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Abstract. The paper is devoted to the study of a time-delayed reaction-
diffusion equation of age-structured single species population. Linear stability
for this model was first presented by Gourley [4], when the time delay is small.
Here, we extend the previous result to the nonlinear stability by using the
technical weighted-energy method, when the initial perturbation around the
wavefront decays to zero exponentially as x → −∞, but the initial perturbation
can be arbitrarily large on other locations. The exponential convergent rate
(in time) of the solution is obtained. Numerical simulations are carried out to
confirm the theoretical results, and the traveling wavefronts with a large delay
term in the model are reported.

1. Introduction. The population of a single species with age-structure is usually
described as a time delayed reaction-diffusion equation

∂v

∂t
= dm

∂2v

∂x2
+ εb(v(x, t− τ))− d(v), t ∈ [0,∞), x ∈ R, (1)

where v(x, t) denotes the total population of mature species after the mature age
τ > 0 at time t and location x. Here, dm > 0 is the diffusion rate of the mature
species, d(v) > 0 is the death function, b(v) is the birth function, and ε > 0 is an
impact factor of the death rate. Equation (1) can be derived from the Metz and
Diekmann’s dynamical population model [13]

∂u

∂t
+

∂u

∂a
− di(a)

∂2u

∂x2
+ γ(a)u = 0
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by setting

v(t, x) =
∫ ∞

τ

u(t, a, x)da,

where a denotes the age of the species and u(t, a, x) represents the density of the
species with age a at a location x and in time t, di(a) and γ(a) are the diffusion
and death rates of the immatures. For the detailed derivation of equation (1), we
refer the reader to [4, 5, 12, 20].

As shown in [4] (see also [1, 2, 3]), for simplicity, by choosing the birth and death
functions of the matures as b(v(x, t− τ)) = αv(x, t− τ) and d(v) = βv2, and let the
death rates of the immatures γ(a) = γ be a constant which determines the impact
factor of the death rate according to ε = e−γτ , and denoting the diffusion rate as
dm = d, Eq.(1) can be rewritten as

∂v

∂t
= d

∂2v

∂x2
+ αe−γτv(x, t− τ)− βv2, t ∈ [0,∞), x ∈ R. (2)

It is noticed that two constant equilibria exist in equation (2); namely,

v− = 0 and v+ =
α

β
e−γτ .

Let c denote the speed of the wave solution, which depends on the maturation
delay τ . In [3], Al-Omari and Gourley proved that for all speeds c exceeding
a certain minimum value, equation (2) possesses a monotone traveling wavefront
solution which connects the constant equilibria v− and v+. Later, by applying the
weighted energy method as shown in [11], Gourley showed in [4] that the traveling
wavefronts with speed c greater than the critical speed c0 are linearly stable, if
the initial perturbations around the wavefronts are exponentially decay in space as
x → −∞.

In the present paper, we study equation (2) with the following initial value
condition:

v(x, s) = v0(x, s) → v±, s ∈ [−τ, 0] as x → ±∞. (3)

The goal of the present work is to extend Gourley’s linear stability of the wavefronts
to the nonlinear stability. Although we require the initial perturbation around the
wavefront to decay as x near −∞, the initial perturbations could be arbitrarily
large in other locations. This is the so-called large initial perturbation problem for
the stability, and the result is of particularly interest in mathematical and physical
sciences. The method adopted here is based on the comparison principle together
with the weighted L2-energy method, which was first applied by Lin and Mei [6]
to prove the stability of traveling waves with large initial perturbations for the
Nicholson’s blowflies equation. For the wavefronts and their stabilities related to
the other models, we refer to, for example, [8]-[12], [14], [16]-[25], and the references
therein.

Throughout the paper, C > 0 denotes a generic constant, while Ci > 0 (i =
0, 1, 2, · · · ) represents a specific constant. Let I be an interval, typically I = R.
L2(I) is the space of the square integrable functions on I, and Hk(I) (k ≥ 0) is the
Sobolev space of the L2-functions f(x) defined on the interval I whose derivatives
di

dxi f , i = 1, · · · , k, also belong to L2(I). L2
w(I) represents the weighted L2-space

with the weight w(x) > 0 and its norm is defined by

‖f‖L2
w

=
( ∫

I

w(x)f(x)2dx
)1/2

.
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Hk
w(I) is the weighted Sobolev space with the norm

‖f‖Hk
w

=
( k∑

i=0

∫

I

w(x)
∣∣ di

dxi
f(x)

∣∣2dx
)1/2

.

