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Abstract. A two-predator, one-prey model in which one predator interferes
significantly with the other predator is analyzed. The dominant predator is
harvested and the other predator has an alternative food source. The response
functions used are Holling type II and they are predator-dependent and include
the effects of interference. The analysis centers on bifurcation diagrams for
various levels of interference in which the harvesting is the primary bifurcation
parameter. There are different attractors for the high-interference and no-
interference cases and these are discussed within an ecological context.

(Communicated by Yang Kuang)

1. Introduction. In this paper, a two-predator, one-prey model in which one
predator interferes with the other predator is analyzed. The model includes har-
vesting of the dominant predator and an alternative food source for the second
predator. The analysis of the dynamics centers on bifurcation diagrams in which
harvesting is varied for different levels of interference.

Holling type II-like response functions are developed using time-budget argu-
ments which incorporate the interference of the dominant predator on the second
predator and a factor for the self-interference of the second predator; i.e., a predator-
dependent response function. Kuang and collaborators incorporated interference
competition and showed how it could account for the stable coexistence of the preda-
tors [13]. Beddington and DeAngelis ([3], [8]) introduced predator dependence into
the response functions, and many studies have since indicated that adjusting the
typical Holling response types to include predator dependence is more reflective of
actual predator-prey systems ([1] [2] [5] [17] [18] [20]).

The problem studied here bears some significant resemblance to the work of
Courchamp and Kuang (and their respective collaborators) in that there are two
predators and a shared prey ([6] [7] [12]). However, in their work, one of the preda-
tors (the superpredator) preys on the other predator (the mesopredator) rather
than merely interfering with it. They were concerned with how the introduction
or elimination of a mesopredator or superpredator would affect the population size
of a desirable prey.

A motivation for studying this problem is to be another voice in helping to
understand the reasons for the depletion of cod in the North Atlantic. Cod is a
highly effective predator and, when stocks are healthy, effectively interferes with its
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competitors (skates, rays) for its food [14]. Wikan and Eide considered the effects
of cannibalism and recruitment on the cod stock dynamics, whereas the approach
in this paper is to study the ecosystem dynamics using a predator prey framework
[21].

The paper begins with a derivation of model equations using time-budget ar-
guments which incorporate harvesting of the dominant predator, an interference
factor for the dominant predator on the second predator, self-interference in the
second predator, and an alternative food source for the second predator. An anal-
ysis of the steady states and their stability follows, with particular attention given
to the levels of harvesting and interference on the coexistence of the three species.
Since the parameter relationships are rather entangled, the bifurcation analysis is
primarily illustrated with the use of AUTO ([9], [10]).

2. Derivation of the model. The model for the prey growth will be logistic, its
response to the predators will be Holling type II, and both predators will have a
corresponding response function. The denominators of the response functions will
be larger due to the interference factors, thus properly reflecting the mitigation of
biomass transfer with increased interference.

The form of the functional responses follow from classical arguments for the time
budgets in Holling-type responses ([11], [3]). The adaptations of the Holling type
II functional response term to include multiple prey types follow from time-budget
analyses and are shown in [4] [15] [16] [19]. The derivation here closely resembles
that shown in [12].

We first denote the prey, dominant predator, and second predator by X(t), Y (t),
and Z(t), respectively. Let T denote the total time that Z needs to gather food
from X and an alternative food source S (which is assumed to be constant in time).
This total time has five components:

• TZ : The time spent by Z searching for X and S

• TZhX : The time spent by Z handling X

• TZhS : The time spent by Z handling S

• TY Z : The time wasted by Z due to interference with Y

• TZZ : The time wasted by Z due to self-interference.
Each of the last four time components can be expressed in terms of TZ . To do

so, we introduce the following intermediate parameters:
• NZX : The total number of X caught per Z, which can be expressed as

NZX = αZXTZX where αZX is the search efficiency of Z for X

• NZS : The total number of S caught per Z, which can be expressed as NZS =
αZSTZS where αZS is the search efficiency of Z for S

• NY Z : The number of encounters with Y per Z, which can be expressed as
NY Z = αY ZTZY where αY Z is the encounter rate of Y and Z

• NZZ : The number of encounters with Z per Z, which can be expressed as
NZZ = αZZTZ(Z − 1) where αZZ is the encounter rate of Z with itself.

With these intermediate parameters, the time components are given by

TZhX = tZhXNZX , TZhS = tZhSNZS , TY Z = tY ZNY Z , TZZ = tZZNZZ

where the small t parameters denote average handling times in the first two cases
and average encounter rates in the latter two cases. With all these definitions, the
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total time T is given by

T = TZ + TZhX + TZhS + TY Z + TZZ ,

so that

T = TZ(1 + tZhXαZXX + tZhSαZSS + tY ZαY ZY + tZZαZZ(Z − 1)).

