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Abstract. This paper presents the study of a continuous-time piecewise-
deterministic Markov process for describing the temporal evolution of ex-

posure to a given food contaminant. The quantity X of food contaminant
present in the body evolves through its accumulation after repeated dietary

intakes on the one hand, and the pharmacokinetics behavior of the chemical

on the other hand. In the dynamic modeling considered here, the accumula-
tion phenomenon is modeled by a simple marked point process with positive

i.i.d. marks, and elimination in between intakes occurs at a random linear

rate θX, randomness of the coefficient θ accounting for the variability of the
elimination process due to metabolic factors. Via embedded chain analysis,

ergodic properties of this extension of the standard compound Poisson dam

with (deterministic) linear release rate are investigated, the latter being of cru-
cial importance in describing the long-term behavior of the exposure process

(Xt)t≥0 and assessing values such as the proportion of time the contaminant

body burden is over a certain threshold. We also highlight the fact that the
exposure process is generally not directly observable in practice and estab-

lish a validity framework for simulation-based statistical methods by coupling
analysis. Eventually, applications to methyl mercury contamination data are

considered.

1. Introduction. Certain foods may contain varying amounts of chemicals such as
methyl mercury (present in seafood), dioxins (in poultry, meat), or mycotoxins (in
cereals, dried fruits, etc.), which may cause major health problems when accumu-
lated inside the body in excessive doses. Food safety is now a crucial public health
concern in many countries (for example, it is a thematic top priority of the 7th Euro-
pean Research Framework program, see http://ec.europa.eu/research/fp7/).
This topic naturally interfaces with various disciplines, such as biology, nutritional

2000 Mathematics Subject Classification. Primary: 60J25; 62P10; Secondary: 92B15.
Key words and phrases. pharmacokinetics model, dietary contamination, food safety,

piecewise-deterministic Markov process, simulation method, stability analysis.
The third author is supported by RGC grant #601906.

35

http://ec.europa.eu/research/fp7/
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medicine, toxicology, and of course applied mathematics with the aim of developing
rigorous methods for quantitative risk assessment. Scientific literature devoted to
probabilistic and statistical methods for the study of dietary exposure to food con-
taminants is progressively carving out a place in applied probability and statistics
journals (see [58], [24], [30], or [9]).
Static viewpoints for the probabilistic modeling of the quantity X of a given food
contaminant ingested in a short period have been considered in recent works, mainly
focusing on the tail behavior of X and allowing for computation of the probability
that X exceeds a maximum tolerable dose (see [8], [57]). However, as highlighted
in [62], such approaches for food risk analysis do not take into account the accumu-
lating and eliminating processes occurring in the body, which naturally requires the
introduction of time as a crucial description parameter of a comprehensive model
(see also the discussion in [27]).

This paper proposes a dynamic modeling of exposure to a certain food con-
taminant, incorporating important features of the phenomenon, in a way that the
model may account for the contaminant pharmacokinetics in the body following
intakes. The case of methyl mercury food contamination shall serve as an example
of the concepts and methods studied in this article: mathematical modeling of the
pharmacokinetics behavior of methyl mercury (essentially present in seafoods) has
received increasing attention in toxicology literature (see [45], [56], [55], [1], or [26])
and dose-response relationships have been extensively investigated for this contam-
inant, establishing clearly its negative impact on human health (refer to [15], [18]).
In our modeling, the amount of contaminant present in the body evolves through its
accumulation after repeated intakes (food consumption) and according to the phar-
macokinetics governing its elimination/excretion, so that its temporal evolution is
described by a piecewise-deterministic Markov process (PDM process in abbrevi-
ated form): the accumulation process is modeled by a marked point process in a
standard fashion, while the elimination phenomenon is described by a differential
equation with random coefficients, randomness accounting for the variability of the
rate at which the total contaminant body burden decreases in between intakes due
to metabolic factors. This process slightly extends storage models with general re-
lease rules widely used in operations research and engineering for dealing with prob-
lems such as water storage in dams, in that it allows the (content-dependent) release
rate to be random, as strongly supported by biological modeling, and inter-intake
times are not required to be exponentially distributed (the choice of a memoryless
distribution being totally inadequate in the dietary context). Having practical use
of the proposed exposure model for public health guidance in view (see [62]), we
also discuss its relation to available data in the present paper: as sample paths of
the exposure process cannot be observed in general, we set theoretical grounds for
practical inference techniques based on intensive computer simulation methods. A
thorough statistical analysis of toxicological and intake data based on the concepts
and results developed in this article is carried out in a forthcoming companion paper
(see [7]).

The outline of the paper is as follows. In Section 2 a class of stochastic models
with a reasonably simple (markovian) structure for describing the evolution through
time of food contaminant exposure is introduced. In the important case when the
(random) elimination rate is linear (such a feature being strongly motivated by
previous works on kinetics modeling), theoretical properties of the exposure process
are thoroughly investigated in Section 3. Turning to the problem of estimating the
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steady-state or time-dependent features of the model that are relevant from the
toxicology viewpoint and taking into account the fact that the exposure process
is not observable in practice, statistical procedures relying on simulation methods
are presented and studied in Section 4. Finally, empirical studies related to methyl
mercury food contamination are carried out in Section 5, with the aim to illustrate
the relevance of the modeling and the statistical methods studied in this paper.
Technical proofs are postponed to the Appendix.

2. Modeling the exposure to a food contaminant. Suppose that an exhaus-
tive list of P types of food, indexed by p = 1, . . . , P , involved in the alimentation
of a given population and possibly contaminated by a certain chemical, is drawn
up. Regarding the chemical of interest, each type of food p ∈ {1, . . . , P} is con-
taminated in random ratio K(p), with probability distribution FK(p) on R+, the
set of positive real numbers (we shall denote by R∗+ the set of strictly positive real
numbers). Concerning this specific contaminant exposure, a meal may be viewed
as a realization of a random variable (r.v.) Q = (Q(1), . . . , Q(P )) indicating the
quantity of food of each type consumed, normalized by the body weight. For a
meal Q drawn from a distribution FQ on RP+, cooked from foods of which toxicity
is described by a contamination ratio vector K = (K(1), . . . ,K(P )) drawn from the
tensor product of distributions FK = ⊗Pp=1FK(p) , the global contaminant intake is

U =
p∑
p=1

K(p) ·Q(p) = 〈K,Q〉, (1)

denoting by 〈., .〉 the standard inner product on RP . Its probability distribution
FU is the image of FK ⊗ FQ by the inner product 〈., .〉, assuming that the quan-
tities of food consumed are independent from the contamination levels. Here and
throughout, we suppose that the contaminant intake distribution FU has a density
fU with respect to λ, the Lebesgue measure on R+.

By convention, T0 = 0 is chosen as time origin. The food contamination phe-
nomenon through time for an individual of the population of interest may be clas-
sically modeled by a marked point process {(Tn, Qn,Kn)}n≥1 on R+ × RP+ × RP+,
the Tn’s being the successive times at which the individual consumes foods among
the list {1, . . . , P} and the marks (Qn,Kn) being respectively the vector of food
quantities and the vector of contamination ratios related to the meal had at time
Tn, n ≥ 1 (refer to [21] for a recent account of the theory of point processes and of
its numerous applications). The process {(Tn, Qn)}n≥1 describing dietary behav-
ior is assumed independent from the sequence (Kn)n≥1 of chemical contamination
ratios. Although the modeling of dietary behaviors could certainly give rise to a
huge variety of models, depending on the dependence structure between (Tn, Qn)
and past values {(Tm, Qm)}m<n that one stipulates, here we make the simplifying
assumption that the marks Qn, n ≥ 1, form a sequence of independent and identi-
cally distributed random variables (in the sequel we shall use the abbreviated form
”i.i.d. r.v.’s”), with common distribution FQ independent from the location times
(Tn)n≥1. This assumption is acceptable for chemicals present in a few types of
food, such as methyl mercury, our running example, but certainly not for all con-
taminants. For chemicals present in many foods of everyday consumption such as
Ochratoxin A (present in cereals, coffee, etc.), it would be necessary to introduce an
additional autoregressive structure in the model for capturing important features
of any realistic diet (the consumption of certain food being typically alternated for
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reasons related to taste or nutritional aspects). Such a modeling task is beyond the
scope of the present paper and is left for further investigation. Finally, we suppose
that the inter-intake times ∆Tn+1 = Tn+1−Tn, n ≥ 1, are i.i.d. with common prob-
ability distribution G(dt) = g(t)dt and finite expectation mG =

∫∞
t=0

tG(dt) < ∞,
the sequence (Tn)n≥1 of intake times being thus a pure renewal process.