Let T > 0 and let B be a Banach space, we denote by C0([0, T ];B) the space of the
B-valued continuous functions on [0, T ], and L2([0, T ];B) as the space of the B-
valued L2-functions on [0, T ]. The corresponding spaces of the B-valued functions
on [0,∞) are defined similarly.

The paper is organized as follows. In Section 2, we introduce the traveling wave-
fronts and a weight function, the main result of this work, namely, the nonlinear
stability of the traveling wavefronts is then presented. In Section 3, after having
established the comparison principle and some key energy estimates in the weighted
Sobolev’s spaces, we prove the nonlinear stability. In Section 4, we report numer-
ical simulations for several case studies, and the computed solutions confirm our
theoretical results stated in Section 2.

2. Nonlinear stability. A traveling wavefront of Equation (2) is a monotone
solution φ(x+ct) connecting with two constant states v− = 0 and v+ = (α/β)e−γτ ,
and it satisfies {

dφ′′(ξ)− cφ′(ξ) + αe−γτφ(ξ − cτ)− βφ2(ξ) = 0,

φ(−∞) = 0 = v−, φ(∞) = (α/β)e−γτ = v+,
(4)

where ξ = x + ct, and ′ = d
dξ .

In [3], Al-Omari and Gourley proved the existence of the traveling wavefronts of
equation (2) connecting v±.

Proposition 1 (Existence of Traveling Wavefronts, Al-Omari and Gourley [3]).
There exists a minimum speed c0 = c0(τ) satisfying

Fc0(λc0) = Gc0(λc0), F ′c0
(λc0) = G′c0

(λc0), (5)

where

Fc(λ) = 2αe−γτe−λcτ/2, Gc(λ) = cλ− 1
2
dλ2, (6)

(c0, λc0) is the tangent point of Fc(λ) and Gc(λ), and c0 is the solution of the
following equation

α exp
(
1− γτ − c2

0τ

2d
− 1

2d

√
4d2 + c4

0τ
2
)

=
1

c2
0τ

2

(
− 2d +

√
4d2 + c4

0τ
2
)
, (7)

which implies c2
0 < 4αde−γτ . Then for all c > c0, the traveling wavefront φ(x + ct)

of equation (2) connecting v± exists.

As shown in [4], it is easily seen from Figure 1 that the critical wave speed c0

is determined when the two curves Fc(λ) and Gc(λ) have a unique touched point.
When c > c0, the two curves intersect at two points, says λ1c and λ2c. Let λc be a
point between λ1c and λ2c; then

Gc(λc) > Fc(λc). (8)

Since λ = 2c/d is a nonzero root of the equation Gc(λ) = 0, we have λc < 2c/d.
From the first graph of Figure 1, it is verified that Gc0(λ) < Fc0(λ) for all λ > 0
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Figure 1. The graphs of Fc(λ) and Gc(λ) for c = c0 and c > c0, respectively

except at the touched point λ = λc0 , and the maximum of Gc0(λ) is given by
Gc0(

c0
d ) = c2

0
2d , in which

c2
0

2d
= Gc0(

c0

d
) < Fc0(

c0

d
) < Fc0(0) = 2αe−γτ .

This implies c0 <
√

4αde−γτ as mentioned in Proposition 1.
It has been reported in [11, 12] that when the wave is faster, namely, the wave

speed is larger, then the wave is usually stable time-asymptotically. However, the
more interesting and difficult case is to study the nonlinear stability of the slower
waves, in particular, the wave with speed very close to the critical speed c0. Hence,
in the present paper, we are interested in the waves with speed c satisfying

c0 < c <
√

4αde−γτ . (9)

As technically assumed in [4], we restrict the delay τ to be small, such that

4ατe−γτ < cosh−1(2); (10)

then (9) is reduced to

c0 < c <

√
d cosh−1(2)

τ
. (11)

Thus, from λc < 2c/d, we have

cosh
λccτ

2
< cosh

c2τ

d
< 2. (12)

Obviously, it holds

4βv+ = 4αe−ατ > 2αe−ατ cosh
λccτ

2
.

Since limξ→∞ φ(ξ) = v+ and φ(ξ) is increasing, there exists a number ξ0 such that

4βφ(ξ0) > 4βφ(ξ0 − cτ) > 2αe−γτ cosh
λccτ

2
. (13)

Let ṽ = v−φ be the linear perturbation around the wavefront φ; then ṽ satisfies
{

∂ṽ
∂t = d ∂2ṽ

∂x2 + αe−γτ ṽ(x, t− τ)− 2βφṽ, (x, t) ∈ R×R+,

ṽ(x, s) = v0(x, s)− φ(x + cs), (x, s) ∈ R× [−τ, 0].
(14)
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For the linear stability of the traveling wavefronts, defining the weight function as

w(ξ) =

{
e−λcξ, ξ ≤ ξ0,

e−λcξ0 , ξ > ξ0,
(15)

Gourley [4] showed the following result.

