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Abstract. In this paper the dynamics of a tritrophic food chain (resource,
consumer, top predator) is investigated, with particular attention not only to
equilibrium states but also to cyclic behaviours that the system may exhibit.
The analysis is performed in terms of two bifurcation parameters, denoted
by p and q, which measure the efficiencies of the interaction processes. The
persistence of the system is discussed, characterizing in the (p, q) plane the
regions of existence and stability of biologically significant steady states and
those of existence of limit cycles. The bifurcations occurring are discussed, and
their implications with reference to biological control problems are considered.
Examples of the rich dynamics exhibited by the model, including a chaotic
regime, are described.

1. Introduction and model description. Theoretical and experimental studies
of population dynamics have received increasing interest in the last decades [2, 12,
18, 31], in particular for their applications to biological control problems. Biological
control represents an important tool in constructing pest management strategy for
protected plant production. It consists in rearing and releasing natural enemies
(predators and parasites) that seek out and destroy other insects and mites that
are considered pests; this practice allows regulating agricultural and forestry pests
and weeds to densities below those of economic concern in a more natural way.
In this context, the development of plausible mathematical models that reproduce
and explain the observed dynamics of the interactions between natural enemies and
harmful insects represents a challenging task, but also a valuable help in planning.

For a long time, the main attention was focused on the study of two trophic food
chains, leading to a great variety of predator-prey models (see, for example, [2, 6, 22,
32]). More recently, various studies have been devoted to mathematical modelling
of tritrophic food chains composed by prey (resource), predator (consumer of the

2000 Mathematics Subject Classification. 92D25, 34C23.
Key words and phrases. tritrophic system, stability, bifurcations, limit cycles.

431



432 M. P. CASSINARI, M. GROPPI AND C. TEBALDI

resource) and top predator (natural enemy); just to mention a few, we recall here
the paper of Freedman and So [9] on global stability and persistence of simple food
chains, and the studies on bifurcations and chaotic dynamics performed by Hastings
and coauthors [15, 21], by McCann and Yodzis [27, 28], by Kuznetsov and Rinaldi
[24, 25], and by Boer et al. [3]. All these papers regard lumped-parameters prey-
dependent models that can be described by a system of three balance equations
having the following general form:




dx

dt
= rxg(x)− yb1f1(px)

dy

dt
= y[c1b1f1(px)−m1]− zb2f2(qy)

dz

dt
= z[c2b2f2(qy)−m2]

(1)

where x(t), y(t) and z(t) are the biomass for spatial unit of resource, consumer and
top predator, respectively. The functions g and fi, i = 1, 2 determine the growth of
the resource and the functional responses of predators to their prey, respectively.
System (1) depends on some bioecological parameters: r is the maximum specific
growth rate of the resource, b1 and b2 are the maximal specific predation rates and
m1 and m2 are the specific loss rates (due to natural mortality and conversion pro-
cesses) for consumer and top predator, respectively; c1 and c2 are conversion rates
of prey into energy for its predator. The system depends also on two behavioural
parameters p, q > 0 that measure the efficiencies of the predation processes. The
function g in (1) may depend on x/k, where k denotes the carrying capacity of the
resource, but it is possible to assume k = 1 via a suitable scaling, without loss of
generality.

The bioecological parameters can be reasonably estimated from experimental
data, while both the shapes of the functional responses and the values of the ef-
ficiencies of the interaction processes are very difficult to determine in realistic
experimental set-up [19, 20]. Because of these difficulties, system (1) has been in-
vestigated in [5] by considering functional responses characterized only by some
general properties; in addition, the behavioural parameters p and q, introduced in
these trophic functions just as a measure of the efficiencies of the interaction pro-
cesses, were assumed as control parameters in the analysis. In that general context,
it was possible to investigate the existence conditions completely and the stability
properties of the equilibrium states only partially; in particular, stability can be
completely determined only for the noncoexistence equilibria.

In this paper we carry on the analysis started in [5] by fixing the functions g
and fi. According to the cited studies on simple tritrophic food chains, we assume
a logistic growth for the resource and Holling-type-II trophic functions [2, 16] for
the interaction processes, leading to the following expressions:

g(x) = 1− x, fi(s) =
s

1 + s
, i = 1, 2. (2)

The regions in the (p, q) plane of existence and stability of nonnegative steady states,
as well as their bifurcations, are here characterized, and in particular the ones lead-
ing to limit cycles are discussed. Bifurcation analysis of an equivalent formulation
of system (1), with functions g and fi as in (2), have been already performed in
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[3, 8, 24, 25] with different choices of bifurcation parameters. In particular, the
death rates m1, m2 have been used in [3, 25] for interpreting and forecasting the
consequences of management actions, since these rates can be strongly influenced
by harvesting the predators or by contaminating their environments. The carrying
capacity k and the specific growth rate r have been used instead in [8, 24] to study
the effect of enrichment of food chain systems. With these different choices of bi-
furcation parameters, the functional responses are completely fixed, and this could
limit the applicability of the resulting analysis since, as already pointed out, the
predation efficiencies which affect these functions are not easily determined.

Some results on the dynamics of the model by numerical investigation, using
parameters related to p and q, have been presented in [27]; here we proceed in a
more systematic way and specify and prove some of their results. In particular,
the regions of existence and stability of coexistence equilibria will be analytically
characterized.

We start our study by briefly recalling the main features of system (1). The
state space is the nonnegative octant R+

3 and, following Freedman and So [9] and
using comparison theory [14], it is possible to show that all solutions initiating in
R+

3 are bounded and eventually enter the attracting set

Ω =
{

(x, y, z) ∈ R+
3 | 0 ≤ x ≤ 1, 0 ≤ x +

y

c1
≤ L1, 0 ≤ x +

y

c1
+

z

c1c2
≤ L2

}
(3)

where L1 = 1 +
r

m1
, L2 = L1 +

r

m2
= 1 +

r

m1
+

r

m2
.

We notice that on the invariant plane z = 0 in (1), the subsystem given by the
first two equations can be regarded as the predator-prey system





dx

dt
= rxg(x)− yb1f(px)

dy

dt
= y[c1b1f(px)−m1]

(4)

where x(t) and y(t) represent the biomass for spatial unit of prey and predator.
The study of system (4) has been performed in general terms in [4] where a class

of trophic functions depending on the ratio between the prey and a linear function
of the predator abundance has been considered, aiming at analyzing the transition
between prey-dependent and ratio-dependent models. In fact, the trophic func-
tions used in predator-prey models in literature are mainly of two types: functions
depending only on prey abundance (prey-dependent models [31]) and functions de-
pending on the ratio between prey and predator abundances (ratio-dependent mod-
els [1]); some authors [10, 11] support the latter model on the basis of bioecological
arguments based on experiments. The main difference is that only ratio-dependent
models may predict the total collapse of chains [10, 17, 22, 32]. In addition, the
functions f and g in [4] were characterized only by some general properties which
are verified in particular by the choice (2). Here we detail the results of that analy-
sis with reference to our specific case, namely the prey-dependent case with f and
g as in (2).