Contamination sources other than dietary are neglected in the present study and
we denote by X(t) the total body burden in contaminant at time t ≥ 0. In between
intakes, we assume that the contamination exposure process X(t) is governed by
the differential equation

ẋ(t) = −r(x(t), θ), (2)
denoting x’s temporal derivative by ẋ(t) and θ being a random parameter, taking
its values in a set Θ ⊂ Rd with d ≥ 1 say, and accounting in the modeling for
fluctuations of the elimination rate due to metabolic factors at the intake times
(the successive values θn, n ∈ N, of θ are thus fixed at times T0, T1, . . ., see Remark
2 below). The function r(x, θ) is assumed to be strictly positive and continuous
on R∗+ × Θ, such that for all θ ∈ Θ, r(0, θ) = 0 (so that when X(t) eventually
reaches the level 0, the process stays at this level until the next intake) and for all
(ε, θ) ∈ (0, 1)×Θ:

inf
ε<x<ε−1

r(x, θ) > 0 and sup
0<x<ε−1

r(x, θ) <∞. (3)

Under these conditions, for any initial value x(0) ≥ 0 and metabolic parameter
value θ ∈ Θ, Eq. (2) clearly has a unique solution.

Other approaches may be naturally adopted for describing the elimination phe-
nomenon occurring in between intakes. For instance, toxicokinetic models based
on stochastic differential equations or decreasing jump processes (as in inventory
modeling) could be pertinently considered for this purpose.

Remark 1. (Pharmacokinetics modeling) In toxicology, Eq. (2) is widely
used with r(x, θ) = θx for modeling the kinetics of certain contaminants following
intakes. As shown by many pharmacokinetics studies, there is considerable em-
pirical evidence that it properly describes the way the elimination rate depends
on the total body burden of the chemical in numerous cases (see [12], [54] or [29]
for further details on linear pharmacokinetics models, also referred to as first-order
kinetics models). In this context, the release parameter log 2/θ is known as the bi-
ological half-life of the contaminant (the time required for X to decrease by half in
the organism in absence of new contaminant intake). For methyl mercury (MeHg),
our example in this paper, the half-life is known to fluctuate around six weeks (see
[56] and the references therein). For such dietary contaminants, of which biologi-
cal half-life is measured in weeks rather than days, it is naturally essential to take
account of the kinetics for successful modeling of the exposure phenomenon.

Remark 2. (Modeling fluctuations in the metabolic rate) In a mathe-
matical model for the evolution of food contaminant exposure through time, incor-
porating a certain amount of randomness in the elimination process due to possible
metabolism changes may certainly contribute to make the modeling more plausi-
ble. In this first attempt, mainly motivated by the dietary methyl mercury case,
we chose here to vary the metabolic parameter at each intake time, on grounds
of parsimony: indeed, data collected generally consist of observed half-lives in a
sample of individuals only (see [35, 28] for instance) and, to our knowledge, no
quantitative study of the frequency of changes in metabolism (regarding chemical
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elimination) has been carried out yet. However, our marked point process based
model could be easily extended by considering competing risks between intake times
and times when the metabolism changes. Another possible approach for modeling
the fluctuations of θ could consist of using a stochastic differential equation (based
on a geometric Brownian motion for instance).

We assume that (θn)n∈N is an i.i.d. sequence with common distribution H(dθ).
For a given value of the metabolic parameter θ ∈ Θ, the time necessary for the
body burden (without further intake) to decrease from x0 > 0 to x ∈ (0, x0) is
given by

τθ(x0, x) =
∫ x0

x

1
r(y, θ)

dy.

Under these assumptions, we clearly have that H({τθ(x0, x) < ∞}) = 1 for all
0 < x ≤ x0. The contaminant may be thus entirely eliminated from the body (the
amount x reaching then the level 0) with probability one in the sole case when the
next condition holds.
Condition (C1): H({τθ(x0, 0) <∞}) = 1 for some x0 > 0.

In such a case we would also have H({τθ(x, 0) < ∞}) = 1 for all x ≥ 0. In this
respect, it is noteworthy that, in the linear case mentioned in Remark 1, we have
τθ(x, 0) = ∞ for all θ > 0 and x > 0, meaning that the process cannot reach the
level 0 in finite time (in contrast with pharmacokinetics models based on affine
rates r(x) = a + b · x with a > 0). However, determining whether the chemical
may be entirely removed from the body is purely a mathematical concern, due to
existing limits of detection (LOD) inherent to analytical measurement techniques
(see [33]).

Hence, in between intake times and given the current value of the metabolic
parameter θ, the exposure process moves in a deterministic fashion according to
(2), and has the same (upward) jumps as the process of cumulative intakes

B(t) =
N(t)∑
n=1

Un,

with Un = 〈Kn, Qn〉, n ∈ N, and N(t) =
∑
n∈N I{Tn≤t} as the number of intakes

until time t, denoting by IE the indicator function of any event E . The exposure
process X is piecewise-deterministic with càd-làg1 trajectories (see a typical sample
path in Fig. 1) and satisfies the equation

X(t) = X(0) +B(t)−
N(t)+1∑
n=1

∫ Tn∧t

Tn−1

r(X(s), θn)ds, (4)

X(0) denoting the total body burden in contaminant at initial time T0 = 0 and with
a ∧ b = min(a, b) for all (a, b) ∈ R2. For an account of such piecewise deterministic
processes, one may refer to [23] (see also [22] and ergodic results may be found in
[17]).

For the continuous-time process thus defined to be markovian, one has to record
the current value θ(t) =

∑
n∈N θnI{t∈[Tn,Tn+1[} of the metabolic parameter as well

as the backward recurrence time A(t) = t − TN(t) (the time since the last intake).

1Recall that any function x : R+ → R is said càd-làg if it is is everywhere right-continuous

and has left limits everywhere: for all t > 0, lims→t, s>t x(s) = x(t) and lims→t, s<t x(s) exists

and is finite.
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Figure 1. Sample path of the exposure process X, modeling the
evolution of the total body burden of a given dietary contaminant
through time.

By construction, the process (X(t), θ(t), A(t))t≥0 is strongly markovian with in-
finitesimal generator

Gφ(x, θ, t) = ζ(t)
∫ ∞
u=0

∫
θ′∈Θ

{φ(x+ u, θ′, 0)− φ(x, θ, t)}FU (du)H(dθ′)

− r(x, θ)∂xφ(x, θ, t) + ∂tφ(x, θ, t), (5)

denoting by ζ(t) = g(t)/
∫∞
s=t

g(s)ds the hazard rate of the inter-intake times and
provided that φ(., θ, .) : (x, t) 7→ φ(x, θ, t) is a bounded function with bounded
continuous first derivatives in x and t for all θ ∈ Θ (one may refer to [2] for an
account of key notions of the theory of stochastic processes, oriented to biology
applications).

In the above setting, the time origin T0 = 0 does not necessarily correspond to
an intake time. Given the time A(0) = a since the last intake at time t = 0, we
let ∆T1 have the density ga(t) = g(a+ t)/

∫∞
s=a

g(s)ds, making the renewal process
(∆Tn)n∈N possibly delayed, except in the case when the inter-intake distribution
G is exponential. However, the choice of such a memoryless distribution in the
dietary context is clearly not pertinent, distributions with increasing hazard rate
being much more adequate (see section 5). Here and throughout we denote by Px,a
the probability measure on the underlying space such that (X(0), A(0)) = (x, a)
and θ(0) ∼ H, and by Ex,a[.] the Px,a-expectation for all x ≥ 0 and a in supp(G),
the support of the distribution G.
In the case when one neglects variability in the elimination process (i.e., when H
is a Dirac measure) and under the additional assumption that the renewal times
are exponentially distributed (making the process X itself markovian, which fa-
cilitates the study but is not relevant to our application as emphasized above),
this modeling boils down to a standard storage model with a general release rate
(see [14] and [13] for instance). We refer to Chapter XIV in [4] for an account of
such processes, widely used in operations research for modeling queuing/storage
systems. Basic communication properties of the stochastic process X = (X(t))t≥0

may be established in a fashion very similar to the ones of the latter processes.
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They are summarized in the next result (of which proof is omitted since it is a
slight modification of the proof of Proposition 1.2 in chap. XIV of [4]).

Theorem 2.1. Suppose that G(dx) = g(x)dx has infinite tail (so that arbitrarily
long inter-intake times may happen with positive probability). Assume further that
either g(x) > 0 on ]0, ε] for some ε > 0 or else that FU has infinite tail (i.e. with
positive probability, either intake times may be arbitrarily close together or else
intakes may be arbitrarily large). Then X reaches any state x > 0 in finite time with
positive probability whatever the starting point, i.e. for all x0 ≥ 0, a ∈ supp(G), we
have

Px0,a(τx <∞) > 0, (6)
with τx = inf{t ≥ 0 : Xt = x} as the (random) time needed for X to reach the level
x. Furthermore, if condition (C1) is fulfilled, then (6) still holds for x = 0. Besides,
either X ”goes to infinity” with probability one, i.e., is such that Px0,a({X(t)→∞ ,
as t → ∞}) = 1 for all x0 ≥ 0, or X reaches any state x > 0 in finite time with
probability one whatever the starting point, i.e., for all x0 ≥ 0, a ∈ supp(G),

Px0,a(τx <∞}) = 1. (7)

If (C1) is satisfied, then (7) also holds for x = 0.