Proposition 2 (Linear Stability, Gourley [4]). Let the delay τ satisfy (10), and
φ(x + cs) be a wavefront with speed c satisfying (11). If the initial perturbation
satisfies v0(x, s)−φ(x+cs) ∈ H1

w(R) for s ∈ [−τ, 0], where w = w(x+cs) (for s ∈
[−r, 0]) is the weight function given in (15), then the wavefront φ(x+ ct) is linearly
asymptotically stable in the sense that

sup
x∈R

|ṽ(x, t)| ≤ Ce−µt, t > 0,

where µ = µ(α, β, d, τ, c, λc) > 0 is a specific constant.

In this paper, by using the comparison principle together with the weighted
energy method, we prove the following nonlinear stability of traveling wavefronts
even when the initial perturbations are not small.

Theorem 2.1 (Nonlinear Stability). Let the delay τ satisfy (10), for a given travel-
ing wavefront φ(x+ct) with speed c satisfying (11), and the initial datum satisfying

v0(x, s)− φ(x + cs) ∈ C0([−r, 0];H1
w(R)), (16)

where w = w(x + cs) (for s ∈ [−r, 0]) is the weight function given in (15), then
the unique solution v(x, t) of the Cauchy problem (2) and (3) exists globally

v(t, x)− φ(x + ct) ∈ C0([0,∞); H1
w(R)) ∩ L2([0,∞); H2

w(R))

and it converges to the traveling wavefront φ(x + ct) time-asymptotically

sup
x∈R

|v(x, t)− φ(x + ct)| ≤ Ce−µt, 0 ≤ t ≤ ∞. (17)

Remark 1. For the wave stability, we usually require the initial perturbation
around the wave to be sufficiently small. However, such a restriction is not necessary
in the present stability; namely, the initial perturbation ‖v0(·, s)−φ(·+cs)‖H1

w
(s ∈

[−τ, 0]) can be large. This is the so-called large initial perturbation problem, and is
quite significant and interesting in the studies of many problems in mathematical
physics.

3. Proof of nonlinear stability. By using the energy method reported in [11],
we can prove that equations (2) and (3) admit a unique global solution. The key
step in the proof of the nonlinear stability is to establish the comparison principle
and some energy estimates in the weighted space L2

w(R). Now, we first demon-
strate the positivity of the solution v(x, t) of the Cauchy problem (2) and (3), and
then establish a comparison principle for the solution v(x, t). Consequently, the
convergence of the solution to the wavefront is obtained.

Lemma 3.1 (Positivity). Let v(x, t) be a bounded solution of the Cauchy problem
(2) and (3) with a nonnegative initial data v0(x, s) ≥ 0 for (x, s) ∈ R× [−τ, 0]; then
v(x, t) ≥ 0 for (x, t) ∈ R× [0,∞).
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Proof. For t ∈ [0, τ ], i.e., t− τ ∈ [−τ, 0], we have v(x, t − τ) = v0(x, t − τ) ≥ 0 for
all x ∈ R. Hence, equation (2) becomes

{
vt − dvxx + βv2 = αe−γτv(x, t− τ) ≥ 0, (x, t) ∈ R× [0, τ ]
v(x, 0) = v0(x, 0) ≥ 0, x ∈ R,

(18)

which implies
v(x, t) ≥ 0 for (x, t) ∈ R× [0, τ ]. (19)

In fact, if we set v = weνt by choosing a large ν such that a(x, t) := ν +βv(x, t) ≥ 0
because of the boundedness of v(x, t), equation (18) is reduced to

{
wt − dwxx + a(x, t)w ≥ 0, (x, t) ∈ R× [0, τ ]
w(x, 0) = v0(x, 0) ≥ 0, x ∈ R.

Applying the maximum principle (c.f. [15]), the above equation ensures that
w(x, t) ≥ 0 for (x, t) ∈ R× [0, τ ]. Therefore, v(x, t) ≥ 0 for (x, t) ∈ R× [0, τ ].