• There exists an attracting and positively invariant set

Ω∗ =
{

(x, y) ∈ R+
2 | 0 ≤ x ≤ 1, 0 ≤ x +

y

c1
≤

(
1 +

r

m1

)}
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which is the projection of Ω on the plane z = 0.
• The system has two noncoexistence equilibrium states E0 = (0, 0) and E1 =

(1, 0) which exist for all p > 0. By investigating the Jacobian matrix evaluated
at the equilibrium states, it results that the equilibrium E0 is always a source,

while E1 is a sink for 0 < p < χ0 = f−1

(
m1

c1b1

)
, with

m1

c1b1
< 1, and a saddle

otherwise.
• There exists a unique coexistence equilibrium E2(p) = (x∗(p), y∗(p)) for p >

χ0. As regards its stability, there exists χ1 such that E2 is a sink for χ0 < p <
χ1 and a source otherwise;. For p = χ0(p) a transcritical bifurcation between
E1 and E2 takes place and for p = χ1 a Hopf bifurcation of E2 occurs.

Coming back to tritrophic system (1), its noncoexistence equilibrium states are
related to these fixed points E0, E1, E2. The existence conditions do not change,
whereas the stability properties of these equilibria have to be investigated: this is
done in section 2. In section 3 we determine the existence conditions and character-
ize the stability properties of coexistence equilibrium states. A bifurcation analysis
in the (p, q) plane is presented in section 4, with particular attention to appearance
of limit cycles because of Hopf bifurcations and bistability situations. In the ap-
pendix, in addition, we discuss the stability of the limit cycle which appears by Hopf
bifurcation of E2(p). In section 5 we present some numerical simulations showing
the different cyclic behaviours and an example of chaotic dynamics and discuss
the biological meaning of such phenomena. Finally, some concluding remarks are
reported in section 6.

2. Existence and stability of noncoexistence equilibrium states. We focus
here on the noncoexistence equilibrium states (namely states with z = 0) of system
(1). From (1) we have that if

mi

cibi
≥ 1, i = 1, 2, then asymptotically y, z → 0;

that is, both consumer and predator go to extinction. Thus, we will assume in the
following

mi

cibi
< 1 (5)

and define

p0 = f−1
1

(
m1

c1b1

)
=

m1

c1b1 −m1
, q0 = f−1

2

(
m2

c2b2

)
=

m2

c2b2 −m2
. (6)

It is also useful to define µi(s) =
sf ′i(s)
fi(s)

=
1

1 + s
, i = 1, 2. It is easy to show

that system (1) has two noncoexistence equilibrium states E0 = (0, 0, 0) (total
extinction) and E1 = (1, 0, 0) (extinction of both consumer and top predator) and
both exist for all values of p and q. In addition, if p > p0 and for all values of q
there exists a further noncoexistence state with z = 0 (extinction of top predator)

E2(p) = (x∗(p), y∗(p), 0) =
(

p0

p
,
rc1

m1

p0

p

(
1− p0

p

)
, 0

)
. (7)

The noncoexistence equilibria of system (1) correspond to the equilibrium states
of the two trophic levels system (4) when z = 0 is added as third component, in
particular E2(p) corresponds to E2(p) in system (4). The results about stability are
summarized in the following theorem.
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Theorem 2.1. Assume (5) and let

Γ0(p) =
q0

y∗(p)
. (8)

Then
1. The equilibrium E0 is a saddle point ∀ (p, q) ∈ R+

2 ;
2. The equilibrium E1 is a sink for 0 < p < p0, ∀q and a saddle for p > p0, ∀q;
3. When q < Γ0(p) there exists p2 = 2p0 + 1 such that E2(p) is a sink for

p0 < p < p2 and a source for p > p2. When q > Γ0(p) the equilibrium E2(p)
is a source ∀p.

Proof. Parts 1 and 2 easily follow by direct evaluation of the Jacobian matrices at
the equilibrium states E0 and E1, which result respectively

J(E0) = diag(r,−m1,−m2), J(E1) =



−r −b1

p

1 + p
0

0 c1b1
p

1 + p
−m1 0

0 0 −m2


 . (9)

Part 3 follows by considering the Jacobian matrix:

J(E2(p)) =




r

(
1− 2

p0

p

)
− b1py∗(p)

(1 + p0)2
−m1

c1
0

b1c1
py∗(p)

(1 + p0)2
0 −b2

qy∗(p)
1 + qy∗(p)

0 0 b2c2
qy∗(p)

1 + qy∗(p)
−m2




. (10)

It is important to notice that the minor of order two made up by the first two lines
and columns 


r

(
1− 2

p0

p

)
− b1py∗(p)

(1 + p0)2
−m1

c1

b1c1
py∗(p)

(1 + p0)2
0


 (11)

coincides with the Jacobian J(E2) of the two trophic system (4) evaluated at the
coexistence equilibrium state E2(p) = (x∗(p), y∗(p)). The eigenvalues of matrix (10)
are then given by

λ1,2 =
T (p)±

√
T (p)2 − 4D(p)

2
, λ3 = b2c2

qy∗(p)
1 + qy∗(p)

−m2,

where T (p) and D(p) are respectively trace and determinant of the matrix (11).
Direct calculations show that Re(λ1,2) < 0 when p0 < p < p2 and λ3 is always real
and results negative only for q < Γ0(p).

A more detailed description of the stability properties of E2(p) can be achieved
by studying the trace and the determinant of matrix (11) and the sign of the
function ∆(p) = T (p)2 − 4D(p) that influence the nature of eigenvalues λ1 and
λ2. Once z is set equal to zero and the sign of λ3 is checked and found negative,
namely q < Γ0(p), the results for the present case can be deduced from the analysis
performed in [4] on system (4), having fixed g and f as in (2) and considering
the prey-dependent case. In particular, it was shown that at the beginning the
function ∆(p) is decreasing with respect to p and there exists a value p1 < p2 such
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that ∆(p1) = 0. Afterwards, the function ∆(p) can decrease or increase depending
on the set of bioecological parameters that influences the sign of the quantity ∆∗,
defined as

∆∗ = lim
p→∞

∆(p) = (1− µ10)2 − 4
µ10m1

r
,

with µ10 = µ1(p0) =
1

1 + p0
. When ∆∗ > 0, the function ∆(p) is definitely in-

creasing and there exists another value p3 > p2 such that ∆(p3) = 0, then the
equilibrium E2(p) admits again real eigenvalues. The results are then summarized
in the following table, and it is remarkable that the local stability properties of E2(p)
in the two trophic level case spread to the whole region p0 < p < p2, q < Γ0(p) for
the corresponding equilibrium state E2(p).

Table 1. Stability results for E2(p) in terms of p and q.

Conditions Results
q < Γ0(p), p0 < p < p2 E2(p) sink

q < Γ0(p), p > p2 E2(p) source

q > Γ0(p), p0 < p ≤ p1(≤ p2) E2(p) saddle

q > Γ0(p), p > p1, p 6= p2 E2(p) source

For p = p2 the trace vanishes and J(E2) admits a pair of pure imaginary eigen-
values. It will be shown later that for p = p2 a Hopf bifurcation, either supercritical
or subcritical, of E2(p) occurs.

