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Abstract. We compute the basic reproduction ratio of a SEIS model with
n classes of latent individuals and bilinear incidence.The system exhibits the

traditional behaviour. We prove that if R0 ≤ 1, then the disease-free equi-

librium is globally asymptotically stable on the nonnegative orthant and if
R0 > 1, an endemic equilibrium exists and is globally asymptotically stable

on the positive orthant.

1. Introduction. Global stability properties of a nonlinear system generally are
a difficult problem. The global stability of SIR or SIRS models is known since
the eighties. Since the stability of these systems can be reduced to the study of a
two-dimensional system, the Poincaré-Bendixson criterion is used to establish the
global stability. Global stability for SEIR and SEIS has long been conjectured.
If the global stability of the disease-free equilibrium was known when the basic
reproduction number R0 satisfies R0 ≤ 1 on the other hand, the global stability for
the endemic equilibrium, when R0 > 1, was an open problem. This was solved in
1995 by M.Y. Li and J. Muldowney [27] using the Poincaré-Bendixson properties of
competitive systems in dimension 3 combined with sophisticated use of compound
matrices. Using these techniques, the study of global properties of various models
of the SEIRS type was developed [9, 30]. Nevertheless the systems considered
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are three-dimensional or their stability properties are reduced to the study of a
three-dimensional system. The main reason is that three-dimensional competitive
systems satisfy the Poincaré-Bendixson condition. As far as we know, the only
exception is [13], but it turns out that the global stability is reduced to the global
stability of a three-dimensional subsystem.

In 2004 Korobeinikov [21, 23] introduced a class of Lyapunov functions and used
them to establish global properties of the SEIR and SEIS models. It should be
pointed out that this kind of Lyapunov function has a long history of applications
to Lotka-Volterra models [11, 3] and was originally discovered by Volterra himself,
although he did not use the vocabulary and the theory of Lyapunov functions.
Such type of Lyapunov functions has also been used for epidemiological systems
[2, 28]. More recently these functions also have been used for other low-dimensional
systems [34].

The most promising method for high-dimensional systems is the Lyapunov method,
using the Lyapunov-Volterra type functions. X. Lin and J. W. H. So study n groups
of SIRS systems. They prove the global stability of the endemic equilibrium when
R0 > 1 in the case where the interaction between groups is small. Essentially this
is a perturbation result. Beretta and Capasso [2] use a skew-symmetry condition to
provide a necessary condition for the global stability of the endemic equilibrium of
n SIR models with constant population size. These results do not consider latent
classes in model. The stability for differential stability models with mass action is
completely studied in [31]. In [12, 16] the stability for staged progression models,
with or without latent classes, is solved, and finally in [33] the stability of a model
with an arbitrary number of latent classes is also completely treated.

In this paper we use a generalized Lyapunov function analogous to the one
proposed in [21, 22, 37, 34] for low-dimensional systems and in [14] for other systems.
We address the global dynamics of the generalized SEIS and SEIR models with
n latent classes, namely: the SE1 · · ·EnIS and SE1 · · ·EnIR models. We also
consider more general structured models. In some cases the residence time in a
compartment can be described by a gamma distribution. This can be a motivation
for considering systems that we could call “differential and staged progression ”
exposed classes or DESP models. This gives staged progression models in parallel
as in figure (1).
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Figure 1. A set of linear chains in parallel
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This paper is organised as follows: in section 2 we give the model formulation;
in section 3 we provide the stability analysis for a linear chain of compartments; in
section 4, relying on the results of section 3, we consider the case of parallel chains
of compartments and explain the relationship with models incorporating continuous
delays; finally in section 5 we conclude our discussion.

2. The model formulation. We assume homogeneity of the susceptible popula-
tions and we neglect variations in susceptibility associated with. The population
being considered is divided into disjoint classes of susceptible, exposed, infective,
and recovered individuals, with numbers at time t denoted by S(t), E(t), I(t), R(t),
respectively. All recruitment is into the susceptible class, and occurs at a constant
rate Λ. On adequate contact with an infective, a susceptible individual becomes
infected but not yet infective. This individual remains in the exposed class for a
certain latent period, passing through n stages (E1, · · · , En) before becoming in-
fective. Once infective, an individual may either die or, after an infective period,
pass into the recovered class. For diseases that confer temporary immunity, the
individual returns to the susceptible class after an immune period. The transfer
diagram for the system SE1 · · ·En I S is given in the figure below:

S E1 E2 En IbI g1 g2 gn

g0

mS mIm1 m2 mn

L

...