An important task is to find conditions ensuring that the limiting behavior of the
exposure process X is represented by a stationary probability measure µ describing
the equilibrium state to which the process settles as time goes to infinity. In partic-
ular, time averages over long periods, such as the mean time spent by the exposure
process X over a possibly critical threshold u > 0, T−1

∫ T
0

I{Xt≥u}dt, for instance,
are then asymptotically described by the distribution µ. Computing/estimating
steady-state quantities would be then relevant for summarizing the exposure phe-
nomenon in the long run and assessing the long-term toxicological risk. Beyond
stochastic stability properties, determining the tail behavior of the steady-state
distribution and evaluating the rate at which the exposure process converges to
the stationary state is also of critical importance in practice. These questions are
thoroughly investigated for linear pharmacokinetics models in the next section.

3. Probabilistic study in the ’linear kinetics’ case. We now focus on the
ergodicity properties of the exposure process X(t) in the specific case when, for
a given metabolic state described by a real parameter θ, the elimination rate is
proportional to the total body burden in contaminant, i.e. r(x, θ) = θx.

Here we suppose that Θ is a subset of R∗+, ensuring that (3) is satisfied. As
mentioned before, the linear case is of crucial importance in toxicology, insofar as
it suitably models the pharmacokinetics behavior of numerous chemicals (see [29]).
We shall show that studying the long-term behavior of X is reduced to investigating
the properties of the embedded Markov chain X̃ = (Xn)n≥1 that corresponds to the
values taken by the exposure process just after intake times: Xn = X(Tn) for all
n ≥ 1. By construction, the chain X̃ satisfies the following autoregressive equation
with random coefficients

Xn+1 = e−θn∆Tn+1Xn + Un+1, for all n ≥ 1, (8)

and has transition probability Π(x, dy) = π(x, y)dy with transition density

π(x, y) =
∫
θ∈Θ

∫ ∞
t= 1

θ log(1∨ xy )

fU (y − xe−θt)G(dt)H(dθ), (9)
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for all (x, y) ∈ R∗2+ , where a∨ b = max(a, b). Ergodicity of such real-valued Markov
chains Y , defined through stochastic recurrence equations of the form Yn+1 =
αnYn + βn, where {(αn, βn)}n∈N is a sequence of i.i.d. pairs of positive r.v.’s, has
been extensively studied in the literature, such models being widely used in financial
or insurance mathematics (see section 8.4 in [25] for instance). Specialized to our
setting, well known results related to such processes enable us to demonstrate that
the embedded chains X̃ is positive recurrent2 under the assumption that log(1∨U1)
has finite expectation (which is a very plausible hypothesis in the dietary context),
as stated in the next theorem, and then to specify the tail behavior of the limiting
probability distribution. Furthermore, the simple autoregressive form of Eq. (8)
makes Foster-Lyapunov conditions easily verifiable for such Markov chains, in order
to refine their stochastic stability analysis (we refer to [44] for an account of such
key notions of the Markov chain theory).

Theorem 3.1. Under the assumptions of Theorem 2.1, the chain X̃ is λ- irre-
ducible3. Moreover, suppose that the following condition holds.

(H1): E[log(1 ∨ U1)] <∞.

Then X̃ is positive recurrent with stationary probability distribution µ̃.
If one assume further that fU is continuous and strictly positive on R+ and:

(H2): there exists some γ ≥ 1 such that E[Uγ1 ] <∞,

then X̃ is geometrically ergodic, µ̃ has finite moment of order γ and there exist
constants R <∞ and r > 1 such that, for all n ≥ 1, x > 0,

sup
{ψ,|ψ(z)|≤1+zγ}

∣∣∣∣ ∫ ∞
y=0

ψ(y)Πn(x, dy)− µ̃(ψ)
∣∣∣∣ ≤ R(1 + xγ)r−n, (10)

denoting by Πn the n-th iterate of Π and with µ̃(ψ) =
∫∞
y=0

ψ(y)µ̃(dy) for any µ̃-
integrable function ψ.
Suppose finally that the condition (H1) and the next one simultaneously hold,

(H3): The r.v. U1 is regularly varying with index κ > 0 (i.e. for all t > 0,
(1− FU (tx))/(1− FU (x)) ∼ t−κ as x→∞).

Then the stationary law µ̃ has regularly varying tail with index κ.

Remark 3. (Tail assumption for the intake distribution) The relevance
of the regular variation assumption for modeling the tail behavior of dietary con-
taminant intakes related to certain chemicals is strongly supported in [57] and [8].
In these works, various estimation strategies for tail distribution features such as
the Pareto index κ involved in (H3) are also proposed and implemented on several
food contamination and consumption data sets. We refer to [25] for an excellent ac-
count of such notions arising in extreme values theory and techniques for modeling
extremal events.

2Recall that a Markov chain Y = (Yn)n∈N with state space (E, E) is positive recurrent if there

exists a unique probability distribution µ on E that is invariant for its transition kernel Π (i.e
µ(dy) =

∫
x∈E µ(dx)Π(x, dy)), making then Y stationary (µ is then referred to as Y ’s stationary

distribution).
3A Markov chain Y = (Yn)n∈N with state space (E, E) and transition Π(x, dy) is said ψ-

irreducible, ψ being a σ-finite measure on E, if, for all A ∈ E weighted by ψ, Y visits the subset
A in finite time with positive probability whatever its starting point, i.e.,

∑
n≥1 Π(x,A) > 0 for

all x ∈ E.
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As pointed out in [43], stochastic stability analysis based on drift criteria in
the continuous-time setting is not as straightforward as in the discrete-time case,
generally due to the complex form of the generator and of candidate test functions.
Fortunately, given the explicit relationship between X and the embedded discrete-
time chain X̃ in our specific case, ergodicity of the continuous-time model and
tail properties of its limiting distribution may be investigated based on the results
established above for X̃ under mild conditions. However, under more restrictive
moment conditions for the inter-intake distribution, as the one stated below, a
simple test function for which the generator (5) is shown to satisfy a geometric drift
condition, may be nevertheless exhibited, so as to establish geometric ergodicity for
the Markov process {(X(t), θ(t), A(t))}t≥0.

(H4): There exists η > 0 such that E[exp(η∆T2)] <∞.

Theorem 3.2. Under the assumptions of Theorem 2.1 and supposing that (H1) is
fulfilled, X(t) has an absolutely continuous limiting probability distribution µ given
by

µ([u,∞[) = m−1
G

∫ ∞
x=u

∫ ∞
t=0

∫
θ∈Θ

t ∧ log(x/u)
θ

µ̃(dx)G(dt)H(dθ), (11)

in the sense4 that T−1
∫ T

0
I{Xt≤u}dt→ µ([0, u]), Px0,a-a.s., as t→∞ for all x0 ≥ 0

and a ∈ supp(G). Furthermore,
• if (H3) holds and the set Θ is bounded, then µ is regularly varying with the

same index as FU ,
• and if (H2) and (H4) hold, then {(X(t), θ(t), A(t))}t≥0 is geometrically re-

current. In particular, µ has finite moment of order γ and for all (x, a) ∈
R∗+ × supp(G), there exist constants β ∈]0, 1[, Ba <∞ such that

sup
ψ(z)≤1+zγ

|Ex,a[ψ(Xt)]− µ(ψ)| ≤ Ba(1 + xγ)βt. (12)

Remark 4. (Tail behavior of the stationary distribution) When the Un’s
are heavy-tailed, and under the assumption that the ∆Tn’s are exponentially dis-
tributed (making B(t) a time-homogeneous Lévy process), the fact that the sta-
tionary distribution µ inherits its tail behavior from FU has been established in [3]
for deterministic release rates. Besides, when assuming G exponential and θ fixed,
one may exactly identify the limit distribution µ in some specific cases (see section
8 in [13] or section 2 in Chap. XIV of [4]) using basic level crossing arguments (X
being itself markovian in this case). If FU is also exponential for instance, µ is a
Gamma distribution.

Remark 5. (Practical relevance of steady-state features) Now that
it is established that the exposure process settles to an equilibrium regime after
a ’certain time’, the question of specifying precisely what is meant by ’certain
time’ naturally arises. It would be pertinent to describe the long run behavior
of the exposure process and assess the long-term toxicological risk by computing
steady-state characteristics solely if the time necessary to reach the equilibrium
state approximately may be considered as a reasonable horizon at the human scale.
As an illustration, the amount of time needed to be roughly in steady-state from a

4We recall that a sequence of random variables (Xn)n∈N is said to converge P-almost surely to
a r.v. X when the event {limn→∞Xn = X} happens with probability one, i.e., P(limn→∞Xn =

X) = 1. One then standardly writes Xn → X P− a.s. in abbreviated form. More generally, any
property holding true with probability one shall be said “holding true P-almost surely”.
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collection of datasets related to dietary MeHg contamination is evaluated through
simulation in Section 5.

In order to exhibit connections between the exposure process X = (X(t))t≥0

and possible negative effects of the chemical on human health, it is appropriate
to consider simple characteristics of the process X, easily interpretable from an
epidemiology viewpoint. In this respect, the mean exposure over a long time period
T−1

∫ T
t=0

X(t)dt is one of the most relevant features. Its asymptotic behavior is
refined in the next result.