The global stability of the equilibrium E2(p) follows from a result of Chiu and
Hsu [7], here adapted to our formulation.

Theorem 2.2. Let (x(t), y(t), z(t)) be a solution of system (1). If p0 ≤ p ≤ p2 and
q < Γ0(p), then (x(t), y(t), z(t)) → (x∗(p), y∗(p), 0) as t →∞.

For the proof, in [7] the following functional was considered:

V (x, y, z, p, q) =
1
c1

∫ y

y∗(p)

sθ−1(s− y∗(p))ds+ yθ

∫ x

x∗(p)

f1(pξ)−m1/(b1c1)
f1(pξ)

dξ +Cz.

(12)
Let the function F : (0, x∗(p)) ∪ (x∗(p), 1) → R be defined by

F (x, p) =

y∗(p)
c1

− r

b1c1p
(1− x)(1 + px)

∫ x

x∗(p)

f1(pξ)−m1/(b1c1)
f1(pξ)

dξ

=

y∗(p)
c1

− r

b1c1p
(1− x)(1 + px)

(
c1b1 −m1

c1b1

)[
x− x∗(p)− x∗(p) ln

(
x

x∗(p)

)] .
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Then, V (x, y, z, p, q) is a strictly Liapunov functional [26] if there exists θ > 0
such that θ ≥ F (x, p) for 0 < x < x∗(p) and θ ≤ F (x, p) for x∗(p) < x < 1 and if
C is chosen as

C =
f2(qy∗(p))

c1c2qf ′2(qy∗(p))
(y∗(p))θ−1.

It was proven in ([7], theorem 3.1) that where E2(p) is locally stable, it is possible
to verify the existence of θ which properly bounds F (x, p).

3. Existence and stability of coexistence equilibria. The coexistence equi-
librium states are strictly positive solutions of the following steady state equations:

rx(1− x)− b1y
px

1 + px
= 0, (13)

[c1b1
px

1 + px
−m1]y − b2z

qy

1 + qy
= 0, (14)

c2b2z
qy

1 + qy
−m2z = 0. (15)

From (13),(14) it follows that a necessary condition to have z > 0 is

x∗(p) =
p0

p
< x < 1, (16)

which implies p > p0.
By direct calculations it follows that the coexistence equilibria are at most two

and the expression of their components is reported in the following definition.

Definition 3.1. Let E±
3 (p, q) = (x±(p, q), y±(p, q), z±(p, q)) denote two coexistence

equilibrium states where

x±(p, q) =
r(p− 1)q ±

√
[rq(p + 1)]2 − 4rb1p2q0q

2rpq
, (17)

y±(p, q) = y(q) =
q0

q
, (18)

z± =
c2q0

m2q

[
b1c1

px±

1 + px±
−m1

]
. (19)

The existence regions of coexistence equilibrium states are characterized in the
following theorem and are shown in figure 1.

Theorem 3.1. Assume (5). Let

Γ0(p) =
q0

y∗(p)
=

b1q0

r(1 + p0)
p2

p− p0
, γ0(p) =

4b1q0

r

p2

(1 + p)2
(20)

Then
• for p > p2, γ0(p) < q < Γ0(p), there exist two positive coexistence equilibrium

states E±
3 (p, q);

• for p > p0, q > Γ0(p), there exists a unique positive coexistence equilibrium
state E+

3 (p, q)

Proof. The second components y±(p, q) are positive for all q > 0, while from (17)
it is easy to show that x±(p, q) are positive when q > γ0(p). The third components
z±(p, q) are positive if and only if x± > p0/p. This condition guarantees of course
also the positivity of the first component and leads to the following constraints:
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• x−(p, q) >
p0

p
in the region defined by

p > p2, q < Γ0(p),

• x+(p, q) >
p0

p
in the region defined by

p < p2, q > Γ0(p) and p > p2, q > γ0(p).

Moreover, it is easy to show that γ0(p) ≤ Γ0(p) for all p > p0. All these conditions
together prove the theorem.
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Figure 1. Existence regions of E±3 (p, q) in the (p, q) plane.

The stability of coexistence equilibria has been investigated via Routh-Hurwitz
criterion that allows to study the stability properties without direct calculation of
the eigenvalues of the Jacobian matrix.

Theorem 3.2. Assume (5) and the existence conditions of theorem 3.1. Then
• for p0 < p < p2 there exists a curve q = Σ(p) such that E+

3 (p, q) is locally
asymptotically stable for

Γ0(p) ≤ q < Σ(p); (21)

• for p > p2 there exists a curve q = γ′0(p) such that E+
3 (p, q) is unstable for

γ0(p) ≤ q < γ′0(p). (22)

The equilibrium E−
3 (p, q) is always unstable.

Proof. Let us consider the following Jacobian matrix of E±
3 (p, q):

J(E±
3 ) =




r(1− 2x±)− b1q0p

q(1 + px±)2
−b1

px

1 + px±
0

c1b1q0p

q(1 + px±)2
(1− µ20)

[
c1b1

px±

1 + px±
−m1

]
− m2

c2

0
c2b2qz

±

(1 + q0)2
0




(23)
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where µ20 = µ2(q0) =
1

1 + q0
.

The Routh-Hurwitz criterion guarantees that all the eigenvalues of J(E±
3 ) = (jik)

have negative real part if and only if the following inequalities hold:

j11 + j22 = TrJ(E±
3 ) < 0 (24)

(j11 + j22)(j12j21 − j11j22) + j22j23j32 > 0 (25)
−j11j23j32 = DetJ(E±

3 ) < 0. (26)

The inequality (26) is never verified by E−
3 (p, q) in the whole region of existence,

since it results j11, j32 > 0 and j23 < 0, and then it is always unstable. The same
inequality is always true for E+

3 (p, q), while expressions (24), (25) do not have a
defined sign in the whole (p, q) plane. Let us consider the curve q = Γ0(p) for
p0 < p < p2 on which x+ = p0/p and z+ = 0; then it results j22 = 0, j11 = −r, and
the Routh-Hurwitz inequalities (24), (25), which simplify to

j11 < 0, j11j12j21 > 0, (27)

are verified on such curve. Thus, by continuity, these inequalities together with
the existence condition q > Γ0(p) define a stability region for E+

3 (p, q) in the (p, q)
plane bounded from below by q = Γ0(p) and from above by a curve q = Σ(p);
such curve can be pointwise approximated by checking where the Routh-Hurwitz
conditions fail.

Now let us consider the curve q = γ0(p) for p > p2 on which x+ = (p− 1)/(2p);
it results j11 = 0 and then the Routh-Hurwitz inequalities (24), (25) become on it:

j22 < 0, j22(j12j21 + j23j32) > 0. (28)

Since j22 > 0 for p > p2, these inequalities are never verified, and then on the curve
q = γ0(p) the equilibrium E+

3 (p, q) is unstable. Thus, by continuity there exists a
region of instability bounded from below by q = γ0(p) and from above by a curve
q = γ′0(p) that can be numerically approximated.