Figure 2. SEIS model

We write the model under a unique form.
The dynamics of the model are governed by the following system of differential

equations: 

Ṡ = Λ− µS S − β S I + γ0 I

Ė1 = β S I − α1E1

Ė2 = γ1E1 − α2E2

· · ·
Ėi = γi−1Ei−1 − αiEi
· · ·
Ėn = γn−1En−1 − αnEn
İ = γnEn − αn+1 I

Ṙ = γn+1 I − µRR.

(1)
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The SEiIR model is the model with γ0 = 0. Since R does not appear in the n+ 2
equations, (1) is a triangular system of the form{

Ẋ = f(X)
Ẏ = g(X,Y )

(2)

where for any constant value of X̄, the system Ẏ = g(X̄, Y ) is globally asymptot-
ically stable. It is well known that the stability analysis of the equilibria of (2) is
equivalent to the stability analysis of the “reduced system” [43] and moreover, if all
the trajectories of (2) are forward bounded, then the global stability analysis is also
equivalent to the analysis of the reduced system [38]. Therefore we will consider
the system (1) without the R compartment.

We can prove the result for positive coefficients, but for biological reasons we
suppose that αi = γi + µi for i = 1, ..., n and αn+1 = γ0 + µI , in others words
αi > γi. This model allows, considering different death rates. It is biologically
sensible to suppose that the mortality of the susceptible individuals is less than the
mortality of the other compartments. Thus we will assume in the sequel that

µ = µS ≤ min
i=1,··· ,n

(µi, µI).

3. Analysis of the system.
If we let x = S, yi = Ei for i = 1, · · · , n and yn+1 = I, then (1) can be written

under a general form. {
ẋ = ϕ(x) − βx〈y | eω〉+ γ0 yn+1

ẏ = βx〈y | eω 〉 e1 + Ay
(3)

where e1 = (1, 0, 0, ..., 0)T , eω = (0, 0, ..., 0, 1)T , ϕ(x) = Λ − µS x and 〈 | 〉 denotes

the usual inner product.
The matrix A is given by

A =



−α1 0 0 . . . 0 0
γ1 −α2 0 . . . 0 0
0 γ2 −α3 . . . 0 0
...

. . . . . . . . .
...

...
0 0 . . . γn−1 −αn 0
0 0 . . . 0 γn −αn+1


.

Using the fact that A is a non-singular Metzler matrix, we can deduce that the
matrix −A−1 is nonnegative[19]. We give the explicit expression of −A−1 since we
will need it later.

−A−1 =



1
α1

0 0 . . . 0
γ1
α1α2

1
α2

0 . . . 0
...

. . . . . . . . .
...

γ1...γn−1
α1...αn

· · · γn−1
αn−1αn

1
αn

0
γ1...γn

α1...αn+1
. . . . . . γn

αnαn+1

1
αn+1

 (4)

The positive invariance of the nonnegative orthant by (3) is immediate with the
assumptions on the model. From (1), if we denote by N the entire population
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N = S+E1 + · · ·+En + I, then Ṅ = Λ−µSS− (µ1E1 + · · ·+µnEn)−µII. With

the hypothesis on µ we have Ṅ ≤ Λ− µN . It follows that lim
t→+∞

N(t) =
Λ
µ

= x∗.

It is straightforward to prove that for ε ≥ 0 the simplex

Ωε =
{

(S,E1, · · · , En, I) ∈ Rn+2
+ | N ≤ Λ

µ
+ ε

}
is a compact forward invariant set for the system (1) and that for ε > 0 this set is
absorbing, and so we limit our study to this simplex for ε > 0.

The dynamics of the model (3) are determined by the basic reproduction ratio.
Using the techniques of [42, 7, 8] the next generation matrix is given by M =
β x∗ e1 e

T
ω (−A−1), and the basic reproduction ratio R0 is the spectral radius of

this M . Since M is a rank one matrix, the only nonzero eigenvalue is given by
β x∗ eTω (−A−1) e1 or, using the inner product and (4)

R0 = β x∗ 〈eω | −A−1e1〉 = β x∗
γ1 . . . γn
α1 . . . αn

1
αn+1

. (5)

3.1. Stability of the DFE.
There exists an evident equilibrium for (3) which is (x∗,0), with x∗ = Λ

µ , called
the disease-free equilibrium (DFE). We have the following theorem, in which R0 is
used as a threshold parameter.

