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Abstract. It has been observed in several settings that schistosomiasis is less
prevalent in segments of river with fast current than in those with slow current.
Some believe that this can be attributed to flush-away of intermediate host
snails. However, free-swimming parasite larvae are very active in searching for
suitable hosts, which indicates that the flush-away of larvae may also be very
important. In this paper, the authors establish a model with spatial structure
that characterizes the density change of parasites following the flush-away of
larvae. It is shown that the reproductive number, which is an indicator of
prevalence of parasitism, is a decreasing function of the river current velocity.
Moreover, numerical simulations suggest that the mean parasite load is low
when the velocity of river current flow is sufficiently high.

1. Introduction. Schistosomiasis, a parasite (schistosome)-induced disease, is also
known as bilharzia after Theodor Bilharz, who first identified the parasite in Egypt
in 1851. Infection is widespread with a relatively low mortality rate but a high
morbidity rate, causing severe debilitating illness. The disease is generally associ-
ated with rural poverty. An estimated 170 million people suffered it in sub-Saharan
Africa in 2004, and so did a further 30 million in North Africa, Asia, and South
America [26].

Schistosomes have to go through an intermediate host (snails in most cases)
to complete their life cycle: from eggs, to miracidia, to cercariae, finally to adult
flukes. Unlike direct parasites, schistosomes have two stages of reproduction - sexual
production in humans and asexual amplification in snails. Mathematical modeling
and analysis of schistosomiasis has drawn the attention of many researchers since
the first paper by MacDonald in 1965 [15]. Thereafter, Anderson and May [2,
3], Cohen [6], N̊asell [16], Dobson [7], Adler and Kretzschmar [1], Pugliese [17],
and many other researchers built excellent unstructured models and developed a
decent understanding of transmission mechanism of schistosomiasis. However, many
important biological facts (e.g., age/size- or spatial factors) are overlooked in these
models. For example, snails tend to cease production eventually, and they quickly
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die after infection [12, 20]; children of school age usually exhibit higher prevalence
of schistosome infections than other groups [5, 24]; there are fewer incidences of
infections reported by adventurers who traveled to northern parts of Omo River
(faster flow) than by those to southern parts (slower flow) [19]. Recently, some
age-structured models were proposed [9, 24] and optimal control strategies were
discussed. However, there is no mathematical model of schistosomiasis with spatial
structure.

In this paper, we focus on how the speed of a river affects the transmission dy-
namics of schistosomiasis by assuming flush-away of only free-swimming miracidia
and cercariae, and nothing else. In the literature, lower incidences of schistosomiasis
along a river with higher speed occur with fewer snails in the aquatic environment
[23]. Utzinger et al. believed that Biomphalaria pfeifferi have preference for a
certain range of river current velocity, and they claimed a paucity of snails as a
reason for low incidences [23]. Moreover, spatial microhabitat selection by B. pfeif-
feri also depends on the water depth [23]. On the other hand, when infected snails
are prevalent, environmentally triggered downward swimming can quickly bring lar-
vae (planktonic cercariae) to the bed, promoting contact with benthic intermediate
hosts [11]. Compared with snails, miracidia and cercariae spend most of their life
in search for hosts and move along with water flow. Thus, the flush-away of par-
asite larvae plays an important role in the host-parasite system. Furthermore, we
study a control strategy related to treatment and prevention of infected humans
and estimate a minimal effort to eradicate the disease.

The present paper is structured as follows: in the next section, a mathematical
model with spatial structure is given; in Section 3, its well-posedness is established;
in Section 4, a reduced model (ODE model, spatially uniform) is studied analyti-
cally and numerically; in Section 5, the full model is analyzed and simulations are
provided; finally, we present some discussion and conclusions.

2. A mathematical model with spatial structure. Schistosomiasis is found
in tropical countries in Africa, the Caribbean, eastern South America, east Asia,
and in the Middle East. It is prevalent in villages near rivers or lakes. Since the
purpose of our paper is to study the influence of river velocity on the transmission
dynamics of schistosomiasis, we assume the aquatic habitat to be a river, which
has a geometry of line segment [0, L]. Moreover, we assume that the origin of the
river (x = 0) is free of parasites, and humans can have an active impact only on a
compact region [0, L].

