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Abstract. We show the global stabilization of the chemostat with nonmono-
tonic growth, adding a new species as a “biological” control, in presence of
different removal rates for each species. This result is obtained by an extension
of the Competitive Exclusion Principle in the chemostat, for the case of two
species with different removal rates and at least one nonmonotonic response.

1. Introduction. Consider the chemostat model with one species, of concentration
x1, and one limiting resource, of concentration S

S′ = (S0 − S)D − x1p1(S)
y1

,

x′1 = x1(−D1 + p1(S)) ,

(1)

where S(0) ≥ 0 and x1(0) > 0. S0 and D are respectively the feed concentration
and its dilution rate. D1 is the removal rate of the micro organisms. When the
response (or growth) function p1(·) is such that the set {S ≥ 0 | p1(S) > D1}
is a nonempty interval (λ1, µ1) with µ1 < S0, it is well known that dynamics (1)
possesses two stable critical points : the wash-out (0, S0) and a positive equilibrium
E?

1 = (λ1, y1D(S0 − λ1)/D1) (see for instance the textbook [6]). This typically
occurs for nonmonotonic response functions, such as the Haldane law.

Such situations are well known among micro biologists and control engineers :
from certain initial conditions, the dilution rate can lead to the wash-out of the
reactor (i.e. the extinction of the species). Several control strategies for manipulat-
ing the dilution rate with respect to measurements of the substrate S or biomass
x1 concentrations have been proposed in the literature (see for instance the text-
book [1]). The objective is to make E?

1 a globally asymptotically stable equilibrium
point of the closed-loop system. However, controlling the dilution rate imposes an
upstream tank, which can be penalizing in certain applications such as wastewater
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treatment. In addition, measuring the nutrient concentration in the tank imposes
the use of on-line sensors, often costly or unreliable in practice.

In this paper, we study how to globally stabilize trajectories of system (1) about
E?

1 with a biological control, instead of physical ones. The biological control consists
in adding at initial time another species, of concentration x2, whose growth function
p2(·) fulfills good properties. Mathematically, this amounts to consider the chemo-
stat model with two populations of micro organisms in competition on the same
substrate and show that the equilibrium (E?

1 , 0) is globally asymptotically stable.
Such a result can be expressed in terms of the competitive exclusion principle, as

it is mentioned in the discussion section of the paper [2]. But, in this last reference,
the principle is proved under the assumption that the removal rates D1, D2 are both
equal to D. To the best of our knowledge, the principle has been proved only for
nonmonotonic response functions and different removal rates under the assumption
S0 < µ1 [7, 5] and therefore does not apply to the case under interest in the present
paper. Nevertheless, inspired by these former works, we show here that considering
conditions from [2] and results from [5] (which we recall in Section 2) leads to an
extension of the principle valid when µ1 < S0. More precisely, in Section 3, we
propose conditions on the growth function of the additional species under which we
prove that the principle holds. The biological control is illustrated in Section 4 on
a example with Haldane and Monod responses.

2. Modeling and assumptions. Consider the model

S′ = (S0 − S)D − x1p1(S)/y1 − x2p2(S)/y2 ,
x′1 = x1(−D1 + p1(S)) ,
x′2 = x2(−D2 + p2(S)) ,

(2)

where S(0) ≥ 0 and xi(0) > 0 (i = 1, 2). Without loss of generality, we shall as-
sume that the yield factors y1, y2 have been chosen equal to one (this amounts to
rescaling the concentrations xi in xi/yi).

Remark 1. In chemostats (or bioreactors) with output membranes that selectively
remove the biomass, depending on the size of the micro organisms, one usually
assumes the removal rates Di to be less than D. On the contrary, when the mortality
of a species is predominant, one may consider its removal rate Di to be larger than
D.

The growth functions pi(·) fulfill the usual assumption.

Assumption A1. For i = 1, 2, the function pi(·) is nonnegative, with pi(0) = 0,
and Lipschitz continuous.

Under this last assumption, one can easily check that solutions of (2) are well
defined and remain nonnegative and bounded for any time.