Theorem 3.1. We consider the system (3). If R0 ≤ 1, the DFE is globally asymp-
totically stable in Ωε implying the global stability on the nonnegative orthant. This
means that the disease naturally dies out.

Proof : Consider the following Lyapunov-LaSalle function:
VDFE = 〈−A−T eω | y〉

time derivative along the trajectories of (3) is

V̇DFE = 〈−A−T eω | ẏ〉 = 〈−A−T eω | βx〈y|eω〉e1 + Ay〉 (6)

= βx〈y|eω〉〈−A−T eω | e1〉+ 〈−A−T eω | Ay〉 (7)

= x〈 eω | y〉
R0

x∗
− 〈eω | y〉 = yn+1 (R0

x

x∗
− 1). (8)

We distinguish two cases. The first is R0 < 1.
Let ε be defined such that x∗

R0
= x∗ + 2ε and consider the positively compact

invariant absorbing set Ωε. The largest invariant set in Ωε, contained in the set

{(x, y) : V̇DFE(x) = 0}
is reduced to the DFE. By LaSalle’s invariance principle, this proves the global
asymptotic stability on Ωε ( [5], Theorem 3.7.11, page 346 ). Since Ωε is absorbing,
this proves the global asymptotic stability on the nonnegative orthant for R0 < 1.
We stress the need to consider a positively invariant compact set to establish the
stability of the DFE since VDFE is not positive definite. Generally, when applied
on a non-compact positively invariant set, the LaSalle’s invariance principle proves
nothing but the attractivity of the equilibrium. Considering Ωε permits us to
conclude to the stability of the system [5, 26, 25]. This fact is often overlooked in
the literature when using LaSalle’s invariance principle.
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In the second case, we suppose R0 = 1 . We claim that with this hypothesis the
half space

H = {(x, y) ∈ Rn+2
+ | x ≤ x∗}

is positively invariant. Indeed on the boundary, defined by x = x∗, of H we have

ẋ = (γ0 − β x∗) yn+1.

Now we have

R0 = β x∗ 〈eω | −A−1e1〉 = β x∗
γ1 . . . γn
α1 . . . αn

1
αn+1

= 1,

which gives β x∗ =
α1 . . . αn
γ1 . . . γn

αn+1 > αn+1 > γ0, which in turn proves ẋ ≤ 0 on

the boundary of H. A similar argument, as for the case R0 > 1, proves that the
DFE is globally asymptotically stable on Ωε ∩ H. We will prove the stability of
the DFE on the nonnegative orthant, in other words, we have to examine what
happens on the “right-side ” of H. We will use on the nonnegative orthant the ‖ ‖1
norm, i.e., ‖(x, y)‖1 = x +

∑
yi. Consider for any ε > 0 the corresponding open

ball B((x∗,0), ε), centered on the DFE with radius ε. By stability of the DFE on
Ωε∩H, there exists η > 0 such that for any initial condition in B((x∗,0), η)∩H the
corresponding forward trajectory stays in B((x∗,0), ε)∩H. We remark that this is
the trace of B(0, x∗+η) on the nonnegative orthant. Hence B((x∗,0), η) ⊂ Ωη. Let
an initial condition (x0, y0) be in B((x∗,0), η) that moreover satisfies x0 > x∗. By
invariance of Ωη the corresponding trajectory either stays in B((x,0), η)∩{x ≥ x∗}
or enters B((x,0), ε) ∩ H. In any case the trajectory stays in B((x,0), ε), which
proves the stability of the DFE on the nonnegative orthant. For the attractivity
of the DFE, let us consider a trajectory. This trajectory is forward bounded and
enters Ωε. On the one hand, if the trajectory enters Ωε ∩ H, since the DFE is
globally asymptotically stable on this set, we are finished. On the other hand, if
the trajectory remains in Ωε ∩ {x ≥ x∗}, we note that on the trajectory V is an
increasing bounded function. LaSalle’s invariance principle proves that the ω-limit
points of the trajectory are contained in the largest invariant set in V̇ = 0, reduced
to the DFE. This proves the attractivity of the DFE and ends the proof of the
theorem.