With this, the functional response of X to Z, meaning the number of X caught per
Z per time, is given by

NZX/T = αZXX/F (X, Y, S, Z)

in which

F (X, Y, Z, S) = (1 + tZhXαZXX + tZhSαZSS + tY ZαY ZY + tZZαZZ(Z − 1)).

Similar parameter definitions and analyses give us the functional response of S to
Z:

NZS/T = eZSαZSX/F (X, Y, S, Z)

in which eZS is the efficiency of conversion rate of the biomass of S to Z.
The response of X to Y is given by:

αY XX/G(X,Y ) in which G(X, Y ) = (1 + tY hXαY XX + tY Y αY Y (Y − 1))

with the obvious counterpart definitions. It is assumed here that the interference
factor of Y on Z does not cause a reciprocating time delay when Y searches for its
prey X. This would be the case of a lion (Y ) essentially not being bothered by
the presence of jackals (Z), whereas jackals would be significantly inhibited by the
presence of lions (but are also generally not the prey of lions).

2.1. The unscaled equations. For the prey equation, we assume that the prey
would grow logistically in the absence of predators with growth rate r and carrying
capacity K. Also, the predators would die out in the absence of prey with death
rates DY and DZ . Incorporating the response functions, the equations for X(t),
Y (t), and Z(t) are:

dX

dt
= rX(1− X

K
)− αY XX Y

G(X, Y )
− αZXX Z

F (X, Y, Z, S)
,

dY

dt
= −DY Y +

EY XαY XX Y

G(X, Y )
−H Y, (1)

dZ

dt
= −DZZ +

EZXαZXX Z

F (X, Y, Z, S)
+

EZSαZSX S

F (X, Y, Z, S)
.

In these equations, the terms EY X , EZX , and EZS are the efficiency of biomass con-
version rates. It is assumed that there is proportional harvesting of the dominant
predator. The H Y term could of course have been absorbed into the death-rate
term, but it is kept separate, since the impact of harvesting of the dominant preda-
tor is being studied.

Before proceeding with the analysis, some scaling needs to take place so as to be
better able to discern how the parameters affect the dynamics. To this end, the
variables are scaled as,

x =
X

K
, y =

Y

rKtY hX
, z =

Z

rKtZhX
, tnew = r told,
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and the other parameters are made dimensionless, as follows:

s =
S

K
, ayx = KtY hXαY X , azx = KtZhXαZX , azs = KtZhSαZS , ayz = KtY ZαY Z ,

azz = KrtZZtZhXαZZ , ayy = KrtY Y tY hXαY Y , b = tY Y αY Y , c = tZZαZZ , h =
H

r

and eyx =
EY X

tY hX
, ezx =

EZX

tZhX
, ezs =

EZS

tZhS
, dy =

DY

r
, dz =

DZ

r
.

2.2. The working equations. With these changes substituted into (1), we get
the following working equations:

dx

dt
= x(1− x)− ayxx y

g(x, y)
− azxx z

f(x, y, z, s)
,

dy

dt
= −dyy +

eyxayxx y

g(x, y)
− h y, (2)

dz

dt
= −dzz +

ezxazxx z

f(x, y, z, s)
+

ezsazss z

f(x, y, z, s)
,

in which f(x, y, z, s) and g(x, y) are given by:

f(x, y, z, s) = 1+azxx+ayzy+αzss+azzz−c and g(x, y) = 1+ayxx+ayyy−b. (3)

A word on the parameters is now in order. The primary purpose of this paper is
to see how two effects, the level of interference (ayz) of the dominant predator upon
the second predator and the harvesting (h) of the dominant predator, influence the
dynamics of the system. To better focus on these (by making the analysis cleaner),
it will be assumed that there is no self-interference within the dominant predator,
implying that ayy = b = 0. It will be assumed that there is some secondary
predator self-interference, however, so that azz 6= 0. It can be assumed that
c = 0, since a further rescaling of all parameters of the form a∗∗ by a factor of
(1− c) would effectively eliminate c. Importantly, it will further be assumed that
ayx is significantly larger than azx reflecting the better capability of the dominant
predator to capture the shared prey.

