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Abstract. We develop a theory for sensitivity with respect to parameters
in a convex subset of a topological vector space of dynamical systems in a
Banach space. Specific motivating examples for probability measure depen-
dent differential, partial differential and delay differential equations are given.
Schemes that approximate the measures in the Prohorov sense are illustrated
with numerical simulations for distributed delay differential equations.

1. Introduction. In this paper we develop sensitivity equations for a general non-
linear dynamical system in a Banach space depending on parameters in a convex
subset of a topological vector space which is not necessarily a normed linear space.
More specifically, we study the sensitivity equation of the following ordinary differ-
ential equation

ẋ(t) = f(t, x(t), µ) if t ≥ t0,

x(t0) = x0,
(1)

whose solution x is assumed to exist and belong to a complex Banach space (X, |·|X)
for any choice of the parameter µ in a convex subset M of a topological vector
space X . Our investigations are motivated by the fact that in many applications of
practical interest, the parameter space or set is not a Banach space or even a linear
space and the sensitivity analysis developed in [19] is therefore not applicable.

As we shall see below, our motivating example involves the set P(S) (or a convex
subset of P(S)), the general metric space of probability measures defined on a set S,
taken with the Prohorov metric (discussed in detail below), when P(S) is viewed as
a subset of the dual X = (C∗B(S), Tw∗) of the bounded continuous functions CB(S),
with X = C∗B(S) taken with the weak∗ topology.

The topological vector space structure of X and the underlying convex subset
M⊂ X do not permit the usual framework where we can define and use a Frechet
derivative of f with respect to µ. However, the convexity assumption for M allows
us to perform a sensitivity analysis of (1) by means of directional derivatives of f
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with respect to µ, when µ stays within the convex set M. Given two points µ, ν in
M, we define the derivative δf(t, x, µ; ν − µ) of f at µ in the direction ν − µ to be
the value of the limit

lim
ε→0
ε>0

f(t, x, µ + ε(ν − µ))− f(t, x, µ)
ε

= δf(t, x, µ; ν − µ), (2)

provided this limit exists in X. Our goal in this paper is to show that under suitable
conditions imposed on f , the sensitivity of the solution x with respect to µ, defined
as the directional derivative

y(t) = δx(t, µ; ν − µ) = lim
ε→0
ε>0

x(t, µ + ε(ν − µ))− x(t, µ)
ε

, (3)

exists in X and satisfies the sensitivity equation

ẏ(t) = fx(t, x(t, µ), µ)y(t) + δf(t, x(t, µ), µ; ν − µ) if t ≥ t0,

y(t0) = 0.
(4)

We note the different nature of the derivatives of f appearing above. Here fx is the
Frechet derivative of f with respect to x, whereas δf(t, x, µ; ν − µ) is the directional
derivative of f at µ in the direction ν − µ.

Motivation for investigating sensitivity is widespread and there is a substantial
literature on the subject. The large literature includes a number of books devoted
to both elementary and advanced aspects of sensitivity [35, 37, 39, 41, 42, 51, 62].
Equations for the sensitivity of a system with respect to finite dimensional vector
parameters are used in standard methodology for optimization and inverse prob-
lems including least squares, maximum likelihood, computation of standard errors
in statistics, etc., [36], as well as in model discrimination/model selection related
quantities (dispersion matrix, Fisher information matrix, etc., [30, 45]). Applica-
tions of sensitivity methods for finite dimensional vector parameters are widespread
and can be found in many applications, including biology [24], physiology [22], me-
chanics [1, 42], and control theory [62]. More recently, investigators’ attention has
turned to more complex formulations for sensitivity of infinite dimensional systems
with function space parameters in problems involving shape sensitivities or sensitiv-
ities with discontinuous coefficients (for interesting and well motivated pioneering
results in this area, we recommend that the reader see [25, 26, 31, 32, 33, 34] and
[55] and the references therein). However, sensitivity for the systems we investigate
here of the form