Remark 1. We notice that stability of the equilibrium E+
3 (p, q) for p ≥ p2, q ≥

Γ0(p) cannot be proven by using the previous technique, because on the curve
q = Γ0(p) after p2, the condition x+ = p0/p fails and the Routh-Hurwitz inequalities
do not have a defined sign. Anyway, it is possible to verify that the region of stability
for E+

3 (p, q) may extend also to p ≥ p2 depending on the set of fixed ecological
parameters. In fact, the first of the Routh-Hurwitz conditions (24) concerns the sign
of the trace of the Jacobian matrix J(E+

3 ). Since Tr(J(E+
3 )), which we indicate

with τ(p, q), is null in correspondence of the point A = (p2, q2 = Γ0(p2)), the

stability of E+
3 for p ≥ p2 can be verified by checking the sign of

d

dq
τ(p2, q)|q=q2 .

If such sign is positive, then τ(p2, q) > 0 for q > q2 and the equilibrium E+
3 (p, q)

becomes unstable for p ≥ p2, q ≥ Γ0(p), since (24) is not fulfilled and we have
Σ(p2) = Γ0(p2); on the contrary, if such derivative is negative, then (24) is verified
and by continuity we get Σ(p2) > Γ0(p2); thus, it follows that there exists a region
also for p ≥ p2 in which E+

3 (p, q) remains stable above Γ0(p). By direct calculations
we have

d

dq
τ(p2, q) = C0 + C1

d

dq
x+(p2, q),

where the constants C0 and C1 depend only on the ecological parameters. By direct
investigation, we find that x+(p2, q) is an increasing function of q, x+(p2, q2) =
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p0/(1 + 2p0) and lim
q→q+

2

d

dq
x+(p2, q) = +∞. Thus, the stability of the equilibrium

E+
3 (p, q) follows by the sign of the constant C1. For our set of data (see table 1) it

results C1 < 0; then the equilibrium remains stable also for p ≥ p2, q ≥ Γ0(p), as
confirmed by the numerical simulations presented in the following. On the contrary,
in [5] the different choice of biological parameters leads to a stability region for
E+

3 (p, q) which ends at A.

4. Bifurcation analysis in the parameter space (p, q). In this section we dis-
cuss the bifurcations taking place when the boundary lines of the existence and
stability regions of the equilibrium states in the (p, q) plane are crossed.

First of all, in figure 2 we report the curves in the (p, q) plane relevant to exis-
tence conditions and to changes in the stability properties of the equilibrium states.
These curves divide the plane in five regions, whose boundaries are listed in the
following legend. All curves are obtained analytically except for the curve Σ, which
has been computed numerically. The trivial noncoexistence equilibrium state E0

does not appear in the bifurcation analysis, because it is a saddle point indepen-
dently of the parameters p and q. It means that the total collapse of the system is
not allowed by our prey-dependent model (1), as already pointed out in the liter-
ature [10, 17]. In addition, negative equilibrium states will be considered, even if
they have no ecological meaning, when they play some role in the comprehension
of the bifurcations occurring between equilibria. The limit cycles exhibited by the
system are discussed here only in relation to bifurcation of equilibria; their descrip-
tions will be presented in the next section.
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Figure 2. Existence and stability regions of the equilibrium states in the parameter space (p, q).

Legend:
• A = (p2, q2): intersection of curves q = γ0(p) and q = Γ0(p);
• B = (pB , qB): intersection of curves q = Γ0(p) and q = Σ(p).
• α: line p = p0;
• δ: line p = p2 for q < q2;
• γ0: curve q = γ0(p) for p > p2;
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• Γ01: curve q = Γ0(p) for p0 < p < p2;
• Γ02: curve q = Γ0(p) for p > p2;
• Σ: curve q = Σ(p);

As pointed out in [29], many food chains belonging to the class vegetation-
herbivore-carnivore (of interest in biological control) are characterized by diversified
time responses, increasing along the chain from bottom to top. This leads to
maximum specific growth rates r, r1 = c1b1 − m1, r2 = c2b2 − m2 in decreasing
order, r > r1 > r2. In our simulations we use the parameter values collected in
table 1, which have been deduced from the experimental data used by McCann and
Yodzis [27] by suitable conversion of parameters and rates used in their formulation.
The biological foundation of these values can be found in [33]. We notice that the
scaling performed in [27] with respect to the carrying capacity k and the choice
r = 1 yield dimensionless bioecological parameters. With this choice we obtain
r > r1 > r2 and the following values for p0, p2, q0 and q2

p0 = 0.99, p2 = 2.98, q0 = 0.25, q2 = 0.53.

Table 2. Values of dimensionless bioecological parameters used in the simulations.

r b1 b2 m1 m2 c1 c2 r1 = c1b1 −m1 r2 = c2b2 −m2

1 0.94 0.11 0.4 0.01 0.85 0.45 0.399 0.0395

Comparison has been made with the values used by other authors, with refer-
ence to an equivalent formulation of system (1) (see for instance [25], table 1); we
notice that almost all the parameters which are kept fixed in their studies become
dependent on p and q. Thus, our variation of predation efficiencies induces varia-
tion in their parameters and, even if the corresponding values are of the same order
of magnitude of ours, none of the cases presented there is exactly comparable with
our results.

The existence of a stability region for the equilibrium E+
3 (p, q) has been proven

in theorem 3.2 for p0 < p < p2. According to the remark of the previous section,
the numerical simulations show that, with the present choice of the ecological pa-
rameters, the Routh-Hurwitz conditions are satisfied also for values of p greater
than p2 and finally we obtain the stability region for E+

3 (p, q) shaded in figure 2.
We now describe in detail the mathematical structure of the equilibria in the

different regions of figure 2 and discuss the bifurcations across the boundaries, also
considering the biological implications.

Region I = {(p, q) ∈ R2
+ : 0 < p < p0}. In this region the noncoexistence equilib-

rium state E1 is stable with three real negative eigenvalues. From a biological point
of view, the stability of E1, representing the total extinction of both individuals
that attack the resource and their natural enemies, is the desired goal of an efficient
biological control action. No other positive equilibrium states exist in this region.
Therefore, persistence of the system cannot be reached here, (that is, coexistence
is not allowed), because for p < p0 (low consumer efficiency) the consumer of the
resource can only decrease, driving the top predator toward extinction and all the
trajectories toward E1, which turns out to be globally stable.
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Through α to region II. One real eigenvalue of E1 becomes positive and the
equilibrium state changes from stable to unstable, while E2(p) changes from nega-
tive to positive and becomes a sink. Along α the equilibrium states E1 and E2(p)
coalesce; they both have a simple null eigenvalue and exchange their stability. Then
a transcritical bifurcation takes place at p = p0.

Region II = {(p, q) ∈ R2
+ : p0 < p < p2, 0 < q < Γ01}. The equilibrium E1 is

unstable, while E2(p) is locally stable in the whole region and, thanks to theorem
2.2, also globally stable. Coexistence equilibria do not exist in this region, which is
characterized by low predation efficiencies for both consumer and top predator.
From a biological point of view, the final outcome represents a stable coexistence
of the resource and its consumer, in the absence of the biological control agent, so
in this region the top predator cannot eradicate harmful individuals, because of its
low efficiency.