3. Steady states and stability. The first step in the bifurcation analysis is to
find the steady states. The equations (2) admit solutions that are naturally conjec-
tured. There is an all-trivial steady state, a steady state in which z subsists alone
on its alternative food source s, and a steady state with the prey population at
its carrying capacity (x = 1) and no predators. There are two two-species steady
states with the prey and only one nonzero predator, and finally there is a steady
state with all three populations coexisting. For any given steady state, the local
stability and conditions for bifurcations can be determined by finding the corre-
sponding eigenvalues of the system (2) linearized about the steady state. Please
note that the algebraic details are often quite messy and, when they are, they are
not shown.
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3.1. The trivial steady state and single-species steady states. The trivial
steady state, (x, y, z) = (0, 0, 0), can easily be shown to be unstable since one of
the eigenvalues is always 1, independent of the other parameters.

The eigenvalues of the linearized system about the prey-only (x, y, z) = (1, 0, 0)
steady state are,

−1,
eyxayx

1 + ayx
− (dy + h), and

ezxazx + ezsazss

1 + azx + azss
− dz.

To be stable, all the eigenvalues must be negative, and this will occur when there
is a sufficiently large death rate dz of the predator z and relatively large death and
harvest rate dy + h of the predator y. This makes sense ecologically since the high
death rates mean that the two predators wouldn’t be able to survive.

There is a steady state in which the subdominant predator z persists by itself
with zero populations for both the prey x and dominant predator y. This steady
state is given by

z =
(ezs − dz)azss− dz

azzdz
, x = 0, y = 0.

This steady z value will be positive when (azss > dz/(ezs− dz)), a condition which
means that z’s alternative food supply, s, is large enough.

3.2. Two-species steady states. There are two steady states in which the prey
coexists with only one of the predators.

3.2.1. The xy steady state. The dominant predator/prey steady state is given by:

x =
dy + h

ayx(eyx − dy − h)
, y =

(1− x)(1 + ayxx)
ayx

, z = 0. (4)

A few simple observations are in order. For x to be positive, the combined death
and harvest rate, dy + h, cannot exceed eyx, the efficiency at which y converts x
into y biomass. Furthermore, y being positive requires that x must be less than 1
and both of the conditions imply that

dy + h <
ayx

1 + ayx
eyx.

The stability of the steady state (4) is determined by linearizing equations (2) about
the steady state. The resulting characteristic equation for the eigenvalues λ is of
the form,

(λ−D)(λ2 −Aλ−BC) = 0, (5)
in which

A =
(dy + h)[(ayx − 1)eyx − (dy + h)(ayx + 1)]

eyxayx(eyx − (dy + h))
.

The stability, of course, depends on the sign of D and the roots of the quadratic
term. The algebra is messy, but it can be seen that BC < 0 (when x, y > 0) and
A can be either positive or negative. A Hopf bifurcation occurs when A = 0, and
this readily translates into

dy + h =
(ayx − 1)eyx

ayx + 1
. (6)

Noting the sign of A, the steady state will be unstable if dy + h >
(ayx−1)eyx

1+ayx
,

which makes sense, since the death and harvest rate of the predator y would simply
be too large to sustain the y population. The steady state may be stable if
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dy +h <
(ayx−1)eyx

1+ayx
. However, determining the conditions for stability in general is

more difficult, since D is a complicated expression of the parameters. Nonetheless,
it is evident from considering D that this steady state will be stable when, by and
large, one of the following conditions prevail (all of which make ecological sense):

• the death rate dz of predator z is large enough,

• the interference rate, ayz, of the dominant predator y on the second predator
z is large enough, or

• the rate, azx, at which z effectively searches for x is not too high.

3.2.2. The xz steady state. The steady state in which there is no dominant predator
is given by

y = 0, x =
dz(1 + azzz)− (ezs − dz)azss

azx(ezx − dz)
, z =

(1− x)(1 + azss + azxx)
azx + azz(x− 1)

. (7)

There are no clean conditions for the overall stability of this steady state since
the characteristic equation of the linearized system is algebraically complicated.
A detailed numerical investigation in parameter space would need to be done to
thoroughly analyze the stability, but that would not lead to any readily useful
ecological insights. However, as it turns out, one eigenvalue is

eyxayxx

1 + ayxx
− (dy + h),

which implies that this steady state will be stable (as long as then other two eigen-
values have negative real parts) when the death and harvest rate dy + h of the
predator y is sufficiently large. This could have been conjectured on ecologi-
cal grounds, but the more interesting case occurs when the dominant predator is
nonzero, which can occur when dy + h is not too big. This is the subject of the
next section.

3.3. The three-species steady state. The coexistence of the three species is
the most interesting situation and the most difficult to examine. However, keeping
in mind the goals of determining how the dynamics of the system depend on the
harvest rate h and the level of interference ayz of the dominant predator on the
secondary predator, some very useful insights can be obtained with AUTO ([9],
[10]).