For t ∈ [τ, 2τ ], i.e., t − τ ∈ [0, τ ], from (19), we have v(x, t − τ) ≥ 0 for (x, t) ∈
R× [τ, 2τ ]. Thus, equation (2) implies that

{
vt − dvxx + βv2 = αe−γτv(x, t− τ) ≥ 0, (x, t) ∈ R× [τ, 2τ ]
v(x, τ) ≥ 0, x ∈ R.

(20)

Consequently,
v(x, t) ≥ 0 for (x, t) ∈ R× [τ, 2τ ]. (21)

Combining (19) and (21), we prove

v(x, t) ≥ 0 for (x, t) ∈ R× [0, 2τ ]. (22)

By repeating this procedure, we have

v(x, t) ≥ 0 for (x, t) ∈ R× [0,∞).

The proof is complete.

Lemma 3.2 (Comparison Principle). Let v(x, t) and v(x, t) be positive and bounded
for (x, t) ∈ R×R+, and they satisfy





vt − dvxx + βv2 − αe−γτv(x, t− τ)
≥ vt − dvxx + βv2 − αe−γτv(x, t− τ), (x, t) ∈ R×R+

v(x, s) ≥ v(x, s), (x, s) ∈ R× [−τ, 0],
(23)

then
v(x, t) ≥ v(x, t), for (x, t) ∈ R×R+. (24)

Proof. Let

U(x, t) = v(x, t)− v(x, t), and U0(x, s) = v0(x, s)− v0(x, s).

From (23), it can be verified that
{

Ut − dUxx + βa1(x, t)U ≥ αe−γτU(x, t− τ), (x, t) ∈ R×R+

U |t=s = U0(x, s), (x, s) ∈ R× [−τ, 0]
(25)

where a1(x, t) := v(x, t) + v(x, t) > 0 is bounded.
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As shown in Lemma 3.1, for t ∈ [0, τ ], (i.e., t − τ ∈ [−τ, 0]), U(x, t − τ) =
U0(x, t− τ) ≥ 0, and equation (24) is reduced to

{
Ut − dUxx + βa1(x, t)U ≥ 0, (x, t) ∈ R× [0, τ ]
U |t=s = U0(x, s) ≥ 0, (x, s) ∈ R× [−τ, 0],

(26)

which leads to

U(x, t) ≥ 0, i.e., v(x, t) ≥ v(x, t), for (x, t) ∈ R× [0, τ ].

Similarly, we can prove

U(x, t) ≥ 0, i.e., v(x, t) ≥ v(x, t), for (x, t) ∈ R× [τ, 2τ ].

Hence, by repeating the procedure, we obtain

U(x, t) ≥ 0, i.e., v(x, t) ≥ v(x, t), for (x, t) ∈ R×R+.

The proof is complete.

We now prove the stability of the traveling wavefronts by the weighted energy
method. Let{

v+
0 (x, τ) = max{v0(x, τ), φ(x + cτ)},

v−0 (x, τ) = min{v0(x, τ), φ(x + cτ)}, for (x, τ) ∈ R× [−τ, 0], (27)

so

v−0 (x, τ) ≤ v0(x, τ) ≤ v+
0 (x, τ) for (x, τ) ∈ R× [−τ, 0] (28)

v−0 (x, τ) ≤ φ(x + cτ) ≤ v+
0 (x, τ) for (x, τ) ∈ R× [−τ, 0]. (29)

Denote v+(x, t) and v−(x, t) as the corresponding solutions of equations (2) and
(3) with respect to the above mentioned initial data v+

0 (x, τ) and v−0 (x, τ); i.e.,
{

v±t − dv±xx + β(v±)2 = αe−γτv±(x, t− τ), (x, t) ∈ R×R+

v±(x, s) = v±0 (x, s), x ∈ R, s ∈ [−τ, 0].
(30)

By the Comparison Principle, we have

v−(x, t) ≤ v(x, t) ≤ v+(x, t) for (x, t) ∈ R×R+, (31)
v−(x, t) ≤ φ(x + ct) ≤ v+(x, t) for (x, t) ∈ R×R+. (32)

The convergence of the wave solutions with the initial data v+
0 (x, τ), v−0 (x, τ),

and v0(x, τ) are discussed as follows.

