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Abstract. A model for the complete life cycle of marine viruses is presented.

The Beretta-Kuang model introduces an explicit equation for viral particles
but the replication process of viral particles in their hosts is not considered.

The extended model keeps the structure of the original model. This makes it

possible to estimate the growth parameters of the viruses for a given parametri-
sation of the Beretta-Kuang model.

1. Introduction. During recent years, strong efforts have been made to model
viral infections in plankton populations; usually the infection has been modelled by
a contact rate of susceptibles and infected phytoplankton, [5], [2] and [3]. In these
articles a predator feeding on the phytoplankton also has been considered. Beretta
and Kuang included an explicit equation for viral particles in an infection model of
phytoplankton without considering a predator [1].

In [8], this model was extended by a predator so that a combination of both ideas,
the modelling of a prey-predator system with infected prey and the explicit con-
sideration of viruses rather than modelling the infection by contacts of susceptibles
and infected, was achieved.

Another extension of the model proposed in [1], which will be presented in this
article, is to take a closer look at the process of viral replication. Beretta and Kuang
considered only free viral particles. The replicating viruses which are confined in
their hosts and which are set free again when the host dies from the infection are
not taken into account.

The aim of the model presented here is to give a more complete description of
the life cycle of viruses. In [1], free viruses “disappeared” in their hosts with a
rate λSV and “reappeared” at the time of lysis. However, in this extension of [1],
as the total population of hosts, PH , consists of the two disjoint subpopulations
of susceptibles S and infected I; the total virus population PV is also subdivided
among free viruses, V , and viruses confined in hosts, W . Therefore the virus pop-
ulation can be computed by summing up free and confined viruses, PV = V + W
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as the phytoplankton population is obtained by summing susceptibles and infected.
Figure 1 shows a scheme of both models.

Figure 1. Schematic representation of the model by Beretta and
Kuang [1] and of the extension. The original model is shown in
the dashed ellipse, modelled processes are represented by dashed
arrows, whereas the extension is displayed in the solid rectangle,
modelled processes are indicated by solid arrows here. It shows that
infection and lysis are already represented in the original model
whereas viral replication in the host cells is considered explicitely
only in the extension.

2. A simple model for virus replication in hosts. First, a short look shall be
taken at the original model, [1].

dV

dt
= −λSV −mV V +BmII, (1)

dS

dt
= −λSV + rS

(
1− S + I

K

)
,

dI

dt
= λSV −mII.

Here λ denotes the contact rate between susceptibles and viral agents, mV the
virus mortality, mI the disease-related mortality for the host population, r the
net reproduction rate, assuming that only sound individuals reproduce and their
offspring are also sound at birth. K is the environment’s carrying capacity for the
population in question. We assume thus logistic growth, taking into account that
infected individuals contribute to the population pressure term of the susceptibles.

Because we will add an equation for viruses W which are confined in their hosts,
the equations of susceptibles and infected will not change. There will also be only
a small change in the equation describing free viruses V : the amount of replicated
viruses which are set free at the time of lysis will not be a constant parameter B as
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in (1). As B is defined as the average number of viruses which are set free at the
moment when a host cell dies we choose

B = εW := ε
W

I
(2)

where W is the average of viruses confined in each cell and ε is a positive number
above 1; this accounts for the fact that more viruses than the average might be
released, because it is more likely that an infected host cell dies if it contains more
viruses than the average. However, the authors believe that ε should not be very far
from 1: If the total number of viruses W is only slightly above I, for most possible
combinations, most of the host cells contain the average amount of viruses (which
in this case is slightly above 1). Thus, a low value for W indicates that the infection
is at an early stage, which means that most of the hosts have only recently been
infected and the replication process has just started. Therefore, in this case it is
justifiable to assume that the viruses are distributed uniformly over the infected host
cells. However, the dynamics of the infection process provides another mechanism
which justifies the assumption of a uniform distribution of viruses over host cells
also for later stages of the infection; i.e., for higher values of W , if a single host
cell contains more viruses than the average amount W of viruses, then it should be
more likely to die by lysis than would the hosts which contain W or less. As in most
of the possible distributions of W viruses over I infected host cells, the majority of
the cells contain less than the average W ; this mechanism decreases the deviation
from a uniform distribution, because the fewer hosts which contain more viruses
than the average disappear by lysis. Thus, in the case that W is far from 1, the
assumption of a uniform distribution of viruses over host cells also seems to be a
good approximation.

