on
the mean infective and treatment periods, as well as the infectivity distribution. In
other words, one needs detailed information about the mean infective and treatment
periods in nontreatment and treatment models alike, but in treatment models, one
needs information about the infective period distributions as well.

It has been shown that compartmental models including exposed periods, tem-
porary immunity, and other compartments can be formulated as age-of-infection
models [3]. Previous epidemic models can also be interpreted as age-of-infection
models with different control measures. For example, in the case of pandemic in-
fluenza, vaccination is used before the start of an epidemic and antiviral treatment
of infectives is used during the epidemic. SARS can be viewed as an example
of a general class of epidemic diseases for which no treatments were available; only
quarantine of those who were suspected of having been infected, and isolation of the
diagnosed infectives were the available control measures. All of these control mea-
sures can be incorporated into the age-of-infection model, and the final size relation
can be used to calculate the epidemic size, provided that the models are formulated
without demographics so that the final size relation is applicable [2, 5, 10].

Our analyses carry over to endemic diseases such as HIV/AIDS, tuberculosis
(TB), or extensively drug resistant tuberculosis (XDR-TB). The nature of such
diseases requires the inclusion of multiple compartments. Because of the long time
scale, inclusion of demographics is also essential, but this requires only the inclusion
of natural death rates in the kernel B(τ) of the age-of-infection model.
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