For each species i = 1, 2, we define the numbers

D̄i = max(D, Di) ,

and the sets
Qi(di) = {S ≥ 0 | pi(S) > di} ,
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where di is equal to D or Di, and assume that Qi(D̄i) are nonempty. As in former
works [2, 7, 5], we consider the following assumption that holds for most of the
growth functions found in the literature.

Assumption A2. The sets Qi(di), with di ∈ {Di, D}, are intervals

Qi(di) = (λi(di), µi(di)) ,

where µi(di) is possibly equal to +∞.

Notice that any monotonic functions, such as the Monod law, some nonmono-
tonic ones, such as the Haldane law, fulfill this last assumption when the numbers
D̄i are not too large.

Let E? be the critical point of dynamics (2)

E? = (λ1, D(S0 − λ1)/D1, 0) ,

and recall the result from [5] (Theorem 2.1).

Theorem 2.1. If λ1(D1) < S0 < µ1(D1) and

DS0

min(D,D1, D2)
− DS0

max(D,D1, D2)
< λ2(D2)− λ1(D1) (3)

then all solutions of (2) satisfy

lim
t→+∞

(S(t), x1(t), x2(t)) = E? .

Notice that the condition λ1(D1) < S0 < µ1(D1) of Theorem 1 imposes E?
1 =

(λ1, D(S0 − λ1)/D1) to be a globally attractive equilibrium of system (1).

We recall also the result from [2] (Corollary 3.5) for the particular case of
D1 = D2 = D.

Theorem 2.2. Assume λ1(D) < λ2(D). If Q = Q1(D)
⋃

Q2(D) is connected and
S0 ∈ Q, then the critical point E? is globally asymptotically stable.

3. An extension of the Competitive Exclusion Principle. Define the number
D̄ = max(D̄1, D̄2) and the quantity

S0 =
D

D̄
S0 ≤ S0 .

We consider the following set of hypotheses on the response functions pi(·).

Assumption A3. The following inequalities are fulfilled.

µ1(D1) ≤ S0 , (4)
λ1(D̄1) < λ2(D̄2) < µ1(D̄1) and S0 < µ2(D̄2) . (5)

(6)

Condition (4) allows us to consider dynamics (1) for which the wash-out equilib-
rium (0, S0) is attractive. Condition (5) somehow replaces the condition λ1(D1) <
S0 < µ1(D1) of Theorem 2.1 for the global attractivity of E?. Notice that this
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condition coincides with the one required by Theorem 2.2 when D1 = D2 = D.

Consider the functions

p̄i(S) = pi(S)− D̄i, (i = 1, 2) .

Then, condition (5) implies that the graphs of the functions p̄1(·) and p̄2(·) cross on
the interval (λ2(D̄2), µ1(D̄1)). Define the number

S̄ = min
{
S ∈ (λ2(D̄2), µ1(D̄1)) | p̄1(S) = p̄2(S)

}

(for an illustration, see Figure 1).

1

1(D  )λ2(D  ) S

p
2

µ 12

p

Figure 1. Typical graphs of functions p̄1(·), p̄2(·).

At this concentration S̄, we require the growths pi(S̄) to be sufficiently above their
respective removal rate Di.

Assumption A4. The following property is fulfilled.

p1(S̄)− D̄1 = p2(S̄)− D̄2 >
S0 − S0

S0 − S̄
D . (7)

Notice that this last condition is always fulfilled when D1 ≤ D and D2 ≤ D.

Proposition 1. Under Assumptions A1-A2-A3-A4, the condition (3) ensures that
any solution of (2) converges asymptotically toward E?.

Proof. Fix an initial condition of (2) with S(0) ≥ 0, x1(0) > 0 and x2(0) > 0.

We first show that there exists T1 < +∞ such that S(t) < S0 for any t > T1.
Notice first that one has S′(t) ≤ D(S0 − S(t)) at any time t ≥ 0. If the trajectory
never enters the domain D1 = {S < S0} (i.e., S(t) ≥ S0 for any t ≥ 0), S(·) is
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decreasing and one should have p2(S(t)) ≥ D̄2 ≥ D2 for any time t larger than T ,
defined as

T = max
(

0,
1
D

log
(

S(0)− S0

µ2(D̄2)− S0

))
.

