
MATHEMATICAL BIOSCIENCES http://www.mbejournal.org/
AND ENGINEERING
Volume 5, Number 3, July 2008 pp. 429–435

THE EFFECT OF PATTERNS OF INFECTIOUSNESS ON
EPIDEMIC SIZE

Luis F. Gordillo

Department of Mathematical Sciences
University of Puerto Rico-RUM

Stephen A. Marion

Department of Health Care and Epidemiology
University of British Columbia

Priscilla E. Greenwood

Department of Mathematics and Statistics
Arizona State University

(Communicated by Susanne Ditlevsen)

Abstract. In the course of an infectious disease in a population, each in-
fected individual presents a different pattern of progress through the disease,
producing a corresponding pattern of infectiousness. We postulate a stochastic
infectiousness process for each individual with an almost surely finite integral,
or total infectiousness. Individuals also have different contact rates. We show
that the distribution of the final epidemic size depends only on the contact rates
and the integrated infectiousness. As a particular case, zero infectiousness on
an initial time interval corresponds to a period of latency, which does not affect
the final epidemic size in general stochastic and deterministic epidemic models,
as is well known from the literature.

1. Introduction. After an infectious agent invades a susceptible individual through
a contact with an infective individual, the newly infected individual presents in-
fectiousness which varies through time. The time-course depends on a variety of
factors, including the extent to which the immune system has been compromised,
how it reacts to medical treatment, the time from infection until symptoms appear,
and biological stages of the infectious agent.

The effects of the pattern of infectiousness on the final epidemic size in a stochas-
tic model is our focus. We define a non-negative stochastic infectiousness process
for each individual, on a time line beginning with the time of infectious contact.
The infectiousness process can be quite arbitrary as long as its integral is almost
surely finite. It is reasonable to assume that the infectiousness processes for different
individuals are independent. The ideas of latency and recovery are captured by the
example of an infectiousness process which has the value zero for an initial random
interval, followed by a constant value on the random time interval of infectiousness
of the model, followed by the value zero on the entire time line after recovery.
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We will show that the infectiousness process influences the final epidemic size
only through its integral. In particular, the distribution of the final epidemic size
is not influenced by latency, the time interval from exposure of an individual until
time he becomes infective to others. This fact has been known for quite a while
for the particular process known as the susceptible-exposed-infected-removed or
SEIR model [4], and some of its extensions. The non-dependence of final size
on latency has been shown in various contexts and has become “folklore” in the
stochastic epidemic literature, e.g. [3, 2, 1]. In [3], for instance, Ball uses the
Sellke construction, [16, 2], to derive a triangular linear system of equations for the
probabilities of the number of susceptibles ultimately infected in the context of the
SIR. From this derivation, he points out that periods of latency and time dependent
contact rates may be allowed without modification of the main argument. One can
infer that the distribution of the final epidemic size is independent of such additional
structures. In [1], Addy et al. generalize the model presented in [3] in several
directions. For instance, they take into account outbreaks within households in the
presence of a community infection and allow susceptible individuals to be infected
from outside the population. They show, as in [3], that the distribution of the final
epidemic size does not change if, in the hypotheses, latency or variable contact rates
are included in these specific contexts.

However, the formulations in the works mentioned are in the context of the SIR
or SEIR models. We propose, instead, a formulation that is at the same time much
more general and very simple, allowing a streamlined proof of the result that final
size depends only on integrated infectiousness. The early work of Ludwig [11] in this
direction inspires our method of proof. He regarded an epidemic as a sequence of
generations of infective individuals, where each generation has an infective contact
with some member of the previous one. In [14, 9, 10], Picard and Lefèvre also work
with generations of infectives. They extend results of Ludwig [11] and Ball [3] to hold
for the Reed-Frost and other models, but their populations remain homogeneous.
Their arguments are sometimes intricate. Our setting is more general and allows a
fresh and direct way to see that variable infectiousness does not affect final size.

In our setting, the contact rates between two individuals may vary with both
individuals. Instead of infectiousness being assumed constant on an interval of time,
as in the SIR, described through a non-random function of the time after infection,
or taken as the mean infectiousness of an individual [5, 6, 13], here infectiousness
is allowed to be a rather arbitrary random function of time. Its distribution may
vary with the individual. It turns out that the distribution of the final epidemic size
depends on the contact rates and the expected values of integrated infectiousness,
but not on the particular patterns of infectiousness.

This result is particularly interesting in examples such as HIV-AIDS and tuber-
culosis. In the former, infectiousness is initially high and then declines gradually,
remaining at a low level for a random time depending on the individual and sur-
rounding circumstances. At some point, infectiousness may increase to a higher
level again, [8]. In tuberculosis, and other infectious diseases with relapse, random
periods of infectiousness may recur some time after the initial infectious period. A
deterministic model of this type is studied in [18].