In the following, we make assumptions as in [25].
(H0) Human beings and snails grow logistically in the absence of parasites with

corresponding carrying capacities.
(H1) The rate of parasite-induced human mortality is linearly proportional to the

number of parasites a person harbors.
(H2) Infected snails do not reproduce and have high potential mortality.
(H3) Distribution of parasites among human beings is overdispersed.
(H4) Birth rates of hosts are greater than their death rates, bj − µj0 > 0, j = h, s.
(H5) Productivity of cercariae by each infected snail is independent of the dose of

miracidia exposed.
The biological justification and mathematical methodology can be seen in [2,

3, 12, 14, 20, 21, 22]. We further assume that only miracidia and cercariae are
spatially dependent. Human beings are active everywhere in the habitat, so that
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their contribution to the environment can be treated as homogeneous. The same is
true for parasites, because they reside inside the human body. We further assume
snails are more or less uniformly distributed along the river, because they live in
the river bed.

Miracidia and cercariae swim in the river with certain directional preference, such
as towards light [11], and toward intermediate host snails. In this paper, we neglect
all these motions and assume that the larvae are flushed away by the river flow.
In fact, a cercaria can swim up to 5 meters per day, and a miracidium can swim
up to 50 meters per day [13]. The speed of larval swimming is at least a 3-order
magnitude less than a typical river velocity. It can be ignored. For simplicity, the
river velocity is assumed to be a positive constant.

Let H(t), P (t), S(t), I(t) denote the total numbers of human beings, adult par-
asites, uninfected snails and infected snails at time t, respectively. Let m(x, t),
c(x, t) denote the density of free-living miracidia, free-living cercariae at time t and

location x, respectively. Let C(t) =
∫ L

0

c(x, t)dx, M(t) =
∫ L

0

m(x, t)dx denote the

total numbers of miracidia and cercariae at time t, respectively. All demographic
and epidemiological parameters are listed in Table 1, and most of them are identified
in [8, 25].

Table 1. Parameter definitions

Parameter Definition
bh per capita birth rate of human beings
µh0 per capita natural death rate of human beings
µh1 extra per capita death rate of human beings due to overcrowding
Lh carrying capacity of environment for human beings
α parasite-induced death rate of human beings per parasite
β production rate of cercariae per infected snail
λ attachment rate of cercariae to human beings
κ “clumping parameter” of binomial distribution of adult parasites
µp per capita death rate of parasites
r treatment-induced rate of parasites
bs per capita birth rate of snails
µs0 per capita natural death rate of snails
µs1 additional per capita death rate of snails due to overcrowding
Ls carrying capacity of environment for snails
ρ contact rate (per snail) of uninfected snails with miracidia
ds parasite-induced death rate of snails
bp mean number of eggs (miracidia) laid per parasite
ζ “efficacy” of cercariae in infecting humans (0 ≤ ζ ≤ 1)
µm per capita death rate of miracidia
µc per capita death rate of cercariae
v river current velocity



508 FABIO AUGUSTO MILNER AND RUIJUN ZHAO

A mathematical model of schistosomiasis with spatial concerns consists of the
following system of differential equations:





dH

dt
= (bh − µh0 − µh1H)H − αP,

dP

dt
= ζHC − α(κ+1

κ )
(

P 2

H

)
− (µh0 + µh1H + µp + α + r)P,

dS

dt
= (bs − µs0 − µs1(S + I))S − ρMS,

dI

dt
= ρMS − (µs0 + µs1(S + I) + ds)I,

∂m

∂t
= −v

∂m

∂x
+ bpP − µmm,

∂c

∂t
= −v

∂c

∂x
+ βI − µcc,

(1)

along with homogeneous Dirichlet boundary conditions on the inflow boundary for
the two partial differential equations

m(0, t) = 0, c(0, t) = 0, (2)

and nonnegative initial distributions

H(0) = H0, P (0) = P0, S(0) = S0, I(0) = I0,m(x, 0) = m0(x), c(x, 0) = c0(x). (3)

Remark 1. System (1) is not self-consistent in that the loss of miracidia and
cercariae penetrating into hosts is not reflected in the change of densities of these
two larvae. In fact, free-living miracidia and cercariae live at most 48 hours in fresh
water, and they lose ability to penetrate into hosts after first several hours when they
are active in searching hosts [13]. On the other hand, this special treatment allows
us to reduce the six-dimensional System (1) to a four-dimensional delay differential
equations after explicitly solving the two hyperbolic equations.

Remark 2. Boundary conditions (2) can be modified into some nonnegative func-
tions, in which the model can be applied to study how a contaminated river by
schistosomiasis can affect its downstream regions.

3. Well-posedness. To determine the well-posedness of System (1), we reduce it
to an equivalent lower-order dimensional system.