Through Γ01 to region IV. The equilibrium state E2(p) changes from stable to
unstable because a real eigenvalue changes from negative to positive. The coexis-
tence equilibrium state E+

3 (p, q) changes from negative to positive and becomes a
sink. On the curve Γ01, the equilibrium states E2(p) and E+

3 (p, q) coalesce, with a
simple eigenvalue which is zero. As a consequence, on the curve Γ01 an exchange of
stability occurs between these two equilibrium states and a transcritical bifurcation
takes place.

Through δ to region III. The equilibrium state E2(p) changes from stable to
unstable. In the (x, y) plane a locally stable limit cycle OE2 arises around E2(p).
In fact, it is possible to prove the existence of a supercritical Hopf bifurcation for
the equilibrium E2(p).

Theorem 4.1. Assume (5). Then for p = p2, q < Γ0(p) = q0/y∗(p) a supercritical
Hopf bifurcation takes place for the equilibrium E2(p).

Proof. Let us consider the Jacobian matrix (10). By direct calculation it follows
that T (p2) = 0, D(p2) > 0 and in correspondence of the value p = p2 the matrix
has two pure imaginary eigenvalues λ1,2 = ±i

√
D(p2) and no other eigenvalues

with zero real parts. Moreover
d

dp
(<e(λ1,2(p)))|p=p2

=
r

2
dT (p)

dp |p=p2

=
r

2
p0

p2
2

> 0.

Then, all the hypotheses of the Hopf theorem [13] are satisfied and a limit cycle for
p > p2 can be found; its stability is discussed in the appendix. All these conditions
together prove the existence of a supercritical Hopf bifurcation for the equilibrium
E2(p).

Region III = {(p, q) ∈ R2
+ : p > p2, 0 < q < γ0 = 4b1q0p

2/r(1 + p)2}. Both equi-
librium states E1 and E2(p) are unstable, and no coexistence equilibrium states
exist in this region. Only the limit cycle OE2 is locally stable, and the numerical
simulations show that all the trajectories converge to the cycle. Then the final out-
come in this region is the cyclic behaviour of the resource and its consumer, while
the natural enemy goes to extinction without eradicating harmful individuals.
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Through γ0 to region IV. On this curve the coexistence equilibrium states
E±

3 (p, q) appear together with two complex eigenvalues with positive real part and
a real null eigenvalue. Moreover, by increasing q close to γ0, the real eigenvalue
becomes negative for E+

3 and positive for E−
3 . Thus a local tangent bifurcation for

the equilibrium states E±
3 (p, q) takes place on γ0.

Region IV = {(p, q) ∈ R2
+ : p0 < p < p2, Γ0(p) < q < Σ(p)} ∪ {p > p2, γ0(p) <

q < Σ(p)}.
In this region the noncoexistence equilibrium states E1 and E2(p) are unstable in
the whole region as well as E−

3 (p, q), which exists only for p > p2, γ0(p) < q < Σ.
For p0 < p < p2 the stability of the equilibrium E+

3 (p, q) has been proven in
theorem 3.2, while for p > p2 may be investigated numerically by checking the
inequalities (24)-(26) of the Routh-Hurwitz criterion. In particular, for values of q
very close to γ0(p), two eigenvalues of E+

3 (p, q) are complex with positive real part,
and trajectories starting close to such equilibrium converge to the limit cycle OE2 .
By slightly increasing q, the complex eigenvalues become pure imaginary and then
with negative real part. Thus, we have evidence of a subcritical Hopf bifurcation
on a curve γ′0(p) very close to γ0(p), according to the second part of theorem 3.2.
Such curves turn out to be very close to each other with the choice of parameters
of table 1. From a biological point of view, in the region under consideration (but
restricted to γ′0(p) < q < Σ(p) for p > p2), stable coexistence of the resource, the
consumer and the consumer’s natural enemy can happen and this result could be
useful if reached with low levels of harmful individuals.

Region IV can be further divided into regions IVA and IVB by considering the
curve Γ02. On this curve E2(p) and E−

3 (p, q), both unstable, coalesce and then
E−

3 (p, q) becomes negative above this curve. Thus, on Γ02 a transcritical bifurca-
tion of equilibria takes place.

Through Σ to region V. The coexistence equilibrium state E+
3 (p, q) changes

from stable to unstable, and on the curve Σ it has two pure imaginary eigenval-
ues and one strictly negative eigenvalue, respectively. The numerical simulations
show that on this curve a Hopf bifurcation of E+

3 (p, q) occurs; a limit cycle with
all components oscillating between strictly positive values may be found above Σ
and we have numerical evidence of the existence of a value pB > p2 such that the
bifurcation is supercritical for p < pB and subcritical for p > pB . The value pB

corresponds to the abscissa of the point B, intersection of Γ02 with Σ.

Region V = {(p, q) ∈ R2
+ : p > p0, q > Σ}. No stable equilibrium states exist

in this region and the extensive numerical simulations show the presence of stable
limit cycles (see next section) and the possibility of chaos. In this region, it is pos-
sible to single out subregions in which the system is strongly persistent, (that is,
the three components oscillate between some maximum and minimum values that
are strictly positive), and then partial collapse of the system can be avoided.

Remark 2. It is interesting to discuss in more detail the bifurcation diagram near
the point A = (p2, q2). Such point has codimension two, since J(E2(p2)) has two
pure imaginary eigenvalues and one zero eigenvalue. From this point, several bifur-
cation curves emerge and they are represented in figure 3. First of all, we notice
that it is difficult to distinguish the curves γ0 and γ′0 with our set of parameters.
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In addition to the bifurcation curves for equilibria already discussed, we find the
curve Θ, which represents a transcritical bifurcation of limit cycles. In fact, the
curve δ above A is a subcritical Hopf bifurcation for the saddle E2(p): crossing
δ above A from left to right, E2(p) becomes a repeller and a saddle limit cycle
OE2 appears on the (x, y) plane. This cycle becomes stable when the curve Θ is
crossed and the hypothesis is a transcritical bifurcation with a positive saddle cycle
as in [25], emerged by subcritical Hopf bifurcation of E+

3 (p, q) across γ′0 in region IV.
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Figure 3. Bifurcation diagram around the codimension-two point A.

The cycle OE2 is then stable in regions where other attractors are present. In par-
ticular, we obtain bistability between OE2 and E+

3 (p, q) in region B1 (see figure 4
left) and bistability between OE2 and a positive stable limit cycle OE3 in region B2

(see figure 4 right and section 5 for details on OE3). Our results essentially agree
with those presented in [25], which were obtained in the parameter plane (m1,m2)
by carrying out a parameter-dependent normal form analysis of the system near
the codimension-two point A, and also with the subsequent numerical analysis of
bistability phenomena presented in [3].
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(p = 4.1, q = 0.7 in region B1) (left) and between the cycles OE2 and OE3 (p = 5.5, q = 1.2 in

region B2) (right).