Furthermore, the above analysis shows that the mortality mI shall be regarded
as an average value. If the infection is at an early stage, a constant value mI over-
estimates the mortality of infected. On the other hand, mI should drop suddenly
when several hosts die by lysis as the average amount of viruses per hosts is de-
creased. Therefore the model can only be appreciated accurately if it is regarded
as a statistical model—the solutions of the deterministic extension of the model (1)
shall be understood as average values of the population levels, averaged in time as
well as over stochastic variations of the populations.

However, the authors prepare an extension of the model where mI is no longer
constant but depends on the average value W of viruses per host, to make the model
more realistic. We can now state the equations for V and W :

dV

dt
= −λSV −mV V + εWmII, (3)

dW

dt
= λSV + I(aW − cW 2

)− εWmII. (4)

Notice that −λSV and εWmII appear with reversed signs in the equation of W
as V + W is the total number of viruses and does not change due to infection
processes but only by replication. Choosing a logistic growth term I(aW − cW 2

),
we again assume that confined viruses are distributed uniformly over the hosts and
that the same logistic growth law with maximum growth rate a and competition
parameter c holds in every single host cell. Thus, we can simply multiply the logistic
reproduction term in each host cell by I and obtain the total number of reproduced



552 I. SIEKMANN, E. VENTURINO AND H. MALCHOW

viruses. So, by substituting (2) for W , the model takes the form
dV

dt
= −λSV −mV V + εmIW, (5)

dW

dt
= aW − cW

2

I
− εmIW + λSV,

dS

dt
= rS

(
1− S + I

K

)
− λSV,

dI

dt
= λSV −mII.

A scheme of the original model and the extension is shown in Figure 1. Finally, we
adimensionalize the above model by means of the following substitutions:

v =
V

K
, w =

W

K
, s =

S

K
, i =

I

K
, τ = λKt

and dimensionless parameters

ν :=
mV

λK
, µ :=

mI

λK
, ρ :=

r

λK
A :=

a

λK
, θ :=

c

λK
to get

dv

dτ
= −sv − νv + εµw =: fV , (6)

dw

dτ
= sv + (A− εµ)w − θw

2

i
=: fW , (7)

ds

dτ
= −sv + ρs[1− (s+ i)] =: fS , (8)

di

dτ
= sv − µi =: fI . (9)

3. Analysis of the local model. The interior equilibrium of the model is com-

puted and its stability is analysed. Due to the singularity
w2

i
in (9), boundary

equilibria are hard to analyse. The results of the analysis are summarised in Fig-
ure 2.

3.1. Removing the singularity. The singularity in (7) can be removed by choos-
ing new variables ṽ :=

v

i
and w̃ :=

w

i
. Differentiating ṽ with respect to t leads

to

ṽ′(t) =
v′(t)
i(t)

− ṽ(t)
i′(t)
i(t)

=
fV
i
− ṽ fI

i
.

By using (6) and (9), the equation for the transformed variable can be calculated:
dṽ

dt
=
fV
i
− ṽ fI

i
=− sṽ − νṽ + εµw̃ − ṽ (sṽ − µ)

=− sṽ(1 + ṽ) + (µ− ν)ṽ + εµw̃. (10)

The equation for w̃ is found by an analogous computation:
dw̃

dt
= sṽ(1− w̃) +Aw̃ − θw̃2 + µw̃(1− ε). (11)

In the equations for s and i, only v has to be replaced by ṽi. In the transformed
system the equations describing the virus population and the equations of the host



AN EXTENSION OF THE BERETTA-KUANG MODEL 553

Figure 2. For decreasing ν, the boundary equilibrium with ex-
tinction of the infection passes over to a coexistence solution. After
further decreasing ν, the coexistence solution is destabilised by a
Hopf bifurcation which leads to limit cycle oscillations.

populations are nearly decoupled, which makes the stability analysis difficult. How-
ever, it is necessary to pass over to this form as a stability analysis of the singular
system is impossible.