Since equations (1.v) and (1.vi) are first-order hyperbolic equations, we can solve
them exactly along characteristic lines x = τ + vt, where τ is a parameter. Denote
m̃(t) = m(τ + vt, t). Then equation (1.v) becomes

dm̃

dt
+ µmm̃ = bpP. (4)

Since the habitat has finite length L, we can group characteristic lines as above x =
vt and below x = vt. The solution of equation (4) in the region {(x, t)|vt < x < L}
is

m̃(t) = e−µmtm̃(0) + bp

∫ t

0

e−µm(t−s)P (s)ds, (5)

and the solution of equation (4) in the region {(x, t)|0 < x < vt} is

m̃(t) = e−
µmx

v m̃(t− x

v
) + bp

∫ t

x
v

e−µm(t−s)P (s)ds. (6)
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Thus the solution of equation (1.v) is

m(x, t) =





e−µmtm0(x− vt) + bp

∫ t

0

e−µm(t−s)P (s)ds if x > vt,

bp

∫ x
v

0

e−µmsP (t− s)ds if x ≤ vt.

(7)

The total number of miracidia at time t can be obtained by integrating equation
(7) from x = 0 to x = L,

M(t) =





bp

∫ vt

0

∫ x
v

0

e−µmsP (t− s)dsdx if t <
L

v
,

+
∫ L

vt

[
e−µmtm0(x− vt) + bp

∫ t

0

e−µm(t−s)P (s)ds

]
dx

bp

∫ L

0

∫ x
v

0

e−µmsP (t− s)dsdx if t ≥ L

v
.

(8)

Similarly, the solution of equation (1.vi) is

c(x, t) =





e−µctc0(x− vt) + β

∫ t

0

e−µc(t−s)I(s)ds if x > vt,

β

∫ x
v

0

e−µcsI(t− s)ds if x ≤ vt,

(9)

and total number of cercariae at time t is

C(t) =





β

∫ vt

0

∫ x
v

0

e−µcsI(t− s)dsdx if t < L
v ,

+
∫ L

vt

[
e−µctc0(x− vt) + β

∫ t

0

e−µc(t−s)I(s)ds

]
dx

β

∫ L

0

∫ x
v

0

e−µcsI(t− s)dsdx if t ≥ L
v .

(10)

As in [25], we investigate an equivalent system by introducing two new unknowns:
mean parasite load per person R = P/H and total number of snail population
T = S+I. Substituting equation (8) and equation (10) into System (1) and carrying
out some calculation and simplification, we have the following delay differential
equations:





dH

dt
= (bh − µh0 − µh1H)H − αRH,

dR

dt
= ζC(S(·), T (·))− α

κ
R2 − (bh + µp + α + r)R,

dS

dt
= (bs − µs0 − µs1T )S − ρM(H(·), R(·))S,

dT

dt
= (bs − µs0 − µs1T )T − (bs + ds)(T − S),

(11)

where M(H(·), R(·)) and C(S(·), T (·)) have the same expressions as in (8) and (10)
except replacing P and I by HR and T − S, respectively.
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Lemma 3.1. If H(0), R(0), and S(0) are positive and T (0) > S(0), then solutions
of Eqs. (11) are positive, and T (t) > S(t) as long as they exists.

Proof. Equation (11.i) and equation (11.iii) imply that H and S are nonnegative if
the initial data are nonnegative. Subtracting equation (11.iii) from equation (11.iv),
then

d(T − S)
dt

= (bs − µs0 − µs1T )(T − S)− (bs + ds)(T − S) + ρM(H(·), R(·)). (12)

It is clear from equation (8) that ∀t > 0; if R(s), 0 < s < t is nonnegative, then M(t)
is nonnegative. equation (12) implies that if M(t) is nonnegative, then (T −S)(t) is
nonnegative. Moreover, from equation (10), if (T − S)(s), 0 < s < t is nonnegative,
then C(t) is nonnegative, and equation (11.ii) implies R(t) is nonnegative.

Therefore, when H(0) > 0 and S(0) > 0, if either R(0) > 0 or T (0) > S(0),
then for small ε > 0 we certainly have H,R, S,M, C and T − S positive on (0, ε).
It is clear that equation (11.i) gives the positivity of H, equation (11.iii) gives the
positivity of S, and then equation (11.iv) gives the positivity of T as long as they
exist. Hence, it suffices to show that T −S must remain positive as long as it exists,
since that is sufficient (in fact, equivalent) to establish the positivity of R.

Suppose that T−S vanishes for some positive time, and let t̄ be the smallest such
time. Then, T−S is positive on [0, t̄) and T (t̄) = S(t̄). It follows that C(t̄) > 0 from
equation (10). Then, R is positive on [0, t̄] from equation (11.ii) and then equation
(12) implies that T − S is positive on [0, t̄], contradicting T (t̄) = S(t̄). Thus T − S
remains positive as long as it exists, and so do R, M and C. Moreover, m(x, t) and
c(x, t) are also positive if R(t),H(t), T (t) − S(t) are positive. This completes the
positivity of the solution to System (11).