Proposition 1. Under the assumptions of Theorem 2.1 and supposing that (H2)
is fulfilled for γ = 1, we have for all (x0, a) ∈ R+ × supp(G)

X̄T =
1
T

∫ T

t=0

X(t)dt→ mµ, Px0,a-a.s., (13)

as T →∞ with mµ =
∫∞
x=0

xµ(dx). Moreover, if (H2) is fulfilled with γ ≥ 2, then
there exists a constant 0 < σ2 <∞ s.t. for all (x0, a) ∈ R+ × supp(G) we have the
following convergence in Px0,a-distribution

√
T (X̄T −mµ)⇒ N (0, σ2) as T →∞. (14)

Remark 6. (Limiting variance of the sample mean exposure value) As
will be shown in the proof below, the asymptotic variance σ2 in (14) may be re-
lated to the limiting behavior of a certain additive functional of the Markov chain
((Xn, θn,∆Tn+1))n≥1. In [5] (see also [6]) an estimator of the asymptotic variance
of such functionals based on pseudo-renewal properties of the underlying chain
(namely, on renewal properties of a Nummelin extension of the chain) has been
proposed and a detailed study of its asymptotic properties has been carried out.

Beyond the asymptotic exposure mean or the asymptotic mean time spent by X
above a certain threshold, other summary characteristics of the exposure process
could be pertinently considered from an epidemiology viewpoint, among which the
asymptotic tail conditional expectation Eµ[X | X > u], denoting by Eµ[.] the
expectation with respect to µ, after the fashion of risk evaluation in mathematical
finance or insurance (see also [62]).

4. Simulation-based statistical inference. We now consider the statistical is-
sues one faces when attempting to estimate certain features of linear rate exposure
models. The main difficulty lies in the fact that the exposure process X is gener-
ally unobservable. Food consumption data (quantities of consumed food and con-
sumption times) related to a single individual over long time periods are scarcely
available in practice. Performing measurements at all consumption times so as to
record the food contamination levels is not easily realizable. Instead, practitioners
have at their disposal some massive databases, in which information related to the
dietary habits of large population samples over short periods of time is gathered.
In addition, some contamination data concerning certain chemicals and types of
food are stored in data warehouses and available for statistical purposes. Finally,
experiments for assessing models accounting for the pharmacokinetics behavior of
various chemicals have been carried out. Data permitting to fit values or probability
distributions on the parameters of these models are consequently available.

Estimation of steady-state or time-dependent features of the law LX of the pro-
cess X given the starting point (X(0), A(0)) = (x0, a) ∈ R+ × supp(G) could thus
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be based on preliminary computation of consistent estimates Ĝ, F̂U and Ĥ of the
unknown distribution functions G, FU and H. Hence, when no closed form analytic
expression for the quantity of interest is available from (G,FU , H), ruling out the
possibility of computing plug-in estimates, a feasible method could consist in sim-
ulating sample paths starting from (x0, a) of the approximate process X̂ with law
LX̂ corresponding to the estimated distribution functions (Ĝ, F̂U , Ĥ) and construct
estimators based on the trajectories thus obtained.

Beyond stochastic modeling of the exposure phenomenon, the main goal of this
paper is to provide theoretical grounds for the application of such statistical meth-
ods in toxicological risk evaluation. This leads up to investigate the stability of
the stochastic model described in Section 2 with respect to G, FU and H (stability
analysis may be viewed as the counterpart of sensitivity analysis in a probabilistic
framework, refer to [46] for an account of this topic), and consider the continuity
problem consisting in evaluating a measure of closeness between LX and LX̂ making
the mapping LX 7→ Q(X) continuous, Q being the functional of the trajectory of
interest, a certain mapping defined on the Skorohod’s space, i.e., the set of càd-làg
functions x : R+ → R. Hence, convergence preservation results may be obtained
via the continuous-mapping approach as described in [63], where it is applied to es-
tablish stochastic-process limits for queuing systems. For simplicity’s sake, we take
a = 0 in the following study and do not consider the stability issue related to the
approximation of the starting point (X(0), A(0)), straightforward modifications of
the argument below permitting us to deal with the latter problem. For notational
convenience, we omit indexing the probabilities and expectations considered in the
sequel by (x0, 0).

Let 0 < T <∞. Considering the geometry of the (càd-làg) sample paths of the
exposure process X (see Fig. 1), we use the M2 topology on the Skorohod’s space
DT = D([0, T ],R) induced by the Hausdorff distance on the space of completed
graphs (the completed graph of x ∈ DT being obtained by connecting (t, x(t)) to
(t, x(t−))) with a line segment for all discontinuity points), allowing trajectories
to be eventually close even if their jumps do not exactly match (the J2 topology
would actually be sufficient for our purpose, refer to [36] or [63] for an account on
topological concepts for sets of stochastic processes). In order to evaluate how close
the approximating and true laws are, we shall establish an upper bound for the
L1-Wasserstein Kantorovich distance between the distributions LX(T ) and LX̂(T )

of X(T ) = (X(t))t∈[0,T ] and X̂(T ) = (X̂(t))t∈[0,T ], which metric on the space of
probability laws on DT is defined as follows (refer to [47], [10]):

W(T )
1 (L,L′) = inf

Z ′ ∼ L′, Z ∼ L
E[m(T )

M2
(Z ′, Z)],

where the infimum is taken over all pairs (Z ′, Z) with marginals L′ and L and
m

(T )
M2

(Z ′, Z) = m
(T )
H (ΓZ′ ,ΓZ), denoting by ΓZ′ and ΓZ the completed graphs of

Z ′ and Z and by m
(T )
H the Hausdorff metric on the set of all compact subsets of

[0, T ] × R related to the distance m((t1, x1), (t2, x2)) = |t1 − t2| + |x1 − x2| on
[0, T ]× R. It is well-known that this metric implies weak convergence (see [10]).

As claimed in the next theorem, the law LX̂(T ) gets closer and closer to LX(T ) as
the distribution functions Ĝ, F̂U and Ĥ respectively tend to G, FU and H in the
Mallows sense. For p ∈ [1,∞), we denote byMp(F1, F2) = (

∫ 1

0

∣∣F−1
1 (t)− F−1

2 (t)
∣∣p dt)1/p
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the Lp-Mallows distance between two distribution functions F1 and F2 on the real
line.

Theorem 4.1. Let (G,FU , H) (respectively, (Ĝ(n), F̂
(n)
U , Ĥ(n)) for n ∈ N) be a

triplet of distribution functions on R+ defining a linear exposure process X (re-
spectively, X̂(n)) starting from x0 ≥ 0 and fulfilling Theorem 2.1’s assumptions
and (H2) with γ = 1. Suppose that (Ĝ(n), F̂

(n)
U , Ĥ(n)) tends to (G,FU , H) in the

L1-Mallows distance as n → ∞. Assume further that G (respectively, Ĝ(n)) has
finite variance σ2

G (resp., σ2
Ĝ(n)) and H (resp., Ĥ(n)) has finite mean, mH . If σ2

Ĝ(n)

remains bounded, then:

sup
T>0

T−2W(T )
1 (LX(T ) ,LX̂(T ))→ 0, as n→∞. (15)

And for all T > 0 we have the weak convergence:

X̂
(T )
(n) ⇒ X(T ) in DT , as n→∞. (16)

Remark 7. Before showing how this theoretical result applies to the problem
of approximating/estimating general functionals of the exposure process, a few
remarks are in order.
• We point out that similar results hold for the Lp-Wasserstein Kantorovich

distance with p ∈ [1,∞) under suitable moment conditions.
• It may also be convenient to consider the function space D∞ = D([0,∞),R)

in which X has its sample paths and on which the metric

m
(∞)
M2

(x, x′) =
∫ ∞
t=0

2−tm(t)
M2

({x(s)}s∈[0,t], {x′(s)}s∈[0,t])dt

for (x, x′) ∈ D2
∞ may be considered. It is noteworthy that (15) also immedi-

ately provides a control of the L1-Wasserstein distance W(∞)
1 corresponding

to that metric between LX and LX̂ .
• In statistical applications, one is led to consider random estimates Ĝ(n), F̂ (n)

U ,
and Ĥ(n). Clearly, if both the convergence (Ĝ(n), F̂

(n)
U , Ĥ(n)) → (G,FU , H)

(i.e., ’L1-consistency’ of the distribution estimates) and the boundedness of
σ2
Ĝ(n) holds almost surely, then the results of the preceding theorem (and

those stated in the next corollary) also hold almost surely.

By demonstrating that good approximations/estimations of the distributions H,
G and FU also induces good approximation/estimation of general functionals of the
exposure process, the next result establishes the asymptotic validity of simulation
estimators under general conditions. In general, provided that the instrumental
distribution estimates at our disposal are accurate, we may thus treat simulated
sample paths as if they were really exposure trajectories of individuals in the pop-
ulation of interest.