Case 1: The convergence of v+(x, t) to φ(x + ct)

Lemma 3.3. It holds

sup
x∈R

|v+(x, t)− φ(x + ct)| ≤ Ce−µt, t ≥ 0. (33)

Proof. Let ξ := x + ct and

z(ξ, t) := v+(x, t)− φ(x + ct), z0(ξ, τ) = v+
0 (x, τ)− φ(x + cτ); (34)

then by (29) and (32), we have

z(ξ, t) ≥ 0, z0(ξ, τ) ≥ 0. (35)
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Since v+(x, t) and φ(x + ct) satisfy equation (2), it can be verified that z(ξ, t)
satisfies
{

czξ + zt − dzξξ − αe−γτz(ξ − cτ, t− τ) + 2βφ(ξ)z + βz2 = 0, (ξ, t) ∈ R×R+,

z(ξ, τ) = z0(ξ, τ), (ξ, τ) ∈ R× [−τ, 0].
(36)

Multiplying (36) by e2µtw(ξ)z(ξ, t), we obtain

(1
2
e2µtwz2

)
t
+ e2µt

(1
2
cwz2 − dwzzξ

)
ξ
+ de2µtwz2

ξ + de2µtw′zzξ

−µe2µtwz2 − 1
2
ce2µt w

′

w
wz2 − αe−γτe2µtw(ξ)z(ξ, t)z(z − cτ, t− τ)

+2βe2µtwφz2 + βe2µtwz3 = 0. (37)

Note that, for any η1 > 0,

|de2µtw′zzξ| ≤ dη1e
2µtwz2

ξ +
d

4η1
e2µt

(w′

w

)2

wz2,

and dropping the positive term βe2µtwz3 (i.e., the last term in (37)), because
z(ξ, t) ≥ 0, we have

(1
2
e2µtwz2

)
t
+ e2µt

(1
2
cwz2 − dwzzξ

)
ξ
+ d(1− η1)e2µtwz2

ξ

−µe2µtwz2 − 1
2
ce2µt w

′

w
wz2 − d

4η1
e2µtwz2

−αe−γτe2µtw(ξ)z(ξ, t)z(z − cτ, t− τ) + 2βe2µtwφz2 ≤ 0. (38)

Integrating (38) with respect to (ξ, t) over R× [0, t], we obtain

e2µt‖z(t)‖2L2
w

+ 2d(1− η1)
∫ t

0

e2µs‖zξ(s)‖2L2
w
ds

+
∫ t

0

∫

R

e2µs
[
− c

w′(ξ)
w(ξ)

− d

2η1

(w′(ξ)
w(ξ)

)2

+ 4βφ(ξ)− 2µ
]
w(ξ)z2(ξ, s) dξds

≤ ‖z(0)‖2L2
w

+ 2αe−γτ

∫ t

0

∫

R

e2µsw(ξ)z(ξ, s)z(ξ − cτ, s− τ) dξds. (39)

For the last term in (39), by using the Cauchy-Schwartz inequality 2xy ≤ η2x
2 +

(1/η2)y2 with η2 > 0, we can estimate that

2αe−γτ

∫ t

0

∫

R

e2µsw(ξ)z(ξ, s)z(ξ − cτ, s− τ) dξds

≤ αe−γτ

∫ t

0

∫

R

e2µsw(ξ)
(
η2z

2(ξ, s) +
1
η2

z2(ξ − cτ, s− τ)
)

dξds

= η2αe−γτ

∫ t

0

∫

R

e2µsw(ξ)z2(ξ, s) dξds

+
1
η2

αe−γτ

∫ t

0

∫

R

e2µsw(ξ)z2(ξ − cτ, s− τ) dξds. (40)
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By applying the change of variables, ξ − cτ → ξ, s − τ → s, to the last term of
(40), we have

1
η2

αe−γτ

∫ t

0

∫

R

e2µsw(ξ)z2(ξ − cτ, s− τ) dξds

=
1
η2

αe−γτ

∫ t−τ

−τ

∫

R

e2µ(s+τ)w(ξ + cτ)z2(ξ, s) dξds

≤ 1
η2

αe−γτ+2µτ

∫ t

0

∫

R

e2µsw(ξ + cτ)z2(ξ, s) dξds

+
1
η2

αe−γτ+2µτ

∫ 0

−τ

∫

R

e2µsw(ξ + cτ)z2
0(ξ, s) dξds. (41)

Substituting (41) into (40), it yields

2αe−γτ

∫ t

0

∫

R

e2µsw(ξ)z(ξ, s)z(ξ − cτ, s− τ) dξds

≤ η2αe−γτ

∫ t

0

∫

R

e2µsw(ξ)z2(ξ, s) dξds

+
1
η2

αe−γτ+2µτ

∫ t

0

∫

R

e2µsw(ξ + cτ)z2(ξ, s) dξds

+
1
η2

αe−γτ+2µτ

∫ 0

−τ

∫

R

e2µsw(ξ + cτ)z2
0(ξ, s) dξds. (42)