In [17], Thieme shows that the final epidemic size formula for the Kermack and
McKendrick ODE [7] model holds for models that include variable infectiousness.
Thieme notes that Kermack and McKendrick deal with a much more general model
than the SIR ODE model, including, in particular, variable infectiousness, and show,
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in the deterministic setting, that only the total expected infectiousness matters for
the final size (see also [5], Section 2.1). Recently, Ma and Earn [12] have shown that
the same final epidemic size formula holds under more general conditions, including
latency, several infectious stages, transmission rates that are arbitrarily distributed,
and for a class of spatial contact structures. These results for deterministic epidemic
models are parallel to ours for stochastic ones.

2. Transmission of disease. We consider a fixed finite population of N individu-
als, which we label with the values 1, ..., N simply for identification. The individuals
may be thought of as distributed in space and related by a network of social or other
connections. Or they may be thought of as moving in space and encountering one
another with pair independent frequencies. The numbers cij ≥ 0 will measure the
rates of contact from individual i to individual j for all pairs (i, j) with 1 ≤ i, j ≤ N .
Notice that cji 6= cij in general.

At time zero, one or more individuals carrying an infectious disease have been in-
troduced in a population of susceptible individuals. The event of infection passing
from individual i to individual j is produced by the combination of two circum-
stances. One factor is contact from i to j, and the second is that individual i is
infectious to some extent at the time of contact. Our model assumption is that the
time Tij of first infectious contact from i to j happens in the time interval [t, t+∆t)
with hazard function (defined below)

P (Tij ∈ [t, t + ∆t)|Tij > t,Fi) = cijXi(t)∆t + o(∆t). (1)

Time in (1) runs according to a clock which starts at the first infectious contact
made to individual i. The infectiousness process of individual i, Xi(t), measures,
at each time t, the probability that a contact made by i at time t is effective
in transmitting the disease. In other words, Xi(t) is the conditional probability of
transmission of disease, given that the contact is made. The σ-algebra Fi represents
the information generated by the entire history of the random infectiousness process
Xi, not including its start time. Our definition could equally well condition on the
information generated by Xi only up to time t, as is more conventional in such
expressions. However, in the sequel we wish to condition on the entire sample
path, and the meaning of (1) is the same either way. The infectiousness clock of
individual i may start at time 0, but it may be that Xi(0) = 0, so that i is not
actually infectious at time 0. Nevertheless, we refer to such individuals as initial
infectives. The product in (1) should be read as the probability of contact from i
to j in the time interval [t, t + ∆t), cij∆t + o(∆t), times the conditional probability
of transmission of disease, given that contact is made, Xi(t). The random function
cijXi(t) is a random hazard function.

In general, the hazard function h of a non-negative random variable T with
distribution FT and density fT ,

hT (t) =
fT (t)

1− FT (t)
,

can be understood as the conditional density of T at t given that T > t. If the
hazard function hT (t), t ≥ 0, is given, the corresponding distribution satisfies, e.g.
[15],

P (T > t) = e−
∫ t
0 hT (s)ds. (2)
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For clarity, we state the corresponding fact for our random hazard function, cijXi(t),
as a lemma.

Lemma 2.1. For every t ≥ 0,

P (Tij > t|Fi) = e−
∫ t
0 cijXi(s)ds. (3)

Notice that conditioning on Fi allows us to choose a specific sample path, Xi(s).
With this path, the relation (2) holds.

Corollary 1. Let

Di =
∫ ∞

0

Xi(s)ds < ∞. (4)

Then, the probability that an individual j has no infectious contact from individual
i, given the process Xi, is

P (no infection from i to j |Fi) = e−cijDi .

Proof. Let t →∞ in (3). Then, on the right-hand side we have the probability that
Tij = ∞, or equivalently, the probability that a first infectious contact to individual
j from individual i never happens.

Example 1. Suppose

Xi(t) =

{
p for t < τi, 0 ≤ p ≤ 1,

0 otherwise,
(5)

for every i, where τi is exponentially distributed with parameter α, Eτi = 1/α, and
the τi’s are independent. A natural way to define the basic reproductive number
for individual i, R0,i, is as the expected number of secondary cases produced by
individual i when all the other individuals are susceptible, [2]. We have

R0,i = E [number of infections produced by i in a pool of susceptibles]

= E


∑

j 6=i

cij

∫ ∞

0

Xi(t)dt




= E


∑

j 6=i

cijpτi


 =

∑
j 6=i cijp

α
.

If c = β/(N − 1) is the common, or average, contact rate of each individual with
each other individual, then the expected number of secondary cases produced by
the ”typical” infective is

R0 = βp/α. (6)

Given that individual i has had infectious contact, at which the time of Xi(t) starts,
from Lemma 1,

P (Tij > t|Fi) = e−cp(t∧τi),

P (Tij = ∞|Fi) = e−cpτi ,

P (no infectious contact from i to j) = E(e−cpτi) =
∫ ∞

0

e−cpyαe−αydy

=
α

cp + α
.
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Example 2. Suppose that cij = c for every i and j, and

Xi(t) =





0 for t < ηi,,
p for ηi ≤ t < τi + ηi, 0 ≤ p ≤ 1,

0 otherwise,
(7)

where the ηi are i.i.d. random variables exponentially distributed with parameter
γ, the τi are defined as in Example 1, and the ηi and τi are independent. In this
example, latency and removal are captured as conceived in a susceptible-exposed-
infected-removed model (SEIR).