Corollary 1. Let (G,FU , H) (respectively (Ĝ(n), F̂
(n)
U , Ĥ(n)) for n ∈ N) be a triplet

of distribution functions on R+ defining a linear exposure process X (respectively
X̂(n)) starting from x0 ≥ 0 and fulfilling the assumptions of Theorem 4.1. Let
0 < T ≤ ∞.

(i) Let Q be a measurable function mapping DT into some metric space (S, D)
with Disc(Q) as set of discontinuity points and such that P(X(T ) ∈ Disc(Q)) =
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0. Then we have the convergence in distribution

Q(X̂(T )
(n) )⇒ Q(X(T )) in (S, D).

(ii) For any Lipschitz function φ : (DT ,m(T )
M2

)→ R, we have

E
[
φ(X̂(T )

(n) )
]
→ E

[
φ(X(T ))

]
as n→∞.

Proof. The first assertion derives from Theorem 4.1 and the convergence (in distri-
bution) preservation result stated in Theorem 3.4.3 of [63], while the second is an
immediate consequence of the first assertion of Theorem 4.1 (see also [10]).

We conclude this section by giving several examples, illustrating how the results
above apply to certain functionals of the exposure process in practice. Among the
time-dependent features of the exposure process, the following quantities are of
considerable importance to practitioners in the field of risk assessment of chemicals
in food and diet (see [50] and the references therein).

Maximum exposure value. The mapping that assigns to any finite length trajec-
tory {x(t)}0≤t≤T ∈ DT its maximum value sup0≤t≤T x(t) is Lipschitz with respect
to the Hausdorff distance m(T )

M2
(see Theorem 13.4.1 in [63]). Under the assumptions

of Theorem 4.1, the expected supremum is finite and, given consistent estimates
Ĝ(n), F̂ (n)

U and Ĥ(n) of G, FU and H, one may thus construct a consistent esti-
mate of E[sup0≤t≤T X(t)] by implementing a standard Monte-Carlo procedure for
approximating the expectation E[sup0≤t≤T X̂(n)(t)dt].

Mean exposure value. The function {x(t)}t∈[0,T ] ∈ DT 7→ T−1
∫ T
t=0

x(t)dt being
continuous with respect to M2-topology, we have

T−1

∫ T

t=0

X̂(n)(t)dt⇒ T−1

∫ T

t=0

X(t)dt

as soon as X̂(T )
(n) ⇒ X(T ) in DT . By straightforward uniform integrability argu-

ments, it may be seen that convergence in mean also holds, so that the mean
exposure value E[T−1

∫ T
t=0

X(t)dt] may be consistently estimated by Monte-Carlo
simulations.

Average time spent over a critical threshold. Let u > 0 be some critical
level. In a very similar fashion, it follows from the continuity of {x(t)}t∈[0,T ] ∈
DT 7→ T−1

∫ T
t=0

I{x(t)≥u}dt, that a Monte-Carlo procedure also allows to estimate
the expectation of the average time spent by the exposure process above the thresh-
old value u, namely E[T−1

∫ T
t=0

I{X(t)≥u}dt].

First passage times. Given the starting point x0 of the exposure process X,
the distribution of the first passage time beyond a certain (possibly critical) level
x ≥ 0, i.e., the hitting time τ+

x = inf{t ≥ 0, X(t) ≥ x}, is also a characteristic
of crucial interest for toxicologists. The mapping X ∈ D((0,∞),R) 7→ τ+

x being
continuous w.r.t. the M2-topology (refer to Theorem 13.6.4 in [63]), we have
τ̂+
x = inf{t ≥ 0, X̂(t) ≥ x} ⇒ τ+

x as soon as X̂ ⇒ X.

In practice, one is also concerned with steady-state characteristics, describing the
long term behavior of the exposure process. For instance, the steady-state mean
exposure mµ or the limiting time average spent above a given critical value u > 0,
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µ([u,∞[) = limT→∞ T−1
∫ T
t=0

IX(t)≥udt, can be pertinently used as quantitative
indicators for chronic risk characterization (see also [62]). As shall be seen below,
such quantities may be consistently estimated in a specific asymptotic framework
stipulating that both T and n tend to infinity. As a matter of fact, one may
naturally write

E

[
1
T

∫ T

t=0

X̂(n)(t)dt

]
−mµ =

{
E

[
1
T

∫ T

t=0

X̂(n)(t)dt

]
− E

[
1
T

∫ T

t=0

X(t)dt

]}

+

{
E

[
1
T

∫ T

t=0

X(t)dt

]
−mµ

}
. (17)

The last term between brackets on the left hand side of (17) tends to 0 as T →∞
by virtue of Theorem 3.2, while it follows from the coupling argument of Theorem
4.1 (see A4 in the Appendix) that the first term on the right hand side is less
than T ×M1(F̂ (n)

U , FU ) +T 2× (M1(Ĝ(n), G) +M1(Ĥ(n), H)) up to a multiplicative
constant. Hence, if T and n simultaneously tend to infinity in a way that the latter
quantity converges to 0, consistency of E

[
T−1

∫ T
t=0

X̂(n)(t)dt
]

as an estimator of
mµ is clearly established.

In addition, with regard to statistical applications, Theorem 4.1 paves the way
for studying the asymptotic validity of bootstrap procedures in order to construct
accurate confidence intervals (based on sample paths simulated from bootstrapped
versions of the estimates Ĝ(n), F̂

(n)
U and Ĥ(n)). This is beyond the scope of the

present paper but will be the subject of future investigation.

5. Application to methyl mercury data. As an illustration of the mathemat-
ical toxicological model analyzed above, some numerical results related to dietary
methyl mercury (MeHg) contamination are now exhibited. As previously men-
tioned, this chemical is present in seafoods quasi-solely and a clear indication of
its adverse effects on human heath has been given by observational epidemiologi-
cal studies (see [60], [15] [20], and [31] and references therein), leading regulatory
authorities to recently develop seafood standards for protecting the safety of the
consumer.
At present, dietary risk assessment is conducted from a static viewpoint, com-
paring the weekly intakes to a reference dose called Provisional Tolerable Weekly
Intake (PTWI), which is considered to represent the contaminant dose an indi-
vidual can ingest each week in his lifetime without appreciable risk. For methyl
mercury, the PTWI has been set to 1.6 micrograms per kilogram of body weight
per week (µg/kgbw/w in abbreviated form) by the international expert commit-
tee of FAO/WHO (see [28]). Another reference dose of 0.7 µg/kgbw/w, estab-
lished from a previous evaluation by the (U.S.) National Research Council [61],
is sometimes used for a more conservative perspective. Hence, in a dynamic ap-
proach, a deterministic exposure process of reference for risk assessment could be
built by considering weekly intakes exactly equal to one of these static reference
doses (d = 1.6 or 0.7) and a fixed mean half-life HL expressed in weeks. In this
case, the body burden at the nth intake is given by the (affine) recurrence relation
Xn = exp(− log(2)/HL× 1)Xn−1 + d. The dynamic reference dose is obtained by
taking the limit as n tends to infinity: Xref,d = d/(1− 2−1/HL). Numerically, this
yields Xref,0.7 = 6.42 µg/kgbw and Xref,1.6 = 14.67 µg/kgbw when MeHg biological
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half-life is fixed to six weeks as estimated in [56].

Datasets and empirical estimates of distributions FU , G and H. Food con-
tamination data related to fish and other seafoods available on the French market
have been collected by accredited laboratories from official national surveys per-
formed between 1994 and 2003 by the French Ministry of Agriculture and Fisheries
[40] and the French Research Institute for Exploitation of the Sea [34]. Our dataset
is comprised of 2832 analytical data.

The national individual consumption survey INCA (see [19]) provides the quan-
tity consumed of an extensive list of foods over a week, including fish and seafoods,
as well as the time when consumption occurred with the information about the type
of meal (breakfast, lunch, dinner or snack). The survey is composed of two samples:
1985 adults (15 years and older), and 1018 children (3 to 14 years). However, as
shown by the hazard characterization step (see [28]), the group that is the most
critically exposed to neuro-developmental adverse effects of MeHg are foetus: the
MeHg in the mother’s fish diet can pass into the developing foetus and cause irre-
versible brain damage. Here we thus focus on women of childbearing age (between
15 and 45).

For simplicity, MeHg intakes are computed at each observed meal through a
deterministic procedure currently used in national and international risk assess-
ments. From the INCA food list, 92 different fish or seafood species are determined
and a mean level of contamination is computed from the contamination data, as
in [20, 59]. Intakes are then obtained by applying relation (1). For comparability
sake, all consumptions are divided by the associated individual body weight, also
provided in the INCA survey.

(a) Intake distribution (b) Inter-intake time distribution

Figure 2. Probability plots for the distribution fitting
(Adult Female, 15-45).