Remark 3. The dependence of the asymptotic properties of the system on bioe-
cological parameters different from p and q can be deduced from our analysis by
drawing the curves giving the critical values in terms of r, mi, ci, bi, i = 1, 2,
in suitable subspaces. First of all, the carrying capacity k does not enter in our
set, because from the beginning we have used scaled variables x = x̂/k, y = ŷ/k,
z = ẑ/k. This has led to predation efficiencies p and q which are measured in
terms of k, and high values for such efficiencies may be the result of a high carrying
capacity, namely productive environments.
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Figure 5. (a) Stability region (hatched) of E2(p) in the (m1, p) plane; (b) regions of existence of

the coexistence equilibrium states E±3 (p, q) in the (m1, q) plane for p = 5. Other fixed parameters

as in table 1, for which c1b1 = 0.8 and c1b1p/(p + 1) = 0.67.

We now put in evidence the dependence of bifurcation values for p and q on
the parameters m1,m2, r, which have been extensively used in the literature for
bifurcation analyses.

The curve p0 = p0(m1) for 0 < m1 < c1b1 is a portion of an increasing hyper-
bola, as well as p2 = p2(m1) = 1+2p0(m1). Both curves have a vertical asymptote
at m1 = c1b1, and for m1 ≥ c1b1 we get ẏ < 0 in system (1), and then both con-
sumer and top predator go to extinction. The curve q = Γ0(m1) is positive for
0 ≤ m1 < c1b1p/(p + 1) < c1b1 with a minimum at m1 = c1b1(p − 1)/(p + 1),
and it bounds from below the region where the system admits only one coexistence
equilibrium state. At the value m1 = c1b1p/(p + 1), which corresponds to p = p0,
the curve q = Γ0(m1) has a vertical asymptote. The curve γ0 instead does not
depend on m1, and then it is a line q = constant > 0 parallel to the axis m1, which
lies always below the curve q = Γ0(m1) and it is tangent to it at its minimum
m1 = c1b1(p − 1)/(p + 1), which corresponds to p = p2. In the region between
γ0(m1) and Γ0(m1), the system admits two coexistence equilibrium states.

With respect to m2, both curves q = Γ0(m2) and q = γ0(m2), for 0 ≤ m2 < c2b2

and p > p0, are portions of increasing hyperbolas which are tangent to each other
at the origin of the (m2, q) plane and such that γ0(m2) ≤ Γ0(m2). Moreover,
both curves have a vertical asymptote at m2 = c2b2, and ż < 0 in system (1) for
m2 ≥ c2b2, and then top predator goes to extinction, so that no coexistence equi-
libria exist.

With respect to r and for a fixed p > p0, the curve q = Γ0(r) is a branch of a
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decreasing hyperbola for all r > 0, as well as q = γ0(r). Again, the curve q = γ0(r)
is always below q = Γ0(r), and in the region bounded by the two curves there exist
two coexistence equilibria.

To illustrate these results, we report the stability region for E2(p) in the (m1, p)
plane for a fixed q < min

p
Γ0(p) and the regions of existence of coexistence equilib-

rium states in the (m1, q) plane in figure 5. The regions of existence of E±
3 in the

parameter planes (m2, q) and (r, q), respectively, are then shown in figure 6. These
last three figures are the analogues of figure 1 using different bifurcation parameters.
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Figure 6. Regions of existence of the coexistence equilibrium states E±3 (p, q): (a) in the (m2, q)

plane for p = 12, (b) in the (r, q) plane for p = 12. Other fixed values as in table 1, for which

c2b2 = 0.05.

5. Time-dependent behaviours: Limit cycles and an example of chaos.
Here we mainly investigate the temporal evolution exhibited by the system in the
form of limit cycles, discussing their features from a biological point of view, and
we show an example of chaotic behaviour. We start by considering the stable limit
cycle OE2 , arising from E2(p) in region III of figure 2, for a fixed value of q under
the curve γ0 and for increasing values of p > p2. As pointed out in the previous
section, in this region only the cycle OE2 , lying in the plane z = 0, is locally stable
and all the trajectories go toward such an attractor: the low level of efficiency q
causes the extinction of the top predator. We notice that for p > p2, q < γ0(p)
both shape and period of the cycle OE2 are not affected by the top predator ef-
ficiency q; therefore, the numerical simulations have been performed for the fixed
value q = 0.3, representative of region III, without loss of generality. In all figures
we show the behaviours after the initial transient, and we also report the positions
of equilibria in the phase space, using the following symbols: ‘◦’ for E0, ‘¤’ for E1,
‘∗’ for E2(p) and ‘+’ for E+

3 (p, q). The values for the period of the limit cycles are
dimensionless, as a consequence of the choice r = 1. The following figures show the
progressive increase of both period and amplitude of the cycle for increasing values
of p (figs. 7–11). In particular, the period turns out to be a nearly linear function
of the consumer efficiency.
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Figure 7. Temporal evolution of densities x, y for p = 3.1 (left) and the corresponding cycle OE2

of period T = 17.5 (right).
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Figure 8. Temporal evolution of densities x, y for p = 4.1 (left) and the corresponding cycle OE2

of period T = 21.25 (right).

By further increasing the value of the parameter p, the limit cycle OE2 approaches
the axes of the (x, y) plane, and, correspondingly, in the temporal evolutions the
consumer remains at low levels between the maxima, which tend to be more and
more peaked, while the resource alternates intervals in which it approaches its car-
rying capacity and intervals in which it is very low (figs. 9 and 10).
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Figure 9. Temporal evolution of densities x, y for p = 8 (left) and the corresponding cycle OE2

of period T = 39 (right).
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All the previous figures show that there exists a threshold for the consumer
density y that causes on one side the decrease of the resource when it is crossed
from below and on the other side its growth when it is crossed from above. This
value has been numerically estimated by taking the value of y in correspondence
of the maximum of x and it results a decreasing function of p. Moreover, we point
out that, for p large enough, OE2 approaches the homoclinic cycle formed by the
heteroclinic orbits connecting the saddle points E0 and E1, and correspondingly
the temporal evolution shows longer and longer time intervals in which the system
alternatively approaches the total extinction and the optimal condition (namely,
resource close to carrying capacity and consumer close to zero) (see figure 10). The
amplitude increase of the oscillation for the resource is an interesting phenomenon:
while the progressive decrease of the minimum of resource for large values of the
consumer efficiency could have been predicted, it is less obvious that a more effi-
cient consumer may allow the resource to reach levels close to the carrying capacity
of the system, for relatively larger and larger portions of the period. The result
is a resource which, for almost half of the period, is close to its carrying capacity
and for almost the other half is very low, with fast switches between the two cases.
In the meantime, the consumer is at a very low level for most of the time and has
bursts which cause the fast decrease of the resource.
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Figure 10. Temporal evolution of densities x, y for p = 15 (left) and the corresponding cycle

OE2 of period T = 64.5 (right).