3.2. Extinction of all species. Already this case is quite complicated: setting
s = 0 in (10) and (11) leads to two stationary solutions, ṽ = w̃ = 0 and a positive
solution. Fortunately, independently of the values for ṽ and w̃, the Jacobian has
the positive eigenvalue ρ, so that the stability of this solution can be excluded.

3.3. Extinction of the infection. The stability of this case, however, is hard to
analyse. Although the virus population vanishes, the variables ṽ and w̃ usually have
positive values. This counter-intuitive effect results from the singularity w2/i in the
original equations.

Nevertheless it can be shown that extinction of the infection is stable if

ṽ < µ, (12)

w̃ < 1 + ν, (13)

which—as will be seen later—implies that the interior stationary solution becomes
unstable. To see this, we first compute the Jacobian of the transformed sys-
tem (10), (11) where in (8) and (9) sv is replaced by siṽ. The Jacobian J(ṽ,w̃,1,0)
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reads

J(ṽ,w̃,1,0) =


−1 + µ− ν − 2ṽ εµ −ṽ(1 + ṽ) 0

1− w̃ A− ṽ − 2θw̃ + µ(1− ε) ṽ(1− w̃) 0
0 0 −ρ −ρ− ṽ
0 0 0 −µ+ ṽ

 .

(14)
This matrix has one negative eigenvalue, −ρ, and gives the condition ṽ < µ. The
remaining submatrix in the upper left can be shown to have only negative eigenval-

ues. By using (10) for substituting −1+µ−ν by ṽ−εµw̃
ṽ

, the upper left component

becomes −εµw̃
ṽ
− ṽ, which is clearly negative for positive values of ṽ and w̃. Analo-

gously, by replacement of ṽ+ 2θw̃ using (11), the other element of the diagonal also
can be shown to be negative. Thus, the trace of the matrix is negative, because
both summands are negative. Direct computation of the determinant—using the
simplified components of the Jacobian—leads to

Det J(ṽ,w̃,1,0) =
ṽ2

w̃
+ εµw̃ + θṽw̃ + εµθ

w̃2

ṽ
,

which is positive so that stability follows.
It remains to show (13), which can be done by solving (10) for w̃:

w̃ =
(ṽ − µ) + 1 + ν

εµ
ṽ. (15)

From (15) one can deduce that if ṽ < µ, holds w̃ < 1 + ν also is fulfilled.

3.4. Interior stationary solution. The interior stationary solution of the model
is computed explicitly. If we take s 6= 0 in (8) and use (9), we find v = ρ(1− i−s) =

µ
i

s
, from which

i = ρ
(1− s)s
µ+ ρs

. (16)

Again with (8) and (9) we obtain

v = µ
i

s
. (17)

Also (6), (8), and (9) combined give −νµ i
s

+ µ(εw − i) = 0, which leads to

w =
i

ε

(
1 +

ν

s

)
. (18)

By substituting for w, i, and s in (7), s can be computed. By substituting µi for
sv and using (18), the equation fW = 0 can be simplified to the form

i

ε

{
εµ+

(
1 +

ν

s

)[
A− εµ− θ

ε

(
1 +

ν

s

)]}
= 0. (19)

By factoring out 1/s2, (19) is transformed to the quadratic equation in s,

εµs2 + (s+ ν)
[
(A− εµ)s− θ

ε
(s+ ν)

]
= 0 (20)

which simplifies to(
A− θ

ε

)
s2 + ν

(
A− εµ− 2

θ

ε

)
s− θ

ε
ν2 = 0. (21)
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This shows that for calculating the stationary solution s, the parameter ε only
leads to a different scaling of the virulence µ and the competition parameter θ. We
therefore define

µ̄ := εµ, θ̄ =
θ

ε
. (22)