3.2. Stability of the SE1...EnS model.
A nonnegative equilibrium (x̄, ȳ) of (3) is called endemic if ȳi > 0 form some i. It
is called a strongly endemic equilibrium if ȳi > 0 for all i = 1, · · · , n [41].
We have the following theorem when R0 > 1.

Theorem 3.2. We consider the system (3). If R0 > 1, there exists a strongly en-
demic equilibrium which is globally asymptotically stable on the nonnegative orthant
except for the half x-axis.

Proof : An equilibrium (x̄, ȳ) of the system ( 3) satisfies

ϕ(x̄) = (β x̄− γ0)〈ȳ | eω〉 (9)
β x̄〈ȳ | eω〉 e1 = −A ȳ. (10)

which gives ȳ = β x̄〈ȳ | eω〉 (−A−1)e1, and replacing in 〈ȳ | eω〉 we have

〈ȳ | eω〉 = β x̄〈ȳ | eω〉 〈(−A−1) e1 | eω〉.
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The case 〈ȳ | eω〉 = 0 implies ϕ(x̄) = 0 and −Aȳ = 0. Since A is nonsingular this
gives the DFE.
For the other case, simplifying by 〈ȳ | eω〉 gives, with (5),

x̄ =
x∗

R0
> 0.

With R0 > 1 we have x̄ < x∗, ϕ(x̄) > 0 and

β x̄ =
α1 . . . αn
γ1 . . . γn

αn+1 > αn+1 > γ0

hence

yn+1 =
ϕ(x̄)

β x̄− γ0
> 0.

and finally

ȳ =
β x̄

β x̄− γ0
ϕ(x̄) (−A−1) e1.

Since the first column of −A−1 is a positive vector (see (4)), we have proved that
ȳ � 0, is a strongly endemic equilibrium.
Let us consider the following function VEE , defined on the positive orthant

V = a0(x− x̄ lnx) +
n+1∑
i=1

ai(yi − ȳi ln yi).

We claim that we can choose the coefficients (a0, a) ∈ Rn+2
+ such that in the ex-

pression of V̇EE all the linear terms in x, y1, . . . , yn and the bilinear term in x yn+1

cancel. We are looking for a solution of[
−1 eT1
β x̄ eω AT

] [
a0

a

]
= 0.

Using the Schur complement, we can compute the determinant of the block matrix
to obtain

det
[
−1 eT1
β x̄ eω AT

]
= −1 + β x̄ eT1 (−A−T ) eω = −1 + β x̄ 〈(−A−1) e1 | eω〉.

using the formula (5), for R0 we finally get

det
[
−1 eT1
β x̄ eω AT

]
= −1 + x̄

R0

x∗
= 0.

The matrix is a rank n+ 1 matrix, since its kernel is one dimensional. This means
that we have one degree of freedom to choose any a0 > 0. When a0 is chosen, a is
defined by a = a0 β x̄ (−A−T ) eω. In other words, a is up to a multiplication by a
positive scalar, the last row of A−1. Then the coefficients of the Lyapunov function
are positive, this proves that VEE has a unique minimum.
Now if we choose a0 = 1, the linear part in y of VEE is exactly β x̄ VDFE . Recalling
x̄ = x∗

R0
and using the result of the computation (8), we see when computing V̇EE

that the only term in yn+1 comes from the expression of ẋ. Then
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V̇EE = ϕ(x)
(x− x̄)
x

+ γ0 yn+1
(x− x̄)
x

−a1β x̄ȳn+1
x

x̄

yn+1

ȳn+1

ȳ1

y1
− a2γ1 ȳ1

y1

ȳ1

ȳ2

y2
− · · · − an γn−1 ȳn−1

yn−1

ȳn−1

ȳn
yn

−an+1 γn ȳn
yn
ȳn

ȳn+1

yn+1
+ a1 α1 ȳ1 + · · ·+ an αn ȳn + an+1 αn+1 ȳn+1

.