After the work of [57], the intake distribution FU is modeled by a heavy-tailed
distribution, namely the Burr distribution (of which cumulative distribution func-
tion is of the form (1− (1 + xc)−k), with c > 0 and k > 0). It is noteworthy that it
fulfills assumption H3 (see Remark 3). It is fitted here by means of standard max-
imum likelihood techniques (see Fig. 2(a) below for a probability plot illustrating
the goodness of the fit).
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The times of consumption available from the INCA survey allow us to compute
the inter-intake times or at least produce right censored values (providing then the
information that some durations between successive intakes are larger than a cer-
tain time). A Gamma distribution (which has increasing hazard rate) is retained
for modeling the inter-intake distribution G: its parameters are fitted using a right
censored maximum likelihood procedure. As shown by the probability plot dis-
played in Fig. 2(b), the chosen distribution (Gamma) provides a good fit for the
left (uncensored) part of the distribution.

The pharmacokinetics of MeHg has been thoroughly investigated in several stud-
ies (see [49], [55], [56], and [35] for instance), almost all coming to the conclusion
that the half-life of methyl mercury in man (see Remark 1) fluctuates around six
weeks. As we could not dispose of any raw data related to MeHg half-life in the
human body, based on the most documented study (in which collected half-life
data (in days) are indicated to range from 36 to 65 and correspond to a sample
mean of 44, refer to [56] and [35]), a Gamma distribution with mean 44 days and
5th percentile 36 days is chosen here for modeling the variability of the biological
half-life log 2/θ.

Table 1 sums up the characteristics of the three input distributions, with the
convention that a Gamma distribution with parameter α and β has density given
by Γ(α)−1β−αxα−1 exp(−x/β), and mean αβ. Recall that the tail index of the Burr
distribution is given by κ = (ck)−1 and its moment of order r is finite if ck > r, it
is then given by Γ(k − r/c)× Γ(1 + r/c)/Γ(k).

Table 1. Parameters of the input distributions (Adult Female,
15-45; fitted by maximum likelihood).

Intake distribution FU (Unit: µg/kgbw/meal)
Sample size n 1088
Burr Parameters c 0.95

k 4.93
Tail index κ 0.214
Mean Intake mFU 0.243
Inter-intake time distribution G (Unit: hour)
Sample size n 1214
Proportion of censored data 47.4%
Gamma Parameters α 1.07

β 117.21
Mean inter-intake time mG 125
Half-Life distribution (Unit: hour)
Gamma Parameters α 13.6

β 77.4
Mean half-life 44× 24

Time to steady-state. As underlined in Remark 5, the question of determining
how much time is needed for the exposure process to be roughly at equilibrium is
crucial for assessing the practical relevance of steady-state characteristics. In order
to evaluate the time to steady-state, Monte-Carlo simulations have been carried
out: using the instrumental distributions described above, M = 1000 trajectories
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have been started from different initial values x0. For each path, the (temporal)
mean exposure over the time interval [0, T ] is computed and individual results have
been averaged. In Figure 3(a), the resulting estimates for the Adult Female (15-
45) subpopulation are displayed, as time T grows: as expected, all empirical mean
exposures converge to the same quantity (namely mµ) and the relative error is lower
than 10% after 29 half-lives (3.5 years approximately), whatever the starting value
x0.

The same procedure is used for the mean time spent beyond the reference thresh-
old u = Xref,0.7: as shown by Figure 3(b), the limit is approximately reached after
70 half-lives (about 8.5 years), whatever the initial state x0. The convergence is
slower in this case, since the quantity of interest is related to an event of relatively
small probability (see also Remark 10).

Naturally, the time to steady-state strongly depends on the initial value x0 and
of the functional of interest. However, on the basis of these simulation results, it
may be stated that, for realistic initial values, the time to steady-state for basic
quantities as the ones considered here fluctuates between 3 and 10 years, which is
a reasonable horizon at the human scale.

(a) Mean exposure versus time (b) Average time spent over u versus time
(u = Xref,0.7 = 6.42 µg/kgbw)

Figure 3. Convergence to steady-state
(Adult Female, 15-45; x0 = 0, 1.2, 2.4, 3.6, 4.8, 6).

Remark 8. (Convergence rate bounds) The problem of determining com-
putable bounds on the convergence rate of ergodic Markov processes has recently
received much attention in the applied probability literature (see [42], [53], [39],
[51] or [52]). Using suitably calibrated parameters of the drift and minorization
conditions (Equations (18), (19), (23), and (22)) established along the proofs of
theorems 3.1 and 3.2 in the Appendix, rough numerical estimates of the constants
involved in rate bounds (10) and (12) can be computed from Theorem 2.2 in [52]
(in the discrete-time case) and Theorem 4.1 in [52] (in the continuous-time setup).
Explicit computations based on these theoretical results shall be carried out in a
forthcoming paper (see [7]). However, as such computable bounds are quite loose in
general and are related to the total variation norm (whereas one rather focuses on
specific functional of interest in practice), the problem is handled here by exploiting
the simulation approach.
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Estimation by computer simulation. We now focus on estimating certain
relevant time-dependent and steady-state quantities among those enumerated in the
previous section via the simulation approach studied in Section 4 from our MeHg
datasets. Estimates of the quantities of interest are computed by averaging over
M = 1000 replicated trajectories on [0, T ], taking T equal to 5 years. In order to
ensure that the retained trajectories are approximately stationary, a burn-in period
of 5 years is used (see the preceding paragraph). Numerical results related to the
estimation of the steady-state mean exposure (mµ), the probability to exceed the
dynamic reference doses in steady-state (µ([Xref,0.7,∞[) and µ([Xref,1.6,∞[), the
mean time to run over the lowest reference dose (Eµ[τXref,0.7 ]) and the expected
maximum exposure over 5 and 10 years (Eµ[maxt≤5/10 yearsX(t)]) are displayed in
Table 2.

Table 2. Estimated features of the exposure process (Adult Fe-
male, 15-45).

Parameter Unit Estimate
mµ (µg/kgbw) 2.92
µ([Xref, 0.7,∞[) (%) 0.575
µ([Xref, 1.6,∞[) (%) 0.003
Eµ[maxt≤5 yearsX(t)] (µg/kgbw) 6.63
Eµ[maxt≤5 yearsX(t)] (µg/kgbw) 7.41

We observe that the average time spent over the EU-based threshold (Xref,1.6)
or the US-based one (Xref,0.7) are close to zero in the Adult Female (15-45) sub-
population, resp. 0.003% and 0.575%. Regarding the time required to reach such
threshold levels, further simulations have been conducted using the estimated sta-
tionary mean as the initial point (namely, x0 = 2.92). Only the distribution of
the time to reach the US-based threshold (Xref,0.7) has been estimated using a
standard Monte-Carlo procedure As explained in Remark 10 below, estimating the
distribution of the time required to run over level Xref,1.6 involves computing rare
event probabilities and thus requires the use of more sophisticated simulation meth-
ods. Over M = 1000 trajectories, the mean (respectively, the median) of τ+

Xref,0.7

is 7.23 years (resp. 5.05 years). Figure 4 displays the (highly skewed) Monte-Carlo
distribution estimate (obtained by a kernel estimation built over the M = 1000
simulated values using a standard procedure) of the time to run beyond Xref,0.7 for
the studied subpopulation.

Remark 9. (Sensitivity to the instrumental distributions) The distribu-
tion models used here for the governing probability measures FU and G have been
chosen because they provide a good overall fit to the data (and may be easily seen
to satisfy all the assumptions required in the ergodicity and stability analyses). Ac-
cording to our own practical experience, the numerical results displayed here would
not have been significantly different, if one had chosen to model G by a Weibull
distribution for instance. However, in a future study (see [7]) special attention shall
be given to the statistical issues of validating the mathematical toxicological model,
by investigating how sensitive the latter is to changes with respect to the estimation
method chosen (considering also the use of nonparametric approaches).
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Figure 4. Monte-Carlo distribution for the time to run over u
for the Adult Female (15-45) subpopulation (u = Xref,0.7 = 6.42
µg/kgbw, with x0 = 2.92).

Remark 10. (Naive Monte-Carlo simulation and high threshold) From
the perspective of public health guidance practice, it is of prime importance to eval-
uate the probability of occurrence of rare (extremely risky) events, the probability
to exceed a large threshold u such as u = Xref,1.6 for instance. In this respect, we
point out that the naive Monte-Carlo simulation proposed here leads to estimate
this probability by zero (see Table 2), so seldom this threshold is reached on a time
interval [0, T ] of reasonable length. Treading in the steps of [16], it is shown in [7]
that one may remedy to this problem by implementing a suitable particle filtering
algorithm.

Appendix A. Technical proofs.