This implies x′2(t) ≥ 0 at any time t ≥ T , and then the inequality S′(t) ≤
−D2x2(T ) < 0 should also be fulfilled at any time t ≥ T . Consequently, the trajec-
tory has to enter the domain D1 in finite time, say at T1. If the trajectory leaves this
domain at a future time, there should exist a finite time T ′1 > T1 such that S(T ′1) =
S0 with S′(T ′1) ≥ 0. But one has S′(T ′1) = −x1(T ′1)p1(S0) − x2(T ′1)p2(S0) < 0,
leading to a contradiction.

We show now that there exists a finite time T2 ≥ T1 such that S(t) ≤ S̄ for
any t > T2. Notice first that condition (4) guarantees that S̄ is below S0. If S(t)
stays above S̄ for any t ≥ T1, one should have x′2(t) ≥ η2x2(t) for any t ≥ T1,
where η2 = minσ∈[S̄,S0] p2(σ) − D2. But one has [S̄, S0] ⊂ Q2(D̄2), which implies
η2 > 0, and consequently limt→+∞ x2(t) = +∞, which is not possible. So, the
trajectory enters the domain D2 = {S ≤ S̄} in finite time. Furthermore, each time
the trajectory leaves D2, it has to enter it again at a future finite time. At a time t′

when the trajectory leaves domain D2, one should have S(t′) = S̄ with S′(t′) ≥ 0.
Consider the variable Z = S0 − S − x1 − x2. From equations (2), one obtains

Z ′(t) ≤ −D̄Z(t) for any t ≥ 0 ,

and

S′(t′) = (S0 − S̄ − x1(t′)− x2(t′))D + x1(t′)(D − p1(S̄)) + x2(t′)(D − p2(S̄))
≤ (S0 − S0 + Z(t′))D + x1(t′)(D̄1 − p1(S̄)) + x2(t′)(D̄2 − p2(S̄))
= (S0 − S0 + Z(t′))D + (S0 − S̄ − Z(t′))(D̄1 − p1(S̄))
= Z(t′)(D + p1(S̄)− D̄1) + (S0 − S0)D − (S0 − S̄)(p1(S̄)− D̄1) ,

Conditions (4) and (7) ensures the sign of the quantity

γ = (S0 − S̄)(p1(S̄)− D̄1)− (S0 − S0)D > 0 ,

and for t large enough, one has

Z(t)(D + p1(S̄)− D̄1) < γ .

We deduce that t′ cannot be arbitrarily large. The existence of a time T2 such that
the trajectory remains in D2 for any future time follows.

Note that one has p1(S̄) > D̄1 ≥ D1, and consider the fictitious response function
(see Figure 2)

q1(S) =

∣∣∣∣∣∣

p1(S) if S ≤ S̄ ,

D1 + (p1(S̄)−D1) exp
(

dp1

dS
(S̄)

S − S̄

p1(S̄)−D1

)
if S > S̄ .

Then, one can easily check that q1(S) > D1 for any S ≥ S̄ and functions q1(·), p2(·)
fulfill conditions of Theorem 2.1. From state (S(T2), x1(T2), x2(T2)), the trajectory
of (2) is clearly identical to the one solution of system (2), where p1(·) is replaced
by q1(·). Consequently, the trajectory converges asymptotically toward E?.
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Figure 2. Functions p1(·) and q1(·).

4. The Haldane/Monod case with output membrane. In this section, we
assume that the response function p1(·) is of Haldane’s type

p1(S) =
M1S

K1 + S + I1S2
,

where M1, K1 and I1 are positive parameters. Notice that when M1 > D, Assump-
tion A2 is fulfilled for any D1 ≤ D. For any d ≤ D, one has

λ1(d) =
M1 − d−

√
(M1 − d)2 − 4K1I1d2

2I1d
,

µ1(d) =
M1 − d +

√
(M1 − d)2 − 4K1I1d2

2I1d
.