The steady-state value for the prey x is given by

x =
dy + h

ayx(eyx − dy − h)
. (8)

It naturally increases as the predator harvesting rate increases, but decreases as
the search efficiency, ayx, of y for x increases. The steady state values of y and z
are quite parametrically entangled. They are given implicitly as solutions to the
equations,

1− x− ayx y

g(x, y)
− azxz

f(x, y, z, s)
= 0, −dz +

ezxazxx

f(x, y, z, s)
+

ezsazss

f(x, y, z, s)
= 0, (9)

which come from (2) and (3) with x as above.
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Figure 1. The steady state of the three-species steady state with
prey x, dominant predator y, and subdominant predator z is shown
versus the harvesting rate h for the no interference case (ayz = 0).
The other parameters are ayx = 3, azx = .2, dy = .1, dz = .2, eyx =
1, ezx = .5, azz = 1, s = 1, azs = 1, ezs = 1.
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Figure 2. The steady state of the three-species steady state with
prey x, dominant predator y, and subdominant predator z is shown
versus the harvesting rate h for the high interference case (ayz = 8).
The other parameters are the same as in Figure 1.

4. Bifurcation analysis. In this section bifurcation diagrams will illustrate the
changes in dynamics as the harvest rate h of the dominant predator y increases and
as the predator interference rate ayz is varied. The other parameters will generally
be fixed, and it will be assumed that the search efficiency ayx of the dominant
predator y for the prey x will be significantly larger than the search efficiency azx

of predator z for the prey x.
Figures 1 and 2 illustrate the basic dependence of the three-species steady states

on the harvest rate h for two different values of the interference parameter ayz.
In Figure 1, there is no interference (ayz = 0), whereas there is a high level of
interference (ayz = 8) in Figure 2. The primary difference to note is that the
population of the second predator z is significantly suppressed when the interference
rate is high - as would be expected. What is not shown is the stability and how
the three-species steady state interacts with the other steady states; this will be
shown using AUTO.

Figure 3 shows the bifurcation diagrams for x, y, and z versus the harvesting
for the no interference case, ayz = 0. It is important to observe that the three-
species steady state (8, 9) is unstable as the harvest rate h of the dominant predator
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Figure 3. The bifurcation diagrams of the three-species x, y, z
are shown for the no interference case (ayz = 0). The other
parameters are the same as in Figure 1. The light curves are the
unstable steady states and the darker curves are the stable steady
states. All the periodic solutions are stable and are denoted by
solid circles.

increases up to the value of h∗ that corresponds to a value of y just beyond its peak
value where there is a Hopf bifurcation. The lack of stability of this branch partially
explains the seemingly odd behavior in which the predator population (y) increases
when it is harvested more. This is further understood to be ecologically sensible
by observing that there is a stable periodic solution branch for these harvesting
values and the amplitude of y becomes larger when there is less harvesting.

As h increases beyond the Hopf bifurcation point h = h∗, the three species steady
state becomes stable and features a decreasing y population (eventually to zero)
and increasing x and z populations. When y becomes zero, there is a bifurcation
with the xz steady state (7) at the harvesting value labelled hy0 and the stability
is transferred to that branch. As a side note, the xy steady state (4) with z = 0 is
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unstable so it was not shown in the bifurcation diagram. This lack of stability is
explicable in light of the fact that z is not interfered with by y.

To summarize this case, the three species are stable, oscillating populations
for small enough harvesting rates; become stable steady-state populations as the
harvesting increases further (with y declining); and finally only the prey x and
second predator z persist as the harvesting rate becomes too large for the dominant
predator y to survive.

For the bifurcation diagrams in Figure 4, the interference rate is large (ayz = 8)
and the behavior is more complicated than in the no-interference case. The three-
species steady state is unstable for harvesting values all the way to the value of
h3 at which the branch hits the xy steady state (4), in which z = 0. After that
harvesting value, the three-species steady state becomes stable until the harvesting
value hy0, at which y becomes zero and x and z persist; i.e., a bifurcation with (7).
There is a Hopf bifurcation on the three-species branch before that and the periodic
solution emanating from it is unstable at first. As h decreases, however, there is a
secondary bifurcation at h = h∗ with the heretofore stable periodic solution branch
featuring periodic x and y and a zero population of z. Figure 5 shows a blow-up of
this region. The stability is transferred at this bifurcation point, so that all three
species are given by stable periodic solutions when h < h∗.