These new parameters have a clear biological significance: increased values of ε on
the one hand accelerate the release of viruses, and on the other hand the impor-
tance of intraspecific competition of viruses inside the host cells is decreased. The
solutions of (19) are

s1,2 =
ν

2(A− θ̄)

(
µ̄+ 2θ̄ −A±

√
(µ̄−A)2 + 4θ̄µ̄

)
. (23)

3.5. Feasibility conditions for the interior solution. In this section, starting
from 0 < s < 1 it will be shown that only the branch s1 of (23) is feasible. Under
the condition which is obtained by solving s1 ≥ 1 for ν,

ν ≥ νmax =
1
2θ̄

(
A− 2θ̄ − µ̄+

√
(A− m̄u)2 + 4θ̄µ̄

)
, (24)

the interior solution is infeasible. In this case the infection goes extinct (see Section
3.6).

3.5.1. Feasible branch. Assuming A > θ̄ we need to show that

µ̄+ 2θ̄ −A+
√

(µ̄−A)2 + 4θ̄µ̄ > 0,

which is always true as √
(µ̄−A)2 + 4θ̄µ̄ > |µ̄−A|.

From this result it is also immediately clear that s1 is negative if A < θ̄. So
A > θ̄ is a necessary and sufficient condition for s1 to be positive.

3.5.2. Infeasible branch. It is easy to show that the other branch s2 of (23) can
never occur, because it is always negative. Assuming again A > θ̄, we need to
verify whether the following inequality holds

−2(A− θ̄) + µ̄+A >
√

(µ̄+A)2 − 4µ̄(A− θ̄).

A contradiction would immediately arise if the left-hand side were negative, so
without loss of generality, both sides of the inequality can be regarded as positive.
Thus, squaring both sides and dividing by 4(A− θ̄) we find

(µ̄+A)2 − 4(A− θ̄)(µ̄+A) + 4(A− θ̄)2 > (µ̄+A)2 − 4(A− θ̄)µ̄,

which implies

−(µ̄+A) + (A− θ̄) > −µ̄,

thus finally reaching the contradiction θ̄ < 0. Conversely, for A < θ̄, A− 2θ̄ − µ̄ is
negative, so the whole expression must be negative.
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3.6. Stability of the interior stationary solution. Stability of the interior sta-
tionary solution is analysed by the Routh-Hurwitz criterion; see for example, [7].
Choosing ν, the mortality rate of viruses, as a bifurcation parameter, it can be shown
that as ν is decreased, the interior solution “collides” with the boundary solution
s∗ = 1 for a value ν = νmax. For ν < νmax the interior solution becomes stable and
s∗ = 1 loses stability. By further decreasing ν a Hopf bifurcation again destabilizes
the interior solution which leads to limit cycle oscillations (see Section 4).

3.6.1. Simplification of the Jacobian at the interior stationary solution. The Jaco-
bian J can be simplified by using (6-9) and (16-18). Solving fW = 0, (see (7)) for
A, again applying the definition (22),

A = µ̄− s v
w

+ θ
w

i
,

is obtained. Substituting for A in J22 leads to

J22 = −s v
w
− θw

i
= −µ i

w
− θw

i
. (25)

One last simplification can be found for J33 = ρ(1 − i − 2s) − v. From (8) it can
easily be seen that ρ(1− i− s) = v; thus we simply obtain

J33 = −ρs. (26)

Putting our results (25–26) together, a simplified Jacobian J̃ is obtained:

J̃ =


−εsw

i
µ̄ −v 0

s −µ i
w
− θw

i
v θ

(w
i

)2

−s 0 −ρs −ρs
s 0 v −µ

 . (27)

3.6.2. Coefficients of the characteristic polynomial. It is possible to calculate the
coefficients of the characteristic polynomial

q(X) =
n∑
k=0

akX
k (28)

directly from J̃ as ak can be calculated by the following formula using the principal
minors of order i:

ai = (−1)i
∑
R⊂Ai

MR, i = 0, ..., 3. (29)