A.1. Proof of Theorem 3.1. From conditions required by Theorem 2.1, aperiod-
icity and irreducibility properties are immediately established for the discrete-time
chain X̃. In addition, under mild irreducibility conditions, the stability of the
random coefficients autoregressive model on Rd

Yn+1 = αnYn + βn,

where (αn, βn), n = 1, . . . are i.i.d. r.v.’s on R∗+×Rd, has been investigated in detail
since the seminal contribution of [37] (see [48] and the references therein). Under the
assumption that E[log(1∨‖β1‖)] <∞ and E[log(1∨α1)] <∞, it is well known that
a sufficient and necessary condition for the chain X to have a (unique) probability
measure is that E[log(α1)] < 0 (see Corollary 2.7 in [11] for instance). Based on
this result, it is then straightforward that, under the assumptions of Theorem 2.1
and (H1), the chain X̃ is positive recurrent with absolutely continuous stationary
probability distribution µ̃(dx) = f̃(x)dx.
In the discrete-time context, analysis of the stability of Markov models (Yn)n∈N may
be carried out by establishing suitable conditions for the ’drift’ ∆V (y) = E[V (Y1) |
Y0 = y] − V (y) for appropriate non-negative test functions V (y). Such ’Foster-
Lyapunov’ criteria stipulate the existence of a ’small set’ S (i.e., an accessible set
S to which the chain returns in a given number of steps with positive probability,
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uniformly bounded by below, see section 5.2 in [44]) toward which the chain drifts
in the sense that:

∆V (x) ≤ −f(x) + bI{x∈S}, (18)

for some ’norm-like’ function f(x) ≥ 1 and b < ∞. Now for the chain X̃, any
compact interval [0, s] with s > 0 is small. Indeed, it follows from (9) that for all
x ∈ [0, s], the minorization condition below holds:

Π(x, .) ≥ δs · Us(.), (19)

with δs = s × infy∈[0,s] fU (y) > 0 and denoting by Us(.) the uniform probability
distribution on [0, s]. When γ = 1 for instance, take V (x) = 1 + x. The affine drift
related to X̃ is given by

∆V (x) = −cx+ E[U1],

with c = 1 − E[e−θ1∆T2 ] > 0. Choosing S = [0, s] with s ≥ 1 + 2E[U1/c], (18) is
fulfilled with f(x) = cV (x)/2 and b = E[U1] + c/2. Applying Theorem 15.0.1 in
[44], we thus get that X̃ is geometrically ergodic with invariant probability measure
µ̃ such that µ̃(V ) =

∫∞
x=0

V (x)µ̃(dx) < ∞. In particular, µ̃ has finite expectation
and there exist constants r > 1, R <∞ such that for all x > 0:

∞∑
n=0

rn ‖Πn(x, .)− µ̃‖V ≤ RV (x), (20)

with ‖ν‖V = supψ:|ψ|≤V
∣∣∫ ψ(x)ν(dx)

∣∣ for all bounded measure ν on the real line.
When V ≡ 1, ‖.‖V coincides with the total variation norm ‖.‖TV . For γ > 1, the
results is proved in a similar fashion by taking V (x) = 1 + xγ .

Finally, the last assertion of Theorem 3.1 immediately derives from Theorem 1
in [32].

A.2. Proof of Theorem 3.2. Set X0 = X(0). Observe that for all t > 0, X(t) =
XN(t)e

−θN(t)A(t), so that X(t) ≤ XN(t). Hence, we naturally have {X(t) → ∞} ⊂
{Xn → ∞}. Therefore, under (H1), we know that X̃ is positive recurrent with
stationary distribution µ̃, so that in particular P(Xn → ∞) = 0. Furthermore,
observe that for all t > 0, u ≥ 0:∫ t

s=0

I{X(s)≥u}ds =
N(t)∑
k=1

∫ Tk

s=Tk−1

I{X(s)≥u}ds+
∫ t

s=TN(t)

I{X(s)≥u}ds.

Therefore, for all k ∈ N,
∫ Tk+1

s=Tk
I{X(s)≥u}ds = I{Xk≥u} ·∆Tk+1 ∧ log(Xk/u)

θk
.

Now, applying the strong law of large number (SLLN) to the positive recurrent
chain ((Xn, θn,∆Tn+1))n∈N with invariant probability distribution µ̃(dx)⊗H(dθ)⊗
G(dt), we get that

n−1
n∑
k=1

∫ Tk+1

s=Tk

I{X(s)≥u}ds→
∫ ∞
x=u

∫
θ∈Θ

∫ ∞
t=0

t ∧ log(x/u)
θ

µ̃(dx)H(dθ)G(dt). (21)

As we assumed mG = E(∆Tk) < ∞ for k ≥ 2, we have the following convergence
for the delayed renewal process: N(t)/t → m−1

G as t → ∞. Combined with (21),
this yields t−1

∫ t
s=0

I{X(s)≥u}ds→ µ([u,∞[) as t→∞, with µ given by (11).
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We thus proved that X(t) has a limiting probability distribution µ, which has
density f(y) given by

f(y) = m−1
G

∫
θ∈Θ

∫ ∞
t=0

f̃(yeθt)eθtḠ(t)dtH(dθ),

denoting by Ḡ = 1−G the inter-intake survival function.
Besides, if sup Θ <∞, from (11), we immediately have that, for all u > 0, t > 0,

t ∧ log 2
mG sup Θ

Ḡ(t)µ̃([2u,∞[) ≤ µ([u,∞[) ≤ µ̃([u,∞[).

The distributions µ and µ̃ have thus exactly the same right tail behavior.

Assuming now that (H2) and (H4) are both fulfilled, we turn to the study of
the trivariate process {(X(t), θ(t), A(t))}t≥0. It may be easily seen as λ ⊗H ⊗G-
irreducible and any compact set [0, s]×[0, θ̄]×[0, a], with s > 0, θ̄ > 0, a > 0 is a ’pe-
tite set’ for the latter (see [43] for an account of stochastic stability concepts related
to continuous-time Markov processes). Indeed, denote by Qt(. | (x0, θ0, a0)) the
distribution of (X(t), θ(t), A(t)) conditioned upon (X(0), θ(0), A(0)) = (x0, θ0, a0).
One may easily check that its trace on the event {N(t) = 1} has density fU (eθax−
x0e
−θ0(t−a))eθaḠ(a)ga0(t − a) with respect to λ(dx) ⊗ H(dθ) ⊗ λ(da). Hence, for

all (x0, θ0, a0) ∈ [0, s]× [0, θ̄]× [0, a], we have the minorization condition:

Qt(. | (x0, θ0, a0)) ≥ δ(s, θ̄, a) · Us ⊗H(. ∩ [0, θ̄])⊗ Ua, (22)

with δ(s, θ̄, a) = (s×H([0, θ̄])× a) · infx∈[0,seθ̄a] fU (x) · infv∈[t−a,t] ·g(v)Ḡ(a).
Following [38] (see Theorem 4.1 therein), let η, δ be such that 0 < η < δ and

consider the Lyapounov function V (x, θ, t) = (1 + xγ)(1 + θ)W (t) on R3
+ with

W (t) = 1 +G(t)e−ηt
[
1 +

∫∞
x=t

eδx G(x)

G(t)
dx
]

(notice that, under (H4), W (t)→∞ as
t → ∞). It may be easily seen that the test function V belongs to the domain of
the infinitesimal generator G (see Eq. (5)) and that GV (x, θ, t) = −ηV (x, θ, t) +
b(x, θ, t), where

b(x, θ, t) = (1 + xγ) (1 + θ) [z(t)− θγxγW (t)]
− ζ(t) [(1 + xγ)(1 + θ)− (1 + E [θ]) (1 + E [(x+ U)γ ])] ,

z(t) = η +
g(t)
Ḡ(t)

e−ηt
(

1− 2G(t) +
∫ ∞
u=t

eδuḠ(u)du
)
−G(t)e(δ−η)t.

Observe that b(x, θ, t)→ −∞ as (x, θ, t) tends to infinity. Hence, there exist s > 0,
θ̄ > 0 and a > 0 large enough and b < ∞ such that the following drift condition
holds:

GV (x, θ, t) ≤ −ηV (x, θ, t) + bI{(x,θ,t)∈[0,s]×[0,θ̄]×[0,a]}. (23)

Then, (12) directly follows from Theorem 5.3 in [41].

A.3. Proof of Proposition 1. Given (X(0), A(0)) = (x0, a), we have for all T >
0,

X̄T = T−1

∫ T1

t=0

X(t)dt+ T−1

N(T )−1∑
k=1

∫ Tk+1

t=Tk

X(t)dt+ T−1

∫ T

TN(T )

X(t)dt. (24)
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The first term on the right-hand side of (24) being bounded by x0T1/T , it almost
surely converges to 0 as T →∞. Also, we have for all k ≥ 1,∫ Tk+1

t=Tk

X(t)dt =
Xk

θk
(1− e−θk∆Tk+1).

Furthermore, by virtue of Theorem 3.1, assumption (H2) with γ = 1 ensures that
mµ̃ =

∫∞
x=0

xµ̃(dx) <∞ and consequently that

m̃ =
∫ ∞
x=0

∫ ∞
t=0

∫
θ∈Θ

x(1− e−θt)
θ

µ̃(dx)H(dθ)G(dt) <∞,

making the SLLN for the positive recurrent chain ((Xn, θn,∆Tn+1))n≥1 applicable
to
∑
n≥1(1 − exp(θn∆Tn+1))Xn/θn (refer to Theorem 17.3.2 in [44] for instance).