For h increasing from h = 0, the stable attractors can be characterized as follows:
For 0 ≤ h < h∗ the three species coexist and are periodic. As h approaches h∗

from the left, the amplitude of z diminishes to zero, but x and y remain as stable
periodic solutions until the Hopf bifurcation value of h2 on the xy steady state
(4) (see Figure 5). As h goes beyond h2, z remains zero and x and y are stable
but no longer periodic. As h increases further, there is a bifurcation point of
this steady branch (4) with the three-species steady state (8, 9) at h3, so that z
becomes nonzero again. As h continues to increase, the stable populations of x
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Figure 4. The bifurcation diagrams of the three species x, y, z
are shown for the high-interference case (ayz = 8). The other
parameters are the same as in Figure 1. The light curves are the
unstable steady states, and the darker curves are the stable steady
states. The open circles denote unstable periodic solutions, and
the solid circles are the stable periodic solutions.

and z increase, but the stable y decreases further until it becomes zero. Past this
harvesting rate (hy0), the populations of x and z are the only ones that persist.

In Figures 1–5, the efficiency which the dominant predator searches for the prey is
fairly high (ayx = 3), and the three-species steady branch is unstable for harvesting
values up to the Hopf bifurcation point. This unstable part of the branch was
characterized by an increasing y population as the harvesting of it increased. This
is seemingly counterintuitive, but the fact that this part of the steady state was
unstable made this ecologically palatable, especially when it was seen that a robust
periodic predator population existed in its place. In contradistinction with this
case, different behavior is seen when the search efficiency is lower. Figure 6 shows
the case in which ayx = 1 with moderate interference (ayz = 2). In this situation,
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Figure 5. A blow-up of the regions in Figure 4 near the Hopf
bifurcation points. There is a Hopf bifurcation at h = h2 on the
z = 0, x 6= 0, y 6= 0 steady branch, and the periodic solution arising
therefrom is initially stable. There is a bifurcation of this branch
at h = h∗ with the all nonzero species periodic branch causing the
three-species all nonzero periodic branch to become stable, and it
continues to be stable as h decreases from h∗ to 0.
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Figure 6. The steady state of the three-species steady state with
prey x, dominant predator y, and subdominant predator z is shown
versus the harvesting rate h for a lower predator search efficiency
(ayx = 1 compared to ayx = 3) than in Figures 1–5. The interfer-
ence level is moderate (ayz = 2), but all of the other parameters
are the same as in Figure 1.

the dominant predator population always decreases as the harvesting h increases
and there are no Hopf bifurcations. The three-species steady state is stable until
the y population becomes zero at h = hy0, and the stability is transferred to the
non-zero x and z steady state (7).

5. Discussion. The bifurcations and stability of the various branches as the har-
vesting rate h varies for different levels of interference ayz are complex. In the
interest of distilling the major bifurcation phenomena and stability, the following
illustrates the stable attractors as h increases:

No interference: ayz = 0 (see Figure 3)
0 ≤ h < h∗ h∗ < h < hy0 hy0 < h
x, y, z 6= 0 periodic x, y, z 6= 0 steady x, z 6= 0, y = 0 steady
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High interference: ayz = 8 (see Figures 4 - 5)
0 ≤ h < h∗ h∗ < h < h2 h2 < h < h3

x, y, z 6= 0 periodic x, y 6= 0, z = 0 periodic x, y 6= 0, z = 0 steady

h3 < h < hy0 hy0 < h
x, y, z 6= 0 steady x, z 6= 0, y = 0 steady

Moderate interference: ayz = 2 and lower search efficiency ayx (see Figure 6)
0 ≤ h < hy0 hy0 < h

x, y, z 6= 0 steady x, z 6= 0, y = 0 steady

The bifurcations describe features of the predator-prey dynamics that could
translate well into real ecological systems. The genuine benefit of predator-prey
models for predicting behavior in real ecosystems is generally not in quantitative
accuracy, but in capturing important qualitative features. It has been found that
in a complex ecosystem such as an ocean, in which a dominant predator such as cod
is significantly fished out, alternative, less desirable, subdominant predator species
have taken over to a large extent [14]. This suggests that the population of this
subecosystem is, at least qualitatively, on the downslope of the stable three-species
branch.

As the bifurcation diagrams illustrate and as common sense dictates, it will al-
ways be the case that the population of the dominant predator will become zero
when the rate at which it is harvested is sufficiently large. What is interesting,
though, is the different population behavior found by altering the level of interfer-
ence, the harvesting rate, and the search efficiency. In real ecological systems, it
may be useful to view the potential causes and explanations of certain observed
characteristics in this light.
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