HereAi denote the subsets of {1, ..., 4} consisting of i elements. The principal minors
are determinants of submatrices which are obtained by deleting 0, 1..., (n− 1) rows
and the corresponding columns of the matrix J̃ .
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Rather lengthy computations lead to the following expressions of the coefficients
a0, ..., a3:

a0(ν) =
µi2 + θw2

i2w
(εw − i)(µ+ ρs)sv

=
ρµν[µ̄s2 + θ̄(ν + s)2](1− s)

s(ν + s)
(30)

a1(ν) = θ̄(s+ ν){ρ[(s+ ν) + µ+ v]− v}+
µ̄s2[ρµ+ (ρ− 1)v]

s+ ν
+ ρνs(s+ ν)v + µs[ρ(s+ ν) + (ε− 1)v] (31)

a2(ν) = s[ρµ+ (ρ− 1)v] + µ̄(µ+ ρs)
s

s+ ν

+ θ̄
(s+ ν)2

s
+ (s+ ν)(µ+ ρs)

(
1 +

θ̄

s

)
(32)

a3(ν) =
(ν + s)2(s+ θ̄) + (ν + s)s(µ+ ρs) + µ̄s2

s(ν + s)
. (33)

The coefficients have been written as functions of ν, since stability will be investi-
gated in terms of the latter parameter. It is immediately seen that a3 is positive
for all parametrisations. Then, a0 is positive provided that s ∈]0, 1[. This indicates
that the interior stationary solution loses stability as soon as it becomes infeasible.
If the additional condition ρ ≥ 1 is imposed, a1 and a2 are positive. Two additional
stability conditions must be fulfilled by the Routh-Hurwitz criterion. These are
investigated in the next section.

4. The Hopf bifurcation. We now analyse the possibility that the equilibrium
E∗ bifurcates. For this to occur, we must have that the characteristic polynomial
factors as follows

Λ(σ) = (σ2 + p2)(σ2 + qσ + r),

with

q = a3, r =
a0a3

a1
, p =

√
a1

a3
.

Therefore a Hopf bifurcation occurs if the following condition holds:

a1(νH)a2(νH)a3(νH) = a2
1(νH) + a0(νH)a2

3(νH) (34)

at the Hopf bifurcation point ν = νH . According to [4] the additional condition

a1(νH)a2(νH)− a0(νH)a3(νH) > 0 (35)

must hold. We define

q1(ν) := a1(ν)a2(ν)a3(ν) (36)

q2(ν) := a2
1(ν) + a0(ν)a2

3(ν). (37)

The condition
d(q1(ν)− q2(ν))

dν

∣∣∣∣
ν=νH

6= 0 (38)

ensures that at the bifurcation point the real part of the eigenvalues changes sign.
For details, [4] may be consulted.
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4.1. Outline of the proof. As the coefficients of the characteristic polynomial are
complicated, the necessary calculations cannot be carried out explicitly. Thus, (34)
is proven by showing the existence of an intersection of q1(ν) and q2(ν). The proof
leans mostly on monotonicity of q1(ν). It is simplified by the fact that the feasible
range of the susceptibles s is [0, 1], or ν ∈ [0, νmax]. In Section 4.2 it is shown that
both q1(ν) and q2(ν) tend to zero as ν tends to zero. As q1 and q2 are rational
functions of ν with q1 having a higher total degree than q2, they can intersect
only if the derivative q′1(0) is smaller than q′2(0). The derivatives are computed in
Section 4.3, this leads to the necessary condition (50) for the Hopf bifurcation. As q1
is always strictly greater than q2 at the right end of the feasible range at ν = νmax,
which is shown in 4.4, it suffices to demonstrate that q1 inreases monotonically in
the feasible interval [0, νmax], as shown in 4.5 under the additional condition ρ ≥ 1.
Under this assumption, the additional constraint (35) also is proven. In Figure 3,
a sketch of q1(ν) and q2(ν) is given as proven in Sections 4.2-4.5.

Figure 3. The relative position of q1(ν) and q2(ν) as proven in
Sections 4.2-4.5.

4.2. Coefficients behaviour for ν → 0. As s depends linearly on ν, it is possible
to factor out ν at every s. Thus, it is easily seen that in (30) and (31), one ν remains
in the numerator after cancelling out, so that the limit ν → 0 exists and is 0.