Applying the above inequality (42) into (39), we have

e2µt‖z(t)‖2L2
w

+ 2d(1− η1)
∫ t

0

e2µs‖zξ(s)‖2L2
w
ds

+
∫ t

0

∫

R

e2µsB(µ, ξ)w(ξ)z2(ξ, s) dξds

≤ ‖z(0)‖2L2
w

+
1
η2

αe−γτ+2µτ

∫ 0

−τ

∫

R

e2µsw(ξ + cτ)z2
0(ξ, s) dξds, (43)

where

B(µ, ξ) = −c
w′(ξ)
w(ξ)

− d

2η1

(w′(ξ)
w(ξ)

)2

+ 4βφ(ξ)− 2µ− η2αe−γτ

− 1
η2

αe−γτ+2µτ w(ξ + cτ)
w(ξ)

= −c
w′(ξ)
w(ξ)

− d

2η1

(w′(ξ)
w(ξ)

)2

+ 4βφ(ξ)− η2αe−γτ − 1
η2

αe−γτ w(ξ + cτ)
w(ξ)

−2µ− 1
η2

αe−γτ w(ξ + cτ)
w(ξ)

(
e2µτ − 1

)

= B(ξ)− 2µ− 1
η2

αe−γτ w(ξ + cτ)
w(ξ)

(
e2µτ − 1

)
. (44)

Here

B(ξ) := −c
w′(ξ)
w(ξ)

− d

2η1

(w′(ξ)
w(ξ)

)2

+ 4βφ(ξ)− η2αe−γτ − 1
η2

αe−γτ w(ξ + cτ)
w(ξ)

(45)
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is the same as introduced by Gourley [4]. By selecting the weight function w(ξ)
as stated in (15) and taking η1 = 1, η2 = e−λccτ/2, Gourley proved that (see [4]:
(2.7),(2.8) on p.261, and (2.15), (2.16) on p.263) there exists a positive constant

µc := min{µ(1)
c , µ(2)

c , µ(3)
c },

where

µ(1)
c : = cλc − d

2
λ2

c + 4βφ(ξ0 − cτ)− 2αe−γτ cosh
λccτ

2
> 0,

µ(2)
c : = 4βφ(ξ0)− 2αe−γτ cosh

λccτ

2
> 0,

µ(3)
c : = cλc − d

2
λ2

c − 2αe−γτe−λccτ/2 > 0,

such that
B(ξ) ≥ µc. (46)

Note that
w(ξ + cτ)

w(ξ)
< 1, for ξ ∈ (−∞,∞) (47)

then (44)-(47) imply

B(µ, ξ) ≥ µc − 2µ− 1
η2

αe−γτ (e2µτ − 1).

Let µ > 0 be sufficiently small, such that

B(µ, ξ) ≥ µc − 2µ− 1
η2

αe−γτ (e2µτ − 1) =: C0 > 0; (48)

then for η1 = 1, (43) becomes

e2µt‖z(t)‖2L2
w

+ C0

∫ t

0

e2µs‖z(s)‖2L2
w

ds ≤ C1

(
‖z(0)‖2L2

w
+

∫ 0

−τ

‖z0(s)‖2L2
w

ds
)

(49)

for some constant C1 > 0.
Similarly, differentiating (36) with respect to ξ and multiplying by e2µtw(ξ)zξ(ξ, t),

then by integrating the resultant equation with respect to (ξ, t) over R× [0, t], and
applying (49), we obtain

e2µt‖zξ(t)‖2L2
w

+C0

∫ t

0

e2µs‖zξ(s)‖2L2
w

ds ≤ C2

(
‖z(0)‖2H1

w
+

∫ 0

−τ

‖z0(s)‖2H1
w

ds
)

(50)

for some constant C2 > 0.
Combining (49) and (50), we prove that

e2µt‖z(t)‖2H1
w
≤ C3

(
‖z(0)‖2H1

w
+

∫ 0

−τ

‖z0(s)‖2H1
w

ds
)

(51)

for some constant C3 > 0.
Since H1

w(R) ↪→ H1(R) ↪→ C0(R) for the weight w(ξ) given in (15) (for the proof
of the above Sobolev space embedding, we refer to Mei-Nishihara [9]), we obtain

sup
ξ∈R

|z(ξ, t)| ≤ C‖z(t)‖H1 ≤ C‖z(t)‖H1
w
≤ Ce−µt

for all t ≥ 0. This implies (33), and proof is complete.