We thus have that

N−1
N∑
k=1

Xk

θk
(1− e−θk∆Tk+1)→ mµ̃

∫ ∞
t=0

∫
θ∈Θ

1− e−θt

θ
H(dθ)G(dt) a.s., (25)

as N → ∞. Combining (25) with N(T )/T → m−1
G a.s. as T → ∞, this entails

that the third term in (24) tends to 0 as T →∞ and establishes (13). Notice that
mµ =

∫∞
t=0

∫
θ∈Θ

(1− exp(−θt))/θH(dθ)G(dt)mµ̃/mG.
We now turn to the proof of the Central Limit Theorem (CLT). Using again

Theorem 3.1, we have that
∫
x2µ̃(dx) < ∞ when (H2) holds for some γ ≥ 2, so

that ∫ ∞
x=0

∫ ∞
t=0

∫
θ∈Θ

x2(1− e−θt)2

θ2
µ̃(dx)H(dθ)G(dt) <∞.

By virtue of the CLT for positive recurrent chains (see Theorem 17.0.1 in [44]),
we have that N−1/2

∑N
k=1{(1− e−θk∆Tk+1)Xk/θk− m̃} converges in distribution to

N (0, σ̃2) asN →∞, with σ̃2 = Eµ[(X1(1−e−θ1∆T2 )
θ1

−m̃)2]+2
∑∞
k=2 Eµ[(X1(1−e−θ1∆T2 )

θ1
−

m̃)(Xk(1−e−θk∆Tk+1 )
θk

− m̃)].

One may then easily deduce (14) from (24) with σ2 = σ̃2/mG.

A.4. Proof of Theorem 4.1. Observe first that (16) immediately follows from
(15) by virtue of standard properties of Wasserstein metrics. In order to prove (15),
we construct a specific coupling of the laws LX̂(T ) and LX(T ) . Let (Vk)n∈N, (V ′k)k∈N
and (V ′′k )k∈N be three independent sequences of i.i.d. r.v.’s, uniformly distributed
on [0, 1]. For all (n, k) ∈ N2, set

∆Tk = G−1(Vk), Uk = F−1
U (V ′k), θk = H−1(V ′′k ),

∆T̂ (n)
k = Ĝ(n)−1

(Vk), Û (n)
k = F̂

(n)−1

U (V ′k), θ̂(n)
k = Ĥ(n)−1

(V ′′k ),

and define recursively for k ∈ N, Xk+1 = Xke
−θk∆Tk+1 + Uk+1 and X̂

(n)
k+1 =

X̂
(n)
k e−θ̂

(n)
k ∆T̂

(n)
k+1 + Û

(n)
k+1 with X0 = X̂

(n)
0 = x0, as well as Tk+1 = ∆Tk+1 + Tk

and T̂ (n)
k+1 = ∆T̂ (n)

k+1 + T̂
(n)
k with T0 = T̂

(n)
0 = 0. For notational convenience, the su-

perscript (n) is omitted in the sequel. Using in particular the fact that x ≥ 0 7→ e−x
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is 1-Lipschitz, straightforward computations yield∣∣∣X̂k −Xk

∣∣∣ ≤ x0{
k∑
i=1

θi

∣∣∣∆Ti+1 −∆T̂i+1

∣∣∣+
k∑
i=1

∆T̂i+1

∣∣∣θi − θ̂i∣∣∣}
+

k∑
i=1

Ui(
k−1∑
j=i

θj

∣∣∣∆Tj+1 −∆T̂j+1

∣∣∣+
k−1∑
j=i

∆T̂j+1

∣∣∣θj − θ̂j∣∣∣) +
k∑
i=1

∣∣∣Ûi − Ui∣∣∣
(26)

Turning now to the coupling construction in continuous time, define N(t) =∑
k≥1 I{Tk≤t} and N̂(t) =

∑
k≥1 I{T̂k≤t}, as well as X(t) = XN(t)exp(−θN(t)(t −

TN(t))) and X̂(t) = X̂N̂(t)exp(−θ̂N̂(t)(t − T̂N̂(t))) for t ≥ 0. Set also T+
k = Tk ∨ T̂k

and T−k = Tk ∧ T̂k for all k ∈ N and observe that

mH(ΓX̂(T ) ,ΓX(T )) ≤ max
0≤k≤N(T )∨N̂(T )

Mk, (27)

where

Mk = sup
T+
k ≤t<T

−
k+1

∣∣∣X(t− (T̂k − Tk)+)− X̂(t− (Tk − T̂k)+)
∣∣∣+
∣∣∣Tk − T̂k∣∣∣

+ sup
T−k+1≤t<T

+
k+1

∣∣∣X(t− (t− Tk+1)+)− X̂(t− (t− T̂k+1)+)
∣∣∣+
∣∣∣Tk+1 − T̂k+1

∣∣∣ ,
denoting by x+ = 0 ∨ x the positive part of any x ∈ R. It follows from easy
calculations that

Mk ≤
∣∣∣Xk − X̂k

∣∣∣+Xk(∆Tk+1 ∧∆T̂k+1)
∣∣∣θk − θ̂k∣∣∣+

k∑
i=1

∣∣∣∆Ti −∆T̂i
∣∣∣

+
∣∣∣Xk+1 − X̂k+1

∣∣∣+
∣∣∣Uk+1 − Ûk+1

∣∣∣+
k+1∑
i=1

∣∣∣∆Ti −∆T̂i
∣∣∣ .

By taking the expectation in (27) and then using the bounds Xk ≤ x0 +
∑

1≤i≤k Ui
and (26) combined with Wald’s lemma, straightforward computations yield

E[m(T )
M2

(X̂(T ), X(T ))] ≤ (1 + E[N(T ) ∨ N̂(T )]){2x0(mHM1(G, Ĝ) +mĜM1(H, Ĥ)

+ 3M1(FU , F̂U ) + 2M1(G, Ĝ) + (x0 +mFU )(T +mG +mĜ)

×M1(H, Ĥ)}+ E[(1 +N(T ) ∨ N̂(T ))2]mFU (mHM1(G, Ĝ)

+mĜM1(H, Ĥ)),

denoting by mF (resp. mF̂ ) the mean of the distribution function F (resp. of the
estimate F̂ ), F being any of the distribution functions G, FU or H (notice that
mF̂ ≤ vF + mF ). In addition, there exist constants C, C ′ < ∞ s.t. E(N(T )) ∨
E(N̂ (T )) ≤ CT and E(N(T )2)∨E(N̂(T )2) ≤ C ′T 2 (refer to Propositions 6.1 and 6.3
of chap. V in [4] for instance). Observe that the constants C and C ′ may be chosen
independently from the integer n indexing the sequence Ĝ, since by assumption the
sequences mĜ and σ2

Ĝ
are bounded. This establishes the desired result (15).
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58 PATRICE BERTAIL, STÉPHAN CLÉMENÇON, AND JESSICA TRESSOU

REFERENCES

1. B. Aberg, L. Ekman, R. Falk, U. Greitz, G. Persson, and J. O. Snihs, Metabolism of methyl

mercury compounds in man, Arch. Environ. Health 19 (1969), no. 4, 478–484.
2. L. S. Allen, An introduction to stochastic processes with biology applications, Pearson/Prentice

Hall, Upper Saddle River, N.J., 2003.
3. S. Asmussen, Subexponential asymptotics for stochastic processes: Extremal behavior, station-

ary distributions and first passage probabilities, Adv. Appl. Probab. 8 (1998), no. 2, 354–374.

4. , Applied probability and queues, Springer-Verlag, New York, 2003, Second Edition.
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52. , Rates of convergence of stochastically monotone and continuous time Markov models,
J. Appl. Probab. 37 (2000), no. 2, 359–373.

53. J. S. Rosenthal, Minorization conditions and convergence rates for Markov chain Monte

Carlo, J. Amer. Stat. Assoc. 90 (1995), 558–566.
54. M. Rowland and T. N. Tozer, Clinical pharmacokinetics: Concepts and applications, 1995.

55. J. C. Smith, P. V. Allen, M. D. Turner, B. Most, H. L. Fisher, and L. L. Hall, The kinetics of
intravenously administered methyl mercury in man, Toxicol. Appl. Pharmacol. 128 (1994),

251–256.

56. J. C. Smith and F. F. Farris, Methyl mercury pharmacokinetics in man: A reevaluation,
Toxicol. Appl. Pharmacol. 137 (1996), 245–252.
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59. J. Tressou, A. Crépet, P. Bertail, M. H. Feinberg, and J. C. Leblanc, Probabilistic exposure
assessment to food chemicals based on extreme value theory. application to heavy metals from

fish and sea products, Food Chem. Toxicol. 42 (2004), no. 8, 1349–1358.
60. T. Tsubaki and K. Irukayama, Minamata disease: Methyl-mercury poisoning in Minamata

and Niigata, Japan., ElsevierScientific, New York, 1977.

61. NRC (National Research Council), Committee on the toxicological effects of methylmercury:
Toxicological effects of methylmercury, Tech. report, Washington DC, 2000.
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