In the following, factoring out of ν is expressed explicitly by

s :=
ν

νmax
(39)

where νmax depends on A, µ, and θ (cf. (24)) and, for simplifying the representation
of the results,

ζ :=
µ̄+ θ̄(1 + νmax)2

1 + νmax
. (40)
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In a2, the terms (ν + s)2θ and µ2s2 have the same degree in ν as the denominator
s(ν + s). Therefore a2 tends to a nonzero constant for ν → 0:

lim
ν→0

a2(ν) = µ
µ̄+ θ̄(1 + νmax)2

1 + νmax
= µ ζ. (41)

With (39) also the limit of a3 can be calculated:

lim
ν→0

a3(ν) = θ̄ (1 + νmax) + µ+
µ̄

1 + νmax
(42)

=
θ̄(1 + νmax)2 + µ̄+ µ(1 + νmax)

1 + νmax
= ζ + µ. (43)

As all limits exist for ν → 0, the limits of a1a2a3 and a2
1 + a0a

2
3 also exist. Both

limits are 0.

4.3. Comparison of derivatives for ν → 0. The idea of proving the existence
of a Hopf bifurcation leans on the total degrees of q1 and q2 as rational functions:
q1 having a total degree of 5 increases faster for ν → ∞ than q2 having a smaller
total degree. Because both curves intersect at ν = 0, it depends on the derivative
at 0 which of the curves will be “below” for small positive values of ν. Only if q1,
the curve with the higher total degree, is “below” the other one, there will be an
intersection. Thus, the derivatives of q1 and q2 with respect to ν will be compared.
For q′1(0) we find

q′1(0) = a′1(0)a2(0)a3(0) + a1(0)a′2(0)a3(0) + a1(0)a2(0)a′3(0)

= a′1(0)a2(0)a3(0). (44)

as a1 has a zero at ν = 0. As also a0 has a zero for ν → 0, q′2(0) simplifies:

q′2(0) = 2a′1(0)a1(0) + a′0(0)a3(0)2 + 2a0(0)a′3(0)a3(0)

= a′0(0)a2
3(0). (45)

Thus, only a′0(0) and a′1(0) have to be calculated:

a′0(0) = ρµ
µ̄+ θ̄(1 + νmax)2

1 + νmax
= ρµζ (46)

a′1(0) = ρ
(ρ− 1 + µ)[µ̄+ θ̄(1 + νmax)2] + µ(ε− 1)(1 + νmax)

νmax(1 + νmax)

=
ρ

νmax
[(ρ− 1 + µ)ζ + ρµ(ε− 1)]. (47)

The comparison of q′1(0) and q′2(0) is done by comparing the quotient with 1:

q′1(0)
q′2(0)

=
a′1(0)a2(0)
a′0(0)a3(0)

=
ρ

νmax
[(ρ− 1 + µ)ζ + ρµ(ε− 1)]µζ

ρµζ(ζ + µ)

=
(ρ− 1 + µ)ζ + ρµ(ε− 1)

νmax(ζ + µ)
< 1. (48)

This can be used to compute an upper bound for ρ:

ρ <
µ(νmax − ζ) + (1 + νmax)ζ

(ε− 1)µ+ ζ
, (49)
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which for the special case ε = 1 gives

ρ < 1 + νmax +
1 + νmax

1 + θ
µ (1 + νmax)2

νmax − µ. (50)

4.4. Behaviour of q1 and q2 at the right end of the feasible range. Now
that a condition for an intersection has been obtained, it will be demonstrated that
q1(νmax) is always greater than q2(νmax). This ensures that the Hopf bifurcation
always occurs for a value νH in the feasible range ]0, νmax]; i.e. there is always a
nonempty interval ]νH , νmax] where the interior stationary solution is stable.