Using the definition for the coefficients a, and the relations for the endemic equi-
librium, a finite recursion argument shows immediately

a1 β x̄ ȳn+1 =
a1 α1 ȳ1 = a2 γ1 ȳ1 · · · = ai αi ȳi = ai+1 γi ȳi
= an+1 αn+1 ȳn+1.

In others words, the coefficients in line 2 and 3 are equal. Moreover a0 = a1 = 1.
we get

V̇EE = ϕ(x)
(x− x̄)
x

+ γ0 yn+1
(x− x̄)
x

+β x̄ ȳn+1

[
(n+ 1)− x

x̄

yn+1

ȳn+1

ȳ1

y1
− y1

ȳ1

ȳ2

y2
− · · · − yn−1

ȳn−1

ȳn
yn
− yn
ȳn

ȳn+1

yn+1

]
.

Using the relation β x̄ ȳn+1 = ϕ(x̄) + γ0 ȳn+1 we add and subtract β x̄ ȳn+1
(x−x̄)
x to

obtain

V̇EE = (ϕ(x)− ϕ(x̄))
(x− x̄)
x

+ γ0 (yn+1 − ȳn+1)
(x− x̄)
x

+β x̄ ȳn+1

[
(n+ 2)− x̄

x
− x

x̄

yn+1

ȳn+1

ȳ1

y1
− y1

ȳ1

ȳ2

y2
− · · · − yn−1

ȳn−1

ȳn
yn
− yn
ȳn

ȳn+1

yn+1

]
.

which gives us, with the definition of ϕ,

V̇EE = −µ (x− x̄)2

x
+ γ0 (yn+1 − ȳn+1)

(x− x̄)
x

+β x̄ ȳn+1

[
(n+ 2)− x̄

x
− x

x̄

yn+1

ȳn+1

ȳ1

y1
− y1

ȳ1

ȳ2

y2
− · · · − yn−1

ȳn−1

ȳn
yn
− yn
ȳn

ȳn+1

yn+1

]
.

With the inequality between the arithmetical and geometrical means we deduce
that, except for the term γ0 (yn+1 − ȳn+1) (x−x̄)

x , the two other terms are nonnega-
tive. Using the relation

ẋ = −(µ+ β yn+1) (x− x̄)− (yn+1 − ȳn+1)(β x̄− γ0),

we know that β x̄−γ0 > 0. So, we consider the new candidate Lyapunov function

V (x, y) =
γ0

β x̄− γ0
(x− x̄ lnx) + VEE .

The preceding computation gives
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V̇ = −µ (x− x̄)2

x
− γ0

β x̄− γ0
(µ+ β yn+1)

(x− x̄)2

x

+β x̄ ȳn+1

[
(n+ 2)− x̄

x
− x

x̄

yn+1

ȳn+1

ȳ1

y1
− y1

ȳ1

ȳ2

y2
− · · · − yn−1

ȳn−1

ȳn
yn
− yn
ȳn

ȳn+1

yn+1

]
.

This proves that V̇ is negative definite on the positive orthant. By considering the
system on the boundary of the positive orthant, we obtain the desired conclusion.

4. The k parallel chains model.
Before addressing the stability problems of the system given by (1), we will explain
why we consider such a system. Often stage transition is addressed in the spirit
of compartment modeling [19]. Individuals are assumed to leave the stage at a
fixed per-capita rate. This leads to a peculiar length distribution of the stage,
the exponential distribution. This distribution is biologically unrealistic, since it
corresponds to the assumption that the remaining time in the stage is independent
of the time of entry in the stage. To have a better description would be to measure
the real probability density function (pdf) and to include it explicitly in the model,
a difficult task. Another method to approximate the pdf by a linear combination
of Erlang distributions [20]. The Erlang distribution is a high flexible distribution
that can mimic a variety of biologically plausible continuous delays.
The density function of the Erlang distribution is given by

gn,b =
tn−1 e−

t
b

bn (n− 1)!
. (11)

This distribution has for mean, τ = n b, variance, n b2, and peak, (n− 1) b. It can
be generated by a one-way catenary chain of n compartments.

n I...1 2

1
b

1
b

1
b

Figure 3. One-way catenary chain of compartments

If one injects a unit impulse into compartment 1 at t = 0, the outflow from com-
partment n, as a function of time, is exactly gn,b of (11). The use of a catenary
chain of compartments with one-way flow to generate a distribution of lags is well
known. MacDonald used it extensively in his monograph [32], calling it the ‘lin-
ear chain trick’ . The preceding catenary subsystem can be inserted between two
compartments of a system to generate a lag with pdf given by (11). It should be
pointed out that these stages are a mathematical device used to consider pdf. In
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general they need not correspond to biological features. We can now insert between
two compartments parallel catenary chains of different length, as in figure (1), to
generate a linear combination of Erlang distributions.