Lemma 3.2. If H(0), R(0), and S(0) are positive and T (0) > S(0), then solutions
of equation (11) H(t), R(t), S(t) and T (t) are uniformly bounded as long as they
exist.

Proof. For convenience, we introduce three new notations:

δ = bh + µp + α + r,

ξ = L +
v

µc
(e−

µc
v L − 1),

η = L +
v

µm
(e−

µm
v L − 1).

(13)

It is evident that equation (11.i) and equation (11.iv) imply that H ≤ Lh and
T ≤ Ls. Moreover, S ≤ Ls and I ≤ Ls.

For the boundedness of C(t), it suffices to check for t > L/v,

C(t) = β

∫ L

0

∫ x
v

0

e−µcs(T (t− s)− S(t− s))dsdx

≤ βLs

µc

∫ L

0

(1− e−µc
x
v )dx

=
βξLs

µc
.

(14)
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From equation (11.ii), we have an estimation

dR

dt
= ζC(S(·), T (·))− α

κ
R2 − δR ≤ ζβξLs

µc
− δR.

The boundedness of R follows immediately

R ≤ R0e
−δt +

ζβξLs

µc
(1− e−δt) ≤ R0 +

ζβξLs

µc
. (15)

Similarly, it suffices to check the boundedness of M(t) for t > ÃL/v,

M(t) = bp

∫ L

0

∫ x
v

0

e−µmsR(t− s)H(t− s))dsdx

≤ bpηLh

µm

[
R0 +

ζβξLs

µc

]
.

(16)

Concerning the existence and uniqueness of solution of the problem, we consult
some results by Driver in [4]. Consider a system of Volterra functional differential
equations

x′(t) = F(t,x(·)), t > t0, (17)

in which x = (x1, . . . , xn), F = (f1, . . . , fn) and x′i(t) = fi(t, x1(s), . . . , xn(s); α ≤
s ≤ t) for t ≥ t0, α ≥ −∞, α ≤ t0, and i = 1, . . . , n.

Definition 3.3. (Burton [4]) For D ⊂ Rn, given an initial function φ ∈ C([α, t0] →
D), a solution is a function x ∈ C([α, β) → D), where t0 < β ≤ γ, such that
x(t) = φ(t) on [α, t0] and x satisfies (17) for t0 ≤ t ≤ β. We write x(t, t0, φ). A
solution is unique if every other solution y(t, t0, φ) agrees with x(t, t0, φ) as long as
both are defined.

Lemma 3.4. (Driver (1962)) Let F(t,x(·)) be continuous in t and locally Lipschitz
in x and let φ ∈ C([α, t0] → D). Then there exists an h > 0 such that a unique
solution x(t) = x(t, t0, φ) exists for α ≤ t ≤ t0 + h.

Rewriting System (11) into a form of equation (17), it is easy to show that
F(t,x) is locally Lipschitz in x and is independent of t by observing equation (10),
equation (8) and System (11). The local existence and uniqueness of solutions can
be obtained by Lemma 3.3. The global existence and uniqueness of solutions is
guaranteed by the uniform boundedness. Then, the following theorem has been
proved.

Theorem 3.5. System (1), or equivalently, System (11) admits a unique solution
for all time. Moreover, if H(0) and S(0) are positive and either T (0) > S(0), or
M(0) > 0, or R(0) > 0, or C(0) > 0, then H,R, S, m and c are positive and T > S
as long as they exist.

Remark 3. It is worth to point out that the domain of φ is {0} for t ≤ L
v and

[0, L
v ] for t > L

v when we apply Lemma 3.3 to prove Theorem 3.4.
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4. Special case: Model in spatially uniform distribution. At first glance,
it seems strange to talk about a case where all species are uniformly distributed
in space, since the homogeneous in-flow boundary conditions for miracidia and
cercariae will force a disease-free solution. However, spatially uniform distribution
can happen at steady states if nonhomogeneous inflow boundary conditions are
imposed.

Instead of looking at System (1), we study an equivalent system in which the
unknowns are H, R, S, T, m and c,





dH

dt
= (bh − µh0 − µh1H)H − αP,

dR

dt
= ζLc− α

κ
R2 − (bh + µp + α + r)R,

dS

dt
= (bs − µs0 − µs1(S + I))S − ρLmS,

dT

dt
= (bs − µs0 − µs1T )T − (bs + ds)(T − S),

dm

dt
= bpP − µmm,

dc

dt
= βI − µcc.