As a0 has a zero at s(νmax) = 1, q2(νmax) = (a1(νmax))2. This makes it easy to
compare q1 and q2 at this value; only

a2(νmax) a3(νmax) > a1(νmax) (51)

has to be checked. The calculations are simplified a little, since ν = νmax implies
s = 1 and v = 0. The results for a1 and a2 are

a1(νmax) = ρ θ̄(1 + νmax)[(1 + νmax) + µ] + ρµ

[
(1 + νmax) +

µ̄

1 + νmax

]
, (52)

a2(νmax) = ρµ+ µ̄
µ+ ρ

1 + νmax
+ θ̄(1 + νmax)[(1 + νmax) + µ]

+ (1 + νmax)µ+ ρ(1 + θ̄)(1 + νmax)

=
a1(νmax)

ρ
+ ρ

(
(1 + θ̄)(1 + νmax) + µ+

µ̄

1 + νmax

)
. (53)

Evaluating a3 at νmax

a3(νmax) = ρ+ µ+ (1 + νmax)(1 + θ̄) +
µ̄

1 + νmax
, (54)

we notice that a3(νmax) contains ρ and other positive summands, which proves that
(51) is true.

4.5. Rigorous proof for ρ ≥ 1. For the remainder, in addition to (50), ρ ≥ 1
will be assumed. Under these conditions the existence of a Hopf bifurcation can be
proven rigorously. However, although for ρ < 1 it is even easier to satisfy (50) it is
technically more difficult to show that (35) and (38) are met.

Notice that q1(ν) and q2(ν) have only negative poles; furthermore, the numerator
of q1(ν) has only positive coefficients. Thus, q1(ν) is monotonically increasing for
positive values of ν. This ensures that the intersection of q1(ν) and q2(ν) is unique
and transversal, so that (34) and (38) are satisfied.

Finally, we note that for ρ ≥ 1, (34) implies (35): We have already shown that a1,
a2, and a3 are positive for positive values of ν. At νH where a1a2a3 and a2

1 + a0a
2
3

meet dividing by a3 leads to

a1(νH)a2(νH) =
a2
1(νH)
a3(νH)

+ a0(νH)a3(νH) > a0(νH)a3(νH)

as all summands are positive. Thus, the occurence of a Hopf bifurcation is proven
under the additional constraints (50) and ρ ≥ 1.
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5. The spatial model. In contrast to other population models, the transition to
the spatial model is not completely straightforward in this case. The fact that
viruses which are inside their hosts cannot move by themselves but are merely
transported by the infected cells in which they are confined must be taken into
account. To make the solution chosen here more plausible, consider the following
diffusion equations without reaction terms:

∂w

∂t
=
w

i
D∆i, (55)

∂i

∂t
= D∆i. (56)

The diffusive flow of i is converted into w by the proportional factor
w

i
. By sub-

stituting for D∆i in the equation (55), this equation is reduced to an ordinary
differential equation in w and i:

dw

dt
=
w

i

di

dt
, w(0) = w0, i(0) = i0.

The equation can be easily solved by separation of variables by

w(t) =
w0

i0
i(t).

This is the desired result: The ratio of w(t) and i(t) is conserved only if transport
is considered.

Thus, the equations of the reaction-diffusion system are (see (6–9)):

∂v

∂τ
= fV +D∆v, (57)

dw

dτ
= fW +

w

i
D∆i, (58)

ds

dτ
= fS +D∆s, (59)

di

dτ
= fI +D∆i. (60)

Solutions for the representative sample parametrisation,

ρ = 10, ν = 14.925, µ = 24.628, (61)
A = 40, θ = 0.21, ε = 1, D = 0.05,

are presented in Figure 4.

6. Conclusions. The complete viral life cycle, including the relevant processes
from infection by replication in host cells to lysis of the hosts and release of replicated
viral particles, could be represented in a surprisingly simple model. The model’s
behaviour is structurally very similar to the model by Beretta and Kuang [1], on
which it is based: decreasing ν (i.e. increasing the strength of the infection) leads to
a transition from extinction of the infection for high values of ν through equilibrium
levels of all populations to limit cycle oscillations. This corresponds to the behaviour
of the model presented in [1] if the viral replication factor B is increased. Thus, the
extension allows for a deeper insight into the dependence of the replication factor
B on the logistic growth parameters A and θ of confined viruses and the mortality
of infected µ; i.e., in fact, the dependence of B on the crucial parameters of the
infection. In this section we restrict our considerations to the case ε = 1.
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s(t)

i(t)