Thus, if one can find such a compartmental system and insert it between com-
partments, one obtains a larger compartmental system without explicit lags that
behaves exactly the same as the original system. To summarize, in a compartmen-
tal system with delays, if the pdf of the delays are linear combinations of Erlang
distributions, then the system is equivalent to a compartmental system without de-
lays. More precisely, any solution of the system without delays is a solution of the
system with delays. The proof of this claim can be found in numerous references
[20, 35, 15, 6].

To model residence time in the latency period, whose pdf can be approximated
by a pdf which is a convex sum of Erlang distributions, we consider a model with
k chains as in figure (1).

Since we think that the main difficulty lies in the notations, we will develop
some conventions and notations. We will write the system in a form analogous to
(3) with some modifications. We will denote by y the state vector corresponding
to the latent classes and decompose the vector y into k blocks y = (y1, y2, . . . , yk)
corresponding to the k parallel chains. Each vector-block yi is of length ni, the
length of the ith-chain. We denote yi = (yi,1, · · · , yi,ω) with the convention that
yi,ω is the last component of yi. The notation ω plays a role similar to the syntax
end in MATLAB. We denote by x and z the state of the susceptible and infectious
respectively. The state vector y is in Rn, with n =

∑
ni, and the system is in Rn+2.

As usual, we will take the liberty of indentifying Rni with its canonical injection in
Rn+2. We need some notations for the canonical basis of Rn+2. According to this
identification, ei,j will denote the j-th canonical vector of Rni , in other words it is
the vector numbered 1 +n1 + · · ·+ni−1 + j. The last vector of Rni will be denoted
by ei,ω, and the last vector of Rn+2, corresponding to z, will be denoted by eω.
Thus we can write the system ẋ = ϕ(x)− β x z + γ0 z

ẏ = β x z b +Ay
ż = cT y − αz z

(12)

where A is a n × n diagonal block matrix A = diag(A1, · · · , Ak). The i block Ai
is a ni × ni matrix as in (3), where the coefficients α and β appearing in (3) are
indexed, i.e., αi,j for j = 1, · · · , ni and γi,j for j = 1, · · · , j − 1.
The matrix cT is a 1× n matrix

cT = [γ1,ω e
T
1,ω, · · · , γk,ω eTk,ω]

corresponding to each output of the last compartment of each latent chain entering
the infectious compartment.
The vector b is

b = π1 e1,1 + · · ·+ πk,1 ek,1

corresponding to the input in each first compartment of each latent chain, with
π1 + · · ·+ πk = 1.
We denote by Ã the block matrix
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Ã =
[
A 0
cT −αz

]
.

We can now give the theorem of this section.

Theorem 4.1. We consider the system (12).
The basic reproduction ratio of the system is given by

R0 = β x∗ 〈eω | (−Ã−1) b〉
1. The system (12) is globally asymptotically stable on Rn+2

+ at the DFE (x∗, 0, . . . , 0)
if and only if R0 ≤ 1.

2. If R0 > 1 then the DFE is unstable, there exists a unique strongly endemic
equilibrium (x̄, ȳ, z̄) � 0 in the positive orthant. The endemic equilibrium
is globally asymptotically stable on the nonnegative orthant, except for initial
conditions on the nonnegative x-axis.

Proof : The argument for R0 is similar to the one-chain case. We assume R0 ≤ 1,
and we consider the Lyapunov-LaSalle function

VDFE = β〈(−Ã−T ) eω |
[
y
z

]
〉.

We obtain in a straightforward way

V̇ = β z (R0
x

x∗
− 1).

and the proof of the global stability of the DFE is exactly the one-chain case.
We now prove the global existence of the EE on the positive orthant. When all the
πj but one πi = 1. we are in the one-chain case and then we can define

R0,i = β x∗
γi,1 . . . γi,ω
αi,1 . . . αi,ω

1
αz
.