Now we focus on the limit cycle OE3 , which arises by Hopf bifurcation of E+
3 (p, q)

across Σ. This cycle corresponds to a persistence of the system, since its compo-
nents oscillate between strictly positive values. We first follow its behaviour in
region V of figure 2 for a fixed value of the parameter p in the interval p0 < p < p2

(low consumer efficiency) and for increasing values of q above the curve Σ. The
following figures 11–14 are obtained for p = 2.28, representative of the region under
study. The cycle increases its size and period and approaches the saddle point E1,
following the eigenspace tangent to its stable manifold ((x, z) plane), and then goes
towards E2(p), following the direction of the unstable manifold of E1. The temporal
evolutions show that the oscillations of resource and consumer densities have nearly
opposite phases, with a small delay between the maximum of y and the minimum
of x, estimated as two to four time units for our set of parameters. Moreover, the
figures show that there is now a threshold for the top predator density z, which
causes the decay of the consumer and correspondingly the growth of the resource
once it is crossed from below. This threshold can be estimated by taking the value
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assumed by z when y reaches its maximum. It can be observed that the same
threshold value for z also causes the reverse behaviour, once crossed from above;
namely, the growth of the consumer and the decay of the resource. This mechanism
is similar to the one observed for resource and consumer in the cycle OE2 .
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Figure 11. Temporal evolution of trophic levels for q = 1.57 (left) and the corresponding cycle

OE3 of period T = 192.5 (right).

Starting from figure 13, we see that when the first two components approach the
equilibrium state E2(p), the corresponding temporal evolutions show the appear-
ance of small scale oscillations. Moreover, for increasing q, the temporal evolutions
show levels of the resource close to the carrying capacity of the system, and corre-
spondingly very low consumer levels, for quite long time intervals (figs. 13–14). The
figures denote also that higher values of the predation efficiency q cause a faster rise
and a slower decay of z, that increase the length of the time interval in which the
consumer remains at low levels. Such length is found to grow linearly with q. As
a consequence, one could change favourably the system behaviour by introducing
mechanisms of maintenance at suitable level for the top predator, with the aim to
sustain the growth of the resource.
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Figure 12. Temporal evolution of trophic levels for q = 2 (left) and the corresponding cycle OE3

of period T = 212 (right).

We notice that in the chosen range of bifurcation parameter q, the system does
not develop chaotic dynamics. We have also compared the limit cycles OE2 and
OE3 for two different q’s (on opposite sides with respect to Γ0) and for the same
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increasing p. The numerical results have shown that the oscillations in the x and y
components are larger for the former than for the latter, and the period of OE2 is
always about one order of magnitude shorter than the period of OE3 . Moreover, the
two cycles show quite different behaviours: OE3 presents changes in the topology
and a period that slightly varies with p, while OE2 increases both amplitude and
period without essentially changing its shape.
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Figure 13. Temporal evolution of trophic levels for q = 3.97 (left) and the corresponding cycle

OE3 of period T = 332.5 (right).
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Figure 14. Temporal evolution of trophic levels for q = 7.47 (left) and the corresponding cycle

OE3 of period T = 533 (right).

Finally, we present the behaviour of the stable limit cycle OE3 when a fixed
large value of the consumer efficiency p > p2 and increasing values of q above the
curve Σ are considered; namely, in region V of figure 2 for p greater than p2. The
dynamics shown by the following figures have been obtained for the value p = 4.98,
representative of the region in the (p, q) plane under study, and for different values
of q. We start with q = 1.11, slightly above the curve Σ, and we find the cycle OE3

reported in figure 15. Again, we can see that resource and consumer densities have
nearly opposite phases, with a delay between the maximum of y and the minimum
of x which varies again from two to four time units and, by increasing q, we can
observe the increase of the cycle period (figs. 16–17). We notice that, with respect
to the previous case, the higher efficiency p makes the consumer y more resistent
to the actions of the top predator, and its functional response on resource x leads
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to more complicated shapes of the cycle. This gives rise to more pronounced small-
scale oscillations, especially in the first two trophic levels, in intervals following the
minimum of x and the maximum of y, respectively. Moreover, for larger q it is still
evident the presence of a threshold value for the top predator density z; crossing
this value from above causes the fast growth of the consumer, and correspondingly
the resource starts decreasing. Contrary to the situation observed for p < p2, it
is harder to estimate the threshold value for z which takes the system back to the
optimal condition, because of the small-scale oscillations following the maximum of
y and the minimum of x. We can observe the two behaviours obtained for lower or
higher consumer efficiencies p by comparing figure 17 with figure 12, corresponding
to the same top predator efficiency q. In both cases, after the top predator z has
reached its maximum and starts decreasing, the consumer is decreasing and attains
to a very low level until a threshold value for z, close to the minimum, is reached.
Then, the consumer starts to grow again, monotonically in figure 12 and with small-
scale oscillation in figure 17, since it is more difficult to fight the consumer when its
efficiency is higher. Correspondingly, small-scale oscillations appear in the resource
density after the phase when it is close to its carrying capacity. In addition, the
values of top predator densities in the oscillations are larger in the case of higher
consumer efficiency.
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Figure 15. Temporal evolution of trophic levels for q = 1.11 (left) and the corresponding cycle

OE3 of period T = 140 (right).
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Figure 16. Temporal evolution of trophic levels for q = 1.6 (left) and the corresponding cycle

OE3 of period T = 185 (right).
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The observed phenomenon of the appearance of high-frequency (small-scale) os-
cillations for the resource-consumer subsystem in the limit cycles OE3 has been
analyzed in [29]. It was detected in a class of tritrophic food chains, which our sys-
tem belongs to, characterized by diversified time responses increasing from bottom
to top. Using a singular perturbation approach, they showed that such systems can
have low-frequency strictly positive cycles due to interactions between consumer
and top-predator, while the interaction between resource and consumer can give
rise to high-frequency oscillations. It was noticed that these periodic bursts of
high-frequency oscillations develop, in particular, when consumer and top predator
are fairly efficient and explicit conditions for their existence were derived; starting
from these results, in our formulation a necessary condition turns out to be p > p2,
in agreement with our simulation.
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Figure 17. Temporal evolution of trophic levels for q = 2 (left) and the corresponding cycle OE3

of period T = 215 (right).

As already shown in the literature [3, 15, 21, 24, 25, 28], food chain systems can
develop chaotic dynamics in suitable ranges of bifurcation parameters, depending on
the set of fixed bioecological rates. Such behaviours may explain irregular dynamics
observed in many natural food chains (see discussion in [28]). The route to chaos
was deeply investigated in [3, 21, 24, 25] using different bifurcation parameters.
The first example of chaotic dynamics was shown by Hastings and Powell [15];
they found a strange attractor that strongly resembled a low-frequency cycle with
bursts of high-frequency oscillations like the ones described in [29]. Klebanoff and
Hastings [21] investigated the chaotic dynamics by deriving the normal form of a
codimension-two bifurcation point, corresponding to point A in our formulation,
and by showing that this normal form might imply chaos for small perturbation
of the parameters. They numerically detected the presence of chaos by varying
parameters corresponding to p and m2. Later, it was noticed by Kuznetsov and
Rinaldi in [25] that the origin of chaos cannot be associated to point A, but rather
to more complex dynamical phenomena arising in regions far from the degenerate
point. They showed that the transition to chaos, in a parameter plane corresponding
to (m1,m2), involves a cascade of bifurcations and is related to the creation of
a strange attractor like in [15]. With a different approach, in [3] a homoclinic
bifurcation point was detected by Boer et al. and a region of chaotic coexistence,
surrounding a region of extinction, was found by continuation techniques, in a
subregion of the parameter plane (m1, m2). A systematic study of the chaotic
regions was carried out by Kuznetsov et al. in [24] using r and k as bifurcation
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parameters, beginning from the study of a codimension-two homoclinic bifurcation
referred there to as Belyakov bifurcation.