(a) t = 10 (b) t = 50 (c) t = 200 (d) t = 300

Figure 4. Simulation of the spatial model for parametrisation (61)
with periodic boundary conditions. Only the solutions for suscepti-
ble and infected phytoplankton are given. The higher the densities
of a population, the darker are the gray values which are used for
painting it. Initial conditions: the whole space is covered with a
homogeneous distribution of phytoplankton, two square patches of
viruses. First, infected expand in concentric circles (t = 10) which
are transformed in a homogeneous distribution by dynamic stabil-
isation, [6], (t = 50). Afterwards, small spiral waves form in the
center, and suddenly more extended structures start from the cen-
ter and quickly reach the boundary (t = 200). Finally, all bigger
structures dissolve and only small patterns remain (t = 300).

First, looking at (18) the ratio

B∞ :=
w

i
= 1 +

ν

s
= 1 + νmax

=
1
2

(
A

θ
− µ

θ

)
+

√
1
4

(
A

θ
− µ

θ

)2

+
µ

θ
(62)

can be computed. As pointed out in Section 2, we have replaced B by
w

i
in the

model equations, assuming that at lysis the average amount of confined viruses per
cell is set free. B∞ can be understood as the average amount of viruses which is
set free if the stationary solution is attained; i.e., for t→∞.

From (62), it immediately follows that the stability condition B > 1 + ν from
the original model remains valid in the extended model:

B∞ = 1 + νmax > 1 + ν (63)

as ν < νmax is the feasibility condition for the interior stationary solution.
Furthermore, (62) allows us to compare parameter sets of the Beretta-Kuang

model [1], with the extension: having fixed B and µ by a previous run of the
original model, a relationship between the logistic growth parameters A and θ for
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(b) extended model, A = 27.26, θ = 0.25

(a) Beretta/Kuang model, B = 16.5 (c) extended model, A = 31.39, θ = 0.5

(d) extended model, A = 35.51, θ = 0.75

Figure 5. The original model (see [1]) with the replication factor
B = 16.5 is compared with the extended model for different choices
of A and θ.

confined viruses can be computed. Solving for θ leads to

θ =
1
B∞

[
A− µ

(
1− 1

4B∞

)]
which shows that there is a lower bound for the growth rate of viruses

Amin = µ

(
1− 1

4B∞

)
. (64)
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A must have values strictly above Amin, because choosing θ = 0 leads to unre-
alistic solutions: if no intraspecific competition of viruses is considered, for some
parametrisations, the hosts may go extinct and viruses prevail. Taking into account
that B ranges from 10 to 100, it can be assumed that Amin corresponds to µ.

As an example, the parameter values proposed in [1] are chosen and the Hopf
bifurcation points are computed numerically for both models:

ρ = 10, ν = 14.925, µ = 24.628. (65)

Numerical solutions with B = 16.5 and three corresponding parameter sets of the
extended model are shown in Figure 5. For the original model, the Hopf bifurcation
occurs at B ≈ 94.45, whereas in the extended model the value B∞ ≈ 80.70 is
found. Also, frequency and amplitude of the periodic solutions cannot be adjusted
simultaneously by appropiate choices of A and θ; see Figure 6.

(a) Beretta-Kuang model B = 95 (b) extended model, A = 29.12, θ = 0.05

Figure 6. The original model (see [1]) with the replication factor
B = 95; i.e., for B above the Hopf bifurcation point, is compared
with the extended model. Frequency and amplitude of the periodic
solutions cannot be adjusted simultaneously by appropriate choices
of A and θ.

The discovered relationship of the extension to the original model on the one
hand suggests that the extension is indeed plausible. On the other hand the ex-
tended model can give insight in the replication of viruses which are replicating in
their hosts, even providing means for determining the growth rate and the compe-
tition parameter of the viruses. As these parameters seem inaccessible by empirical
investigations this gives a good example for the power of mathematical modelisation.
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