With this definition and using the structure of (−Ã)−1 we obtain

R0 = β x∗
k∑
i=1

πi γi,ω
αz

〈(−A−1
i ) ei,1 | ei,ω〉 =

k∑
i=1

πiR0,i

and if R0 > 1, we obtain 
x̄ = x∗

R0

ȳ = ϕ(x̄) (−A−1) b
z̄ = ϕ(x̄)

β x̄−γ0 .

(13)

We have, if R0 < 1, 0 < x̄ < x∗, hence, ϕ(x̄) > 0, which in turn implies ȳ > 0. We
have to prove that β x̄ > γ0. But

β x̄ =
αz

k∑
i=1

πi γi,ω 〈(−A−1
i )ei,1 | ei,ω〉

=
αz

k∑
i=1

πi
γ1,i · · · γi,ω
αi,1 · · ·αi,ω

>
αz∑
πi

= αz > γ0.

This proves z̄ > 0.
We will prove now the global stability for the EE. To continue in a similar vein we
define the function
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VEE = a0(x− x̄ lnx) +
n∑
i=1

ai (yi − ȳi ln yi) + an+2 (z − z̄ ln z).

Using the same convention, we define the vector a of Rn by defining the k blocks
a = (a1, · · · , ak) and use aω = an+2. We choose (a0, a, aω) as a positive solution of

[
−1 bT

β x̄ eω ÃT

] a0

a
aω

 = 0.

The same argument as in section 3.2 applies. Then we can choose, for example
a0 = 1. When we compute V̇DFE the same simplifications occur

V̇EE = ϕ(x)
(
1− x̄

x

)
+ γ0 z

(x−x̄)
x

+
k∑
i=1

−πi ai,1 β x̄ z̄ yi,1
ȳi,1

x

x̄

z

z̄
−

ni∑
j=2

ai,j γi,j−1 ȳi,j−1
yi,j−1

ȳi,j−1

ȳi,j
yi,j

+
ni∑
j=1

ai,j αi,j ȳi,j − aω γi,ω ȳi,ω
yi,ω
ȳi,ω

z̄

z

+ aω αz z̄.

Each diagonal block of Ai of the matrix A has the structure of the matrix con-
sidered in the one-chain case, then, we deduce the following relations between the
coefficients

ai,j γi,j−1 ȳi,j−1 = πi ai,1 ϕ(x̄) = ai,j αi,j ȳi,j = γi,ω ȳi,ω

and aω αz z̄ = βx̄ z̄ = ϕ(x̄) + γ0 z̄. We recall that a0 = 1 =
k∑
i=1

πi ai,1. hence

V̇EE = aϕ(x) (x−x̄)
x + γ0 z

(x−x̄)
x

+βx̄ z̄
k∑
i=1

πi ai,1

(ni + 1)− yi,1
ȳi,1

x

x̄

z

z̄
−

ni∑
j=2

yi,j−1

ȳi,j−1

ȳi,j
yi,j
− yi,ω
ȳi,ω

z̄

z

 .
Adding and subtracting β x̄ z̄ (x−x̄)

x gives

V̇EE = aϕ(x) (x−x̄)
x + γ0 (z − z̄) (x−x̄)

x

+βx̄ z̄
k∑
i=1

πi ai,1

(ni + 2)− x̄

x
− yi,1
ȳi,1

x

x̄

z

z̄
−

ni∑
j=2

yi,j−1

ȳi,j−1

ȳi,j
yi,j
− yi,ω
ȳi,ω

z̄

z

 .
With this relation we obtain, as in section 3.2, that

V (x, y, z) =
γ0

β x̄− γ0
(x− x̄ lnx) + VEE(x, y, z)

is a strict Lyapunov function, which ends the proof of the theorem.
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5. Discussion.
We have given a complete analysis of SEi IR systems with latent classes. The
latent classes are made up of parallel chains of different lengths and are inserted
between the susceptible and the infectious compartments. We compute the basic
reproduction ratio R0, and we prove that if R0 ≤ 1, the disease-free equilibrium is
globally asymptotically stable on the nonnegative orthant. If R0 > 1, then a unique
endemic equilibrium exists in the positive orthant and is globally asymptotically
stable, on the positive orthant.
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