(18)

It is clear that System (18) admits four parasite-free steady states:

E0 = (H0, R0, S0, T0,m0, c0) = (0, 0, 0, 0,0,0),
E1 = (H1, R1, S1, T1,m1, c1) = (0, 0, Ls, Ls,0,0),
E2 = (H2, R2, S2, T2,m2, c2) = (Lh, 0, 0, 0,0,0),
EDFE = (HDFE , RDFE , SDFE , TDFE ,mDFE , cDFE) = (Lh, 0, Ls, Ls,0,0).

where, EDFE represents (H, P, S, I, m, c) = (Lh, 0, Ls, 0,0,0) for System (1). E0

is the trivial equilibrium, while E1 and E2 are semitrivial in that they represent,
respectively, the ultimate state of a logistic population of snails and of humans in
the absence of parasitism.

Carrying out the similar calculations as in [25], at steady state of System (18),
H satisfies a cubic equation

H3 + a2H
2 + a1H + a0 = 0, (19)

where
a2 = −Lh,

a1 =
αµm(bs − µs0)

ρbpLµh1
+

αµs1µcµ
2
m(bs + ds)

κζβρ2b2
pL

3
,

a0 = −αµs1µcµ
2
m(bh − µh0)(bs + ds)

κζβµh1ρ2b2
pL

3
− (bh + µp + α + r)αµs1µcµ

2
m(bs + ds)

ζβµh1ρ2b2
pL

3
.

Define

Q =
3a1 − a2

2

9
, U =

9a1a2 − 27a0 − 2a3
2

54
, D = Q3 + R2. (20)
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Theorem 4.1. Let D, Q and U be defined in equation (20), and consider D and
U as functions of treatment rate r.

• If Q > 0 or if Q < 0, U(0) > 0 and D(0) > 0, then equation (19) admits only
one positive root.

• If Q < 0, and if D(0) < 0, then equation (19) admits three, then two, and
finally one positive root as r increases.

• If Q < 0, U(0) < 0 and D(0) > 0, then equation (19) admits one, two, then
three, two, and finally one positive root as r increases.

Remark 4. It can be easily seen from System (18) that if a root H∗ of equa-

tion (19) satisfies 0 < H∗ < Lh and rs >
ρbpL(bh − µh0)

αµm
(1 − H∗

Lh
)H∗ (or rs >

ρbpLLh(bh − µh0)
4αµm

), then System (18) has an interior equilibrium with human pop-

ulation size H∗.
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Figure 1. Bifurcation Diagram. In region I, there is no interior
equilibrium and EDFE is globally asymptotically stable. In region
II, there is one interior equilibrium, of which H∗ corresponds to the
smallest root of equation (19) in terms of magnitude, and it is glob-
ally asymptotically stable. In region III, there is also one globally
asymptotically stable interior equilibrium, of which H∗ corresponds
to the largest root. In region IV, there are three interior equilibria,
of which the largest and the smallest roots are locally asymptoti-
cally stable. In region V, there are also three interior equilibria, of
which two largest are unstable so that oscillatory solutions occur.
In region VI, there is only one interior equilibrium but unstable, so
oscillatory solutions exist.

As pointed out in [25], it is hopeless to do an analytical stability analysis and
so we run some numerical simulations and generate a bifurcation diagram with two
parameters Lh and r while the rest are fixed. Figure 1 shows a bifurcation diagram,
where the parameters are chosen as L = 1, µh0 = 1/70, bh = 3/140, α = 0.00001,
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ζ = 0.000027, κ = 0.243, µp = 0.2, µs0 = 0.5, bs = 80, Ls = 20000, ρ = 0.00004,
ds = 6.0, µm = 180, µc = 180, β = 4000µc, bp = 20µm. Figure 2 and Figure 3
show an oscillatory solution when parameters are in the region V, and simulations
are done under r = 0 and Lh = 800.
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Figure 2. Oscillatory solution when r = 0 and Lh = 800 on [0, 1000].
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By analyzing the Jacobian matrices of System (18) at E0, E1, E2, we can obtain
similar results as in [25].

Theorem 4.2. E0, E1 and E2 are unstable.

Define a reproductive number for parasitism

R∗0 =
ζβρbpLhLsL

2

µmµc(bs + ds)(bh + µp + α + r)
. (21)

Theorem 4.3. If R∗0 < 1, then EDFE is locally asymptotically stable; if R∗0 > 1
then EDFE is unstable.