Case 2: The convergence of v−(x, t) to φ(x + ct)
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Lemma 3.4. It holds

sup
x∈R

|v−(x, t)− φ(x + ct)| ≤ Ce−µt, t ≥ 0. (52)

Proof. Let z(ξ, t) = φ(x+ct)−v−(x, t), ξ = x+ct, and z0(ξ, s) = φ(x+cs)−v−0 (x, s);
then z(ξ, t) satisfies the Cauchy problem (36). As shown in Lemma 3.3, we can
similarly prove Lemma 3.4. The detail is omitted.

Case 3: The convergence of v(x, t) to φ(x + ct)
Now we will prove Theorem 2.1, namely, the following convergence result.

Lemma 3.5. It holds

sup
x∈R

|v(x, t)− φ(x + ct)| ≤ Ce−µt, t ≥ 0. (53)

Proof. Since v−0 (x, s) ≤ v0(x, s) ≤ v+
0 (x, s), from Lemma 3.2, the corresponding

solutions satisfy

v−(x, t) ≤ v(x, t) ≤ v+(x, t), (x, t) ∈ R×R+.

Thanks to Lemmas 3.3 and 3.4, we have the following convergence results:

sup
x∈R

|v−(x, t)− φ(x + ct)| ≤ Ce−µt, sup
x∈R

|v+(x, t)− φ(x + ct)| ≤ Ce−µt.

Then, by using the Squeeze Theorem, we finally prove

sup
x∈R

|v(x, t)− φ(x + ct)| ≤ Ce−µt.

The proof is complete.

4. Numerical simulations. To investigate the stability of the traveling waves,
we perform numerical simulations to confirm the theoretical results presented in
Section 2.

The mathematical formulation given in equation (2) and (3) is a nonlinear time-
delayed partial differential equation, and the nonlinearity is due to the term βv2.
The computational results reported in this section are based on the following finite-
difference approximation with a forward scheme for the time derivative and a central
scheme for the spatial derivative:

vn
j − vn−1

j

∆t
= d

vn−1
j−1 − 2vn−1

j + vn−1
j+1

(∆x)2
+ αe−γτvn−τ

j − βvn−1
j vn−1

j , (54)

where ∆t and ∆x denote the step size in time and space, respectively. It is noted
that the nonlinear term is calculated at the (n − 1)th time step; hence, it is an
explicit scheme. The advantage of this simple scheme is that the resulting finite-
difference equations are linear, and the solutions can easily be computed. The
numerical scheme given in (54) is of first-order accurate in time and second-order
accurate in space. We have also implemented an implicit numerical scheme in which
the nonlinear term is computed at the nth time step, but the accuracy is the same as
the above explicit scheme. For implicit formulation, an iterative method is required
to solve the resulting nonlinear difference equations in each time step. However, we
observe that the computed solutions are almost the same as those obtained from
the explicit scheme.

In computation, the sizes of the time step and space step are chosen as ∆t = 0.01
and ∆x = 0.2, so that the condition to ensure a stable numerical computation
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Table 1. Case studies: Parameters and Initial data

Case α γ τ v+ = α
β

e−γτ 4ατe−γτ Initial data v0(x, s) for s ∈ (−τ, 0)

1 0.5 1 1 1
2e

0.7358

{
0, x ≤ −10,
1
2e

, x ≥ −10.

2 1 2 1 1
e2 0.5413





0, x ≤ −20,

40, −20 ≤ x ≤ 20,
1

e2 , x ≥ 20.

3 0.5 1 1 1
2e

0.7358





0, x ≤ −10,

− 200e−1
400e

x2 + 1
40e

x + 50, −10 ≤ x ≤ 10,
1
2e

, x ≥ 10.

4 0.5 0.1 10 1
2e

7.3576

{
0, x ≤ −10,
1
2e

, x ≥ −10.

5 0.5 0.1 10 1
2e

7.3576





0, x ≤ −10,

− 200e−1
400e

x2 + 1
40e

x + 50, −10 ≤ x ≤ 10,
1
2e

, x ≥ 10.

6 1 0.1 20 1
e2 1.4653





0, x ≤ −20,

40, −20 ≤ x ≤ 20,
1

e2 , x ≥ 20.

∆t/(∆x)2 < 1/2 is satisfied. Although the original model assumes the spatial
domain in (−∞,∞), a finite computational domain (−L,L) is imposed. Here, we
let L = 400 so that the computational domain is sufficiently large and no artificial
numerical reflection is introduced in the computed solution.