(8)

We consider in this case study a chemostat equipped with output membranes,
assuming D1 < D and D2 < D. Then, the following result gives conditions for the
existence of a biological control of (1) by a species with response of Monod type

p2(S) =
M2S

K2 + S
,

where M2 and K2 are parameters.

Proposition 2. Assume M1 > D > D1, D2 and µ1(D) ≤ S0. When the condition

ν1(D,D1, D2, S
0) := λ1(D1) +

(
D

min(D1, D2)
− 1

)
S0 <

D2

D
µ1(D) (9)

is fulfilled, there exist positives values of M2 and K2 such that E? is a globally
asymptotically stable equilibrium of (2).

Proof. Function p2(·) has to fulfill Assumptions A2, A3 and condition (3) for the
statement of Proposition 1 to hold (Assumption A4 is necessarily fulfilled because
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S0 = S0). A2 is fulfilled when M2 > D. One has, for any d ≤ D,

λ2(d) =
K2d

M2 − d
and µ2(d) = +∞ . (10)

Then, p2(·) fulfills A3 and (3) exactly when it satisfies

λ2(D) < µ1(D) and λ2(D2) > ν1(D,D1, D2, S
0) .

Using expression (10), this amounts to require parameters M2, K2 to fulfill

DK2 < µ1(D)(M2 −D) and D2K2 > ν1(D, D1, D2, S
0)(M2 −D) .

There exist such values of K2 when M2 is such that

D2µ1(D)(M2 −D) > Dν1(D, D1, D2, S
0)(M2 −D) ,

which is possible exactly when condition (9) is fulfilled. Then, any values M2, K2

such that

M2 >
DD2(µ1(D)− ν1(D,D1, D2, S

0))
D2µ1(D)−Dν1(D,D1, D2, S0)

,

K2 ∈
[
ν1(D, D1, D2, S

0)(M2 −D)
D2

,
µ1(D)(M2 −D)

D

]
,

guarantee the conditions of Proposition 1 to be satisfied.

As noticed in [7, 5], this condition is fulfilled when D1 and D2 are not too small
compared to D.

As a numerical example, the following parameters have been used.

S0 D M1 K1 I1 D1 M2 K2 D2

200 80.0 200 20.0 0.01 70.0 260 280 60.0

Graphs of functions p1(·) and p2(·) are depicted on Figure 3.
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Figure 3. Response functions p1(·) and p2(·).
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From expressions (8), (9) and (10), the following values are computed.

λ1(D1) ν1(D,D1, D2, S
0) λ2(D2) λ2(D) µ1(D) µ1(D1)

11.48 78.15 84.00 124.44 135.2 174.2

One can check that assumptions of Proposition 2 are fulfilled. For the numerical
simulations, we have computed trajectories from two initial conditions: one without
the additional species

(S(0), x1(0), x2(0)) = (150, 20.0, 0) ,

which belongs to basin of E?
1 , and the same one but with a nonnull x1(0):

(S(0), x1(0), x2(0)) = (150, 20.0, 0.01) .

Trajectories are represented on Figures 4 and 5.
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Figure 4. Concentrations x1 and x2 w.r.t. time.
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Figure 5. Trajectories in (S, x1) phase portrait.

5. Conclusion. In this work, we show that a chemostat with nonmonotonic re-
sponse can be globally stabilized, simply introducing a new species while the re-
moval rate of the two considered species are different. Mathematically, the idea is to
embed the dynamics in a higher dynamics such that the equilibrium in the presence
of the original species is globally attractive on the positive domain. Technically,
the difficulty comes from the different removal rates (which typically appear in the
presence of an output membrane or when the mortality of the micro organisms are
considered). The response of the additional species has to fulfill precise conditions.
Roughly speaking, its growth rate (relatively to its removal rate) has to overcome
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one of the original species for large nutrient concentrations, and on the opposite,
be overcome for small ones. Practically, the new species can be introduced with
any arbitrary small quantity. Although necessary for the global stabilization, the
additional species will not survive asymptotically.
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