Proof. The Jacobian of System (1) in spatially uniform distribution at the equilib-
rium EDFE is

J1(EDFE) =




−(bh − µh0) −α 0 0 0 0
0 −δ 0 0 0 ζLLh

0 0 −(bs − µs0) −(bs − µs0) −ρLLs 0
0 0 0 −(bs + ds) ρLLs 0
0 bp 0 0 −µm 0
0 0 0 β 0 −µc




.

The characteristic polynomial of J1(EDFE) is

f(λ) = (λ + (bh − µh0))(λ + (bs − µs0))
[(λ + δ)(λ + bs + ds)(λ + µm)(λ + µc)− bpρLsζβLhL2]. (22)

It is clear that λ = −(bh−µh0) and λ = −(bs−µs0) are two roots of f(λ) and they
are negative from our assumptions. Whether f(λ) has positive roots is determined
by the forth order factor

f1(λ) = (λ + δ)(λ + bs + ds)(λ + µm)(λ + µc)− bpρLsζβLhL2

= λ4 + aλ3 + bλ2 + cλ + d,
(23)

where
a = δ + bs + ds + µm + µc,
b = δ(bs + ds) + µmµc + (δ + bs + ds)(µm + µc),
c = µmµc(δ + bs + ds) + δ(bs + ds)(µm + µc),
d = δµmµc(bs + ds)− bpρLsζβLhL2.

Following a theorem we owe to Strelitz (1977), the polynomial f1(λ) is stable if
and only if a > 0, b > 0, 0 < c < ab, 0 < d < (abc − c2)/a2. Note it is clear that
a > 0, b > 0, c > 0. If R∗0 < 1 (which implies d < 0), then EDFE is unstable. If
R∗0 > 1, then d > 0, we have to check the other restrictions to test whether f1(λ)
is stable or not.
Carrying out multiplications and simplifications, it is clear that

ab− c = [δ(bs + ds)(δ + bs + ds) + (µm + µc)(δ + bs + ds)2

+µmµc(µm + µc) + (δ + bs + ds)(µm + µc)2

> 0.
(24)

Moreover notice that
abc− c2 = c(ab− c)

= δµmµc(bs + ds)(δ + bs + ds)2 + (δ + bs + ds)(µm + µc)δ2(bs + ds)2

+µmµc(µm + µc)(δ + bs + ds)3 + δ(bs + ds)(µm + µc)2(δ + bs + ds)2

+(µm + µc)(δ + bs + ds)µ2
mµ2

c + δµmµc(bs + ds)(µm + µc)2

+µmµc(µm + µc)2(δ + bs + ds)2 + δ(bs + ds)(δ + bs + ds)(µm + µc)3,
(25)
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a2d = (δ + bs + ds + µm + µc)2[δµmµc(bs + ds)− bpρLsζβLhL2]
+2δµmµc(bs + ds)(µm + µc)(δ + bs + ds)
−bpρLsζβLhL2(δ + bs + ds + µm + µc)2.

(26)

Thus,

abc− c2 − a2d
= (abc− c2)− a2d
≥ (µm + µc)(δ + bs + ds)δ2(bs + ds)2 + δ(bs + ds)(δ + bs + ds)2(µm + µc)2

+(µm + µc)(δ + bs + ds)µ2
mµ2

c + µmµc(µm + µc)2(δ + bs + ds)2

+(µm + µc)(δ + bs + ds)[µmµc(δ + bs + ds)2 + δ(bs + ds)(µ2
m + µ2

c)]
> 0.

(27)
If R∗0 < 1, the polynomial f1(λ) is stable by Strelitz, and so is f(λ). Then, EDFE

is locally asymptotical stable.

Remark 5. We conjecture that EDFE is actually a globally asymptotical steady
state if R∗0 < 1. Numerical simulations verified that the reproductive number is
indeed a threshold for the system. As shown in Figure 4, if R∗0 > 1, the parasitism
persists, but if R∗0 < 1, then parasitism disappears.

5. Model with spatial structure. In Section 3, we established the existence and
uniqueness of solution of System (11). In this section we focus on some stability
and bifurcation analysis.

From System (1), at steady state, m satisfies

−v
dm

dx
+ bpP − µmm = 0, (28)

together with inflow boundary condition

m(0) = 0.