In this section, we report the numerical simulations for six test cases. We first
choose d = 1 and β = 1; other parameters and the initial data for each case study
are listed in Table 1. The corresponding numerical solutions are displayed in Figures
4.2 to 4.7.

In the first group of the case studies, we focus on Cases 1, 2, and 3, in which a
small delay τ = 1 is considered. It is noted that the condition 4ατe−γτ < cosh−1(2)
is satisfied for each case, where cosh−1(2) = 1.3710. For Case 1, we observe that
starting with a discontinuous initial data, a rapid smoothing effect results in a short
time. When t=10, Figure 4.2 illustrates that a stable traveling wave is established
and it is moving in the negative x-direction as time increases. In Case 2, the initial
datum is discontinuous with a big jump from 0 to 40, which causes the initial
perturbation around the wavefront larger than 40 − 1

e2 , because the monotone
traveling wave is bounded between 0 and 1

e2 . However, as shown in Figure 3, after
time t = 50 the solution becomes a stable wavefront propagating from right to left.
For Case 3, we test the continuous initial datum v0(x, s), and it has a maximum
v0( 5

200e−1 , s) = 50+ 5
16(200e−1) at x = 5

200e−1 . Consequently, the initial perturbation
around the wavefront is larger than 50+ 5

16(200e−1) − 1
2e . From Figure 4, we observe

that, the solution behaves as a stable wavefront moving from right to left after
time t = 50. As shown in Figures 3 and 4, Cases 2 and 3 demonstrate numerically
that the wavefronts are asymptotically stable even if the initial perturbations are
really large. This confirms our theoretical stability result in Section 2. With the
parameters chosen for Cases 1 through 3, we expect that the speeds of the traveling
waves for Cases 1 and 3 are identical; and the wavefront will propagate faster for
Case 2 than for Cases 1 and 3. The numerical simulations presented in Figures
4.2 through 4.4 indeed confirm our theoretical prediction. We observe that v(x, 50)
and v(x, 100) are essentially the same for Case 1 and 3.



NONLINEAR STABILITY OF TRAVELING WAVEFRONTS 97

−100 −50 0 50 100

0

0.05

0.1

0.15

0.2

−100 −50 0 50 100

0

0.05

0.1

0.15

0.2

−100 −50 0 50 100

0

0.05

0.1

0.15

0.2

−100 −50 0 50 100

0

0.05

0.1

0.15

0.2

−100 −50 0 50 100

0

0.05

0.1

0.15

0.2

−100 −50 0 50 100

0

0.05

0.1

0.15

0.2

t=0 
t=5 

t=10 t=20 

t=50 t=100 

x 

v(x) 

Figure 2. The graphs of v(x, t) of Case 1 at t = 0, 5, 10, 20, 50,
100, respectively
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Figure 3. The graphs of v(x, t) of Case 2 at t = 0, 5, 10, 20, 50,
100, respectively

Now, we examine the test cases with large delay terms. Notice that except the
parameters γ is reduced by 10 and τ is increased ten-fold, other parameters and
initial data for Cases 4 and 5 are the same as those imposed for Cases 1 and 3.
It is of interest to note that even when the value of 4ατe−γτ is increased tenfold
and the condition (10) is not satisfied, stable monotone traveling wave solutions
are obtained for Cases 4 and 5. The solutions shown in Figures 4.5 and 4.6 have
essentially the same profiles as those displayed in Figures 4.2 and 4.4 for Cases
1 and 3, but they travel with a slower speed. Finally, Case 6 is constructed, so
that the solutions can be compared with those corresponding to Case 2. Here, we
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Figure 4. The graphs of v(x, t) of Case 3 at t = 0, 5, 10, 20, 50,
100, respectively
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Figure 5. The graphs of v(x, t) of Case 4 at t = 0, 5, 10, 20, 50,
100, respectively

reduce the value of γ in Case 2 by 20, but we enlarge the delay τ twentyfold. For
this case, the condition (10) is not satisfied. From the computed solutions given in
Figure 4.7, we observe that a stable monotone traveling wave solution connecting
two equilibria is obtained when the time is sufficiently large.

The reported numerical simulations confirm the theoretical results presented in
this work. In particular, we observe that stable traveling wavefronts are obtained
even when the initial perturbation is not small. Moreover, the stable solution is
not affected by a large delay term in which the condition (2.7) is not valid.
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Figure 6. The graphs of v(x, t) of Case 5 at t = 0, 10, 20, 50,
120, 150, respectively
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Figure 7. The Graphs of v(x, t) of Case 6 at t = 0, 20, 100, 150,
250, 280, respectively
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