In our formulation, the predation efficiencies p and q play the role of the main
bifurcation parameters, since we are interested in discussing the phenomenology
consequence of their variation, due to the fact that it is difficult to estimate them
in any realistic experimental set-up. We have found strange attractors related to
cycle OE3 in region V, for consumer efficiency p high enough and increasing q. Here,
we present in figure 18 the strange attractor, obtained for q = 2.83 and all other
values as in figure 17, that resembles the surface of an upside-down tea cup. A
similar attractor was also found by McCann and Yodzis in [27] using bifurcation
parameters related to p and q, but, because of their choice, also changing the bioe-
cological parameters corresponding to b1, b2 and m2, fixed in our setting. By means
of simulations and continuation, they started from the degenerate point correspond-
ing to A but showed that chaos arises in a different region of the parameter space.
In fact, in [28] the primary biological condition for chaos in this three trophic food
chain was identified to be a productive environment, in the sense of high carrying
capacity for the resource, that in our formulation can correspond to having suffi-
ciently high predation efficiencies. In agreement with these conditions, the strange
attractor presented in figure 18 has been obtained for p and q sufficiently high and
far from the point A. However, a systematic investigation of transition to chaos
for tritrophic food chains was presented in [25]. Even though their analysis was
performed with a different set of bioecological parameters, our results are similar
to the chaotic regime shown there.
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Figure 18. Temporal evolution of trophic levels for q = 2.83 (left) and the corresponding strange

attractor in the phase space (right).

6. Concluding remarks. In this paper we have studied the prey-dependent food
chain model resource-consumer-top predator, for which a bifurcation analysis has
been carried out using the predation efficiencies p and q as control parameters,
focusing on equilibria, limit cycles and with an example of chaotic behaviour. We
have completely characterized equilibria and their regions of stability in the (p, q)
plane, as well as the bifurcations at the boundaries between them and the appear-
ance of limit cycles by Hopf bifurcation. We have proven the existence of several
bifurcation curves, all analytically determined except two. We have also proven the
stability of the limit cycle OE2 in the plane z = 0, appearing by Hopf bifurcation
of the equilibrium state E2, representing the coexistence of resource and consumer
in absence of the top predator. The resulting framework has been compared with
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the existing literature on this subject. Our results give a contribution to clarify the
role played by predation efficiencies in determining the fates of a tri-trophic food
chain, and they allow to describe different observable dynamics in the (p, q) plane.

As for the system’s persistence, with reference to figure 2 we summarize that the
three trophic levels can coexist only in regions IV and V. Moreover, the coexistence
is not guaranteed for all initial conditions in some subregions of IV and V. In fact,
the limit cycle OE2 (with z = 0) may be locally stable for p > p2 and q > γ0(p) (see
figure 3, regions B1 and B2 of bistability). The coexistence can occur as a stable
equilibrium state or as a limit cycle and even as a strange attractor. We have
analytically shown that the region of stability of the coexistence equilibrium state
strongly depends on the values of the other bioecological parameters (see remark
1), and we have pointed out that such values also affect the position and the shape
of the bifurcation curves (see remark 2), which may almost overlap as it happens to
γ0 and γ′0 in figure 3. Therefore, the dependence of critical values and bifurcation
curves in terms of other biological parameters has been also investigated (see remark
3). The biological implications of the cyclic behaviours have been discussed, with
reference to relevant features arising in the temporal evolutions when predation
efficiencies are varied. The presence of chaotic attractors has been also pointed
out, and reference has been made to previous literature on the subject.

In particular, the cyclic behaviours show interesting mechanisms in the interac-
tions between the three trophic levels; for instance, it is possible to estimate values
of predation efficiencies for which the system approaches the optimal conditions,
namely high levels of resource and low levels of consumer, for quite long time in-
tervals. It is also possible to estimate a threshold for the top predator density
leading the system close to the optimal conditions. These results can be useful in
the choice of the biological control strategy, since they may suggest characteristics
of top predator, depending on the status of the resource and the level of consumer
density, in order to regulate the pest according to the economic concerns.

7. Appendix: Stability of limit cycle OE2 . The Hopf bifurcation of the equi-
librium E2(p) at p = p2 in the tritrophic system (1) gives rise to a limit cycle in
the (x, y) plane. The stability of this cycle can be deduced from the attractivity
properties of the limit cycle which appears by Hopf bifurcation of E2(p) in the two
trophic system (4). In [23] it was shown that for the prey-predator system (4)
the cycle OE2 , when exists, is globally attractive (except E2(p)) in the (x, y) plane.
If we consider the noncoexistence equilibrium E2(p) for the tritrophic system (1),
we obtain that, in correspondence of the Hopf bifurcation value p = p2, the third
eigenvalue λ3 of J(E2) is real. Furthermore, it is possible to characterize the central
manifold of E2 as the (x, y) plane and to find that the projection on this plane of
system (1), linearized around E2(p), coincides with the linearization around E2(p)
of the two trophic system (4). Consequently, the cycle OE2 , which exists for p > p2,
will result stable for q < Γ0(p), where λ3 < 0. The Hopf bifurcation of E2(p) will
be supercritical for p > p2, q < Γ0(p) and subcritical for p > p2, q > Γ0(p).

In detail, let us consider the vectorial form ẋ = f(x) of the system (1) and
indicate with Jf = (aij) the Jacobian matrix J(E2(p)) (10). It is possible to find a
linear transformation x′ = Bx that maps E2(p) in itself, such that the new system
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ẋ′ = g(x′) has a Jacobian matrix at E2(p) given by

Jg(x′) = BJf (x)B−1 =




j11 j12 0
j21 j22 0
0 0 a33


 (29)

where a33 is the corresponding element in Jf , which represents also the third eigen-
value of the same matrix, and the entries jik are the same of the Jacobian J(E2(p))
of the two trophic case. In fact, let us consider the following matrix for the change
of variables

B =




1 0 b13

0 1 b23

0 0 1


 (30)

where

b13 = − a12a23

a2
33 − a11a33 − a12a21

, b23 =
a23(a11 − a33)

a2
33 − a11a33 − a12a21

.

By substituting this transformation in (1) we obtain a system with a non-coexistence
state E′

2(p) = E2(p) and the Jacobian matrix Jg(x′) at E′
2 turns out to be in the

form (29).
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