It is not hard to solve m explicitly as

m(x) =
bpP

µm
(1− e−

µm
v x). (29)

Similarly, at steady states, c can be solved as

c(x) =
βI

µc
(1− e−

µc
v x). (30)

Thus M =
∫ L

0
m(x)dx and C =

∫ L

0
c(x)dx are given by

M =
bpη

µm
P, C =

βξ

µc
I, (31)

where ξ and η are defined in equation (13).
As shown in previous section, the existence of interior equilibria of System (1)

can be established as in Theorem 4.1. Moreover, an analytical stability analysis at
these interior equilibria is almost impossible. We turn our attention to the disease-
free equilibria of System (11). Allow us to abuse notations: let E0, E1, E1, EDFE
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Figure 4. Mean parasite load per person for different reproductive
number R∗0. On the left graph, R∗0 = 1.000622; on the right graph,
R∗0 = 0.999378, where Lh = 800, and r are chosen to match R∗0.

again represent the disease free equilibria of System (11), where

E0 = (H0, R0, S0, T0) = (0, 0, 0, 0),
E1 = (H1, R1, S1, T11) = (0, 0, Ls, Ls),
E2 = (H2, R2, S2, T2) = (Lh, 0, 0, 0),
EDFE = (HDFE , RDFE , SDFE , TDFE) = (Lh, 0, Ls, Ls).

Theorem 5.1. E0, E1 and E2 are unstable.
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Proof. The linearization of (11) at an equilibrium (H∗, R∗, S∗, T∗) gives the following
characteristic equation:

det




a11 −αH∗ 0 0
0 a22 −ζβΠ ζβΠ

−ρbpΘR∗S∗ −ρbpΘH∗S∗ a33 −µs1S∗
0 0 bs + ds a44


 = 0. (32)

where
Θ = L

µm+λ + v
(µm+λ)2 (e−

(µm+λ)L
v − 1),

Π = L
µc+λ + v

(µc+λ)2 (e−
(µc+λ)L

v − 1),
a11 = −λ + (bh − µh0)− 2µh1H∗ − αR∗,
a22 = −λ− 2α

κ R∗ − δ,
a33 = −λ + (bs + µs0)− µs1T∗ − ρbpηH∗R∗,
a44 = −λ + (bs − µs0)− 2µs1T∗ − (bs + ds)

The characteristic equation (32) has positive roots at E0, E1 and E2 under our
assumptions; then we prove the conclusion.

Define the reproductive number for System (1) as

R0 =
ζβρbpLhLsξη

µcµm(bs + ds)(bh + µp + α + r)
. (33)

Theorem 5.2. If R0 < 1, then EDFE is locally asymptotically stable; if R0 > 1
then EDFE is unstable.

Proof. It turns out that it is easier to analyze an equivalent delay differential equa-
tions of System (11) as follows





dH

dt
= (bh − µh0 − µh1H)H − αP,

dP

dt
= ζHC(I(·))− α(κ+1

κ )
(

P 2

H

)
− (µh0 + µh1H + µp + α + r)P,

dS

dt
= (bs − µs0 − µs1(S + I))S − ρM(P (·))S,

dI

dt
= ρM(P (·))S − (µs0 + µs1(S + I) + ds)I.

(34)

The linearization of (34) at an equilibrium EDEF gives the following characteristic
equation:

det




−λ− (bh − µh0) −α 0 0
0 −λ− δ 0 βζLhΠ
0 −ρbpLsΘ −λ− (bs − µs0) −(bs − µs0)
0 ρbpLsΘ 0 −λ− (bs + ds)


 = 0.

(35)
It is clear (for instance, by exchanging second and third rows and columns) that
λ1 = −(bh − µh0) and λ2 = −(bs − µs0) are two zeros of (35), and other zeros of
(35) are determined by

λ2 + (δ + bs + ds)λ + δ(bs + ds) = βζρbpLhLsΘΠ. (36)
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Recall that Θ and Π are actually computed from

Θ =
∫ L

v

0
e−(µc+λ)s(L− vs)ds

Π =
∫ L

v

0
e−(µc+λ)s(L− vs)ds

Then Θ and Π are decreasing functions of λ and

lim
λ→∞

Θ = 0, lim
λ→−∞

Θ = ∞, lim
λ→∞

Π = 0, lim
λ→−∞

Π = ∞.

The left side of equation (36) is a parabola, real part of roots of which are always
negative. The right side of equation (36) is a decreasing function of λ. It is easy to
see that the two functions meet at λ = 0 when R0 = 1, and meet at a λ > 0 when
R0 > 1. Immediately, this proves that EDFE is unstable when R0 > 1.

If R0 < 1, we show that there are no zeros of equation (36) with nonnegative real
part. Suppose λ∗ = x1 + ix2 to be a complex number with nonnegative real part;
i.e., x1 ≥ 0. It is clear that the modulo of right side of equation (36) evaluated at
λ∗ is greater than or equal to δ(bs + ds). It is also easy to see that the modulo of
the right side of equation (36) evaluated at λ∗ is less than or equal to βζρbpLhLsξη.
This shows that the modulo of left side of equation (36) is always greater than
the right side of equation (36) for any λ with <λ ≥ 0, when R0 < 1. It follows
immediately that EDFE is locally asymptotically stable when R0 < 1.