Example 3. Suppose that cij = c for every i and j. The probability that an
individual j has no infectious contact from individual i is∫ ∞

0

e−cyfDi(y)dy,

where fDi is the probability density of Di. This is because

P (no infectious contact from i to j) = E(P (no infectious contact from i to j|Fi))

=
∫ ∞

0

e−cyfDi(y)dy.

3. Epidemic size depends only on integrated infectiousness. Consider a
population of N individuals. To simplify language, we say that an individual i
is nominally contacted when an infectious contact to i occurs. This may not be
the first infectious contact. If an individual i is infected through contact with an
individual k and is subsequently infectuously contacted by j, who belongs to a
generation previous to that of k, then i is nominally contacted by j, even though
his infection came from k.

Let F =
⋃

i Fi, the σ-algebra generated by the infectiousness processes, Xi,
of all individuals in the population. F contains the information of the patterns
of infectiousness of the entire population, which may include latency periods, for
instance. We have constructed each infectiousness process Xi so that it starts
when individual i first receives an infectious contact, or at time 0 if i is regarded as
infective at time 0. Recall that Fi does not include the information of the start time
of Xi. It is reasonable to assume that the infectiousness processes are independent
for different individuals. In particular the Di’s are independent random variables.

Let P denote the set of all individuals in the population. Let also Xk and Yk,
k = 0, 1, 2, ... be defined by

X0 = {initial infectives} ,

Y0 = P − X0,

X1 = {j : j ∈ Y0, ∃i ∈ X0 such that j is nominally contacted by i} ,

Y1 = Y0 −X1,

· · ·
and so on. Notice that Y0 ⊃ Y1 ⊃ . . . and that the set of all nominally contacted
individuals,

⋃∞
k=0 Xk, where Xi∩Xj = ∅ if i 6= j, is equal to the set of all individuals

who become infected. The size of this set is the total epidemic size.

Theorem 3.1. The probability distribution of the final epidemic size given F , the
information in all the infectiousness processes, depends only on the total infectious-
ness Di, i = 1, 2, ..., N .
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Proof. Let X ⊂ Y0. The probability that the random set X1 is exactly X , given F ,
is

P (X1 = X|F) =
∏

j∈X
P (j ∈ X1|F) ·

∏

j∈Y0−X
P (j ∈ Y0 −X1|F)

=
∏

j∈X
(1− P (j has no nominal contact ∀i ∈ X0)) ·

·
∏

j∈Y0−X
P (j has no nominal contact ∀i ∈ X0)

=
∏

j∈X

(
1−

∏

i∈X0

e−Dicij

)
·

∏

j∈Y0−X

∏

i∈X0

e−Dicij .

The distributions of Xk, given Xk−1, k = 2, 3, ... can be computed similarly. Finally,
the probability distribution of the number of individuals that have nominal contacts
is

P (| ∪k Xk| = n|F) =
∑

X⊂P
|X|=n

P (∪kXk = X|F) . (8)

The value in (8) depends only on the random variables Di, i = 1, ..., N , and of
course, the cij ’s.

By the above argument, we can in principle, calculate the probability of any
particular sample path of the nominal infectious contact process, {Xi, i ≥ 0}, con-
ditional on the random variables Di. Taking the expectation with respect to the
distribution of the Di’s gives the unconditional probability of a particular sample
path.

The actual calculation is impractical because it involves iterated sums over all
sequences of subsets which might be a sample path of the nominal contact process.
There is a very large number of different sequences {Xk} leading to the same ∪kXk.
However, we see from this analysis that the distribution of ∪kXk depends only on
the cij and the random Di, but not on the values of the random infectiousness
processes Xi(t).

4. Discussion. The model we have introduced has directed contact rates which de-
pend on each pair of individuals. Each individual, beginning when he first receives
an infective contact, has his own random infectiousness process. The stochastic law
of the infectiousness process may depend on the individual. Possible interpretations
of the model are very broad. For example, the contact rates may be high in certain
subgroups, like classrooms or clubs, or persons sharing transportation. The char-
acter of the infectiousness process may depend on genetics, diet, lifestyle, or the
pre-existing load on the immune system of the individual, although not on the time
of infectious contact. We construct an algorithm which, in principle, recursively
computes the distribution of the source of the epidemic in terms of generations of
individuals. A generation is defined, recursively, as the set of individuals infectively
contacted by the previous such generation. We conclude that the distribution of
epidemic size depends on the shapes of infectiousness functions only through the
distributions of their integrals.

This theoretical result has practical impact. For instance, if a medicine extends
the period of infectiousness of HIV while lowering the risk level, we see that epidemic
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size will depend on integrated infectiousness, the area under the curve. And this is
true with no assumption about homogeneity of the population.
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