Though we have not proven it yet, EDFE seems to be globally asymptotically
stable if R0 < 1.

Remark 6. It is worth noticing that R0 is a decreasing function with respect to
velocity v and treatment rate r. This can be seen by the following:

dξ

dv
=

d

dv
[
∫ L

0

(1− e−
µc
v x)dx]

=
∫ L

0

d

dv
[(1− e−

µc
v x)]dx

= −
∫ L

0

µc

v2
xe−

µc
v xdx

< 0,

(37)

and
lim

v→0+
ξ = L, lim

v→∞
ξ = 0. (38)

It is clear that for any v > 0 and L > 0, ξ is a decreasing positive function of
v. Noticing that η has same kind of structure as ξ, it is also a decreasing positive
function of v. Then, R0 is a decreasing function of v. It is obvious that it is a
decreasing function of r, too.

We run numerical simulations, using the Runge-Kutta Method for O.D.E sys-
tems and Crank-Nicolson Characteristic Finite Difference Method for first-order
hyperbolic equations. The numerical scheme is of second order. Figure 5 shows
profiles of miracidia at nearly steady states for different initial distributions. No
matter what initial distribution miracidia start with, the density at steady states is
determined by equation (29). Since we assume that human beings, parasites, and
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Figure 5. Density plots of miracidia: on the top graph, miracidia
start with a sine function; on the bottom graph, miracidia start
with a cubic function. Parameters are chosen as Lh = 800, v = 1,
and the rest are same as in Section 3, except µm = 1, µc = 1.

snails are spatially independent, the profiles of cercariae at steady states should be
similar to those of miracidia.

6. Discussions and conclusions. Endemic schistosomiasis is usually associated
with a large human population and relatively slow river flow [19]. A large number of
human beings provides a big reservoir for destination hosts, and by contaminating
the nearby aquatic environment, the residents create a desirable habitat for snails.
We suggest that the carrying capacity for snails should be smaller when the speed
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of river flow is faster, and logistic growth of hosts in a spatial structured model is
necessary. On one hand, fast river flows can flush away snails so that miracidia are
inhibited from infecting snails. The asexual reproduction of schistosomiasis could
be reduced in this manner. On the other hand, river flows flush away not only
snails but also parasite larvae. In fact miracidia and cercariae are very active free-
swimming larva they find it easier to follow river flows than do snails. Swimming
larvae are drawn to light, so that they strive to stay on the surface of river [11],
making it more likely they will be flushed away. The direction of larval swimming is
largely vertical [13]. This supports our one-dimensional model, in which the spatial
motion is due only to the flush-away convection term.

As for control of schistosomiasis, some suggest treating infected humans and pre-
venting further infections in endemic regions; others prefer to curtail snail popula-
tion either by exterminating the snails or by reducing environmental contamination
[18]. Both strategies have advantages and disadvantages, and they have worked
successfully in controlling or eradicating schistosomiasis in the past [18]. In our
model, we assume treatment and prevention approaches among humans as the only
control method. We proved that the reproductive number decreases as treatment
efforts increase, and numerical simulation shows that the mean parasite load per
person decreases even with a very small amount of treatment. Based on this, we
can estimate a lowest effort

r0 >
ζβρbpLhLsξη

µcµm(bs + ds)
− bh − µp − α

to eradicate the disease by making R0 < 1. Moreover, other control strategies, such
as killing snails, can be incorporated into our model with a small modification, and
results still hold.

Our spatial structured model (1) turns out to be solid. On one hand, the repro-
ductive number for schistosomiasis decreases as the velocity of river flows increases.
This can be given as an alternate explanation for why low incidences of schistoso-
miasis are accompanied by fast river flows. On the other hand, the density of larvae
should vary along a river. Figure 5 shows that the density of larvae is low near the
origin of a river, but high at the end of the river.

In our model the velocity of river flows is assumed to be a constant. A simple
extension of our model is to assume the velocity as a piecewise constant function,
which can be caused by different topographies of river beds. To fully understand the
real situation, two-dimensional, even three-dimensional model should be proposed,
since the distribution of species are different either along a river or across a river.
Fully partial differential equations, in which every species are spatially dependent,
will be the subject of a further investigation. The main purpose of our model is to
provide explanations for biological phenomena, and the model achieved our goal for
schistosomiasis.
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