ẋ(t) = F (t, x(t), P ), (5)

where P is a probability distribution or measure, represents another class of prob-
lems where the “parameter” sets are infinite dimensional and presents a new set
of both theoretical and computational challenges. Again the applications motivat-
ing such systems are diverse and growing with the increased scientific interest in
incorporating uncertainty into models and systems. The need to employ dynamics
with probabilistic structures has recently received increased emphasis. In particu-
lar, systems with probability measures or distributions embedded in the dynamics
(problems involving aggregate dynamics as discussed in [8]) have become impor-
tant in applications in biology [6, 7, 8], electromagnetics [11, 12] and hysteretic
[15, 16, 29, 44, 46] and polymeric [17, 18, 20] materials. While the interest in
sensitivity of systems such as (5) is recent, we point out that general interest in
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such systems is rather longstanding. We illustrate with a simple example from con-
trol theory arising in relaxed or chattering control problems [47, 48, 52, 59, 60, 61]
wherein the controls are probability measures. Indeed, such systems date back to
the seminal work of L.C. Young on generalized curves in the calculus of variations
[63, 64].

Briefly, early applications in what is now called classical optimal control theory
led to the need for controls that switched frequently or “chattered” between con-
stant (in time) values in a control restraint set U . To be more precise, one has a
dynamical system of the form

dx

dt
(t) = f(t, x(t), u(t)), 0 ≤ t ≤ T, (6)

and one wishes to “control” the system through the input or control function u
that takes values in the set U . Here the requirement that u(t) ∈ U , 0 ≤ t ≤ T ,
is dictated by physics or by the engineering aspects of the problem. In the so-
called “chattering controls” that were found to be “near optimal” (for certain given
criteria), the controls were piecewise constant taking values uj on intervals [tj , tj+1)
comprising a partition of [0, T ]. Thus the near optimal controls had the form

u(t; v) = χ{uj}(v)χ[tj ,tj+1)(t) for v ∈ U, 0 ≤ t ≤ T. (7)

In differential form (with respect to the control set), this becomes

du(t; v) = δ{uj}(v)dvχ[tj ,tj+1)(t). (8)

This in turn leads to the near optimal form of (6) being given by

dx

dt
(t) =

∫

U

f(t, x(t), v)δ{uj}(v)dvχ[tj ,tj+1)(t) = f(t, x(t), uj)χ[tj ,tj+1)(t). (9)

Furthermore, it was found that by increasing the number of switches through refine-
ment of the time partition (so that the control switches or “chatters” increasingly
often), one does increasingly better in optimizing the cost criterion. In the limit
one obtains an optimal control that switches infinitely often between certain values
in U . Such a control “function” is not a function in the usual sense, but it can be
realized by a “relaxed control” or U -valued time-dependent measure µ(t; ·) defined
on the Borel subsets B of U . The corresponding limiting control system becomes

dx

dt
(t) =

∫

U

f(t, x(t), v)dµ(t; v) = F (t, x(t), µ(t)). (10)

Here the time-dependent measure µ is the weak∗ − limit (on CB(U), the bounded
continuous functions v → f(t, x, v)) as the partition mesh in (9) approaches zero.
By formulating the optimization problem over the relaxed control system (10), one
obtains not only closure but also convexity in the resulting control problem. In
this relaxed control setting it is then possible to obtain well-posedness (existence,
uniqueness, appropriate continuous dependence, etc.) for the optimal control prob-
lem and to argue that the resulting optimal limit or relaxed control can be well
approximated by sequences of ordinary control functions of the form given in (7).
While much theoretical work (existence, uniqueness and some approximation) was
carried out in the period from 1960 to 1975, little to no effort was made on a sen-
sitivity methodology for such problems. While the by-now classical references (in
particular, the book [61] by Warga presents a beautiful summary) are difficult to
read, such an undertaking is well worth the effort for the wealth of ideas found in
this area of control theory. We note that the weak∗ topology on the dual C∗B(U)
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was quite naturally used in the development of relaxed control theory and, as we
shall explain below, this is precisely the topology induced by the Prohorov metric
(although convergence of measures in this topology is often called “weak conver-
gence” by probabilists in something of a misnomer from a functional analysis point
of view). We also remark here that more recent [15, 16] formulations for materi-
als with memories in a Preisach measures setting also lead to systems of the form
(10) and provide yet another motivation for the sensitivity efforts pursued in this
paper. Before turning to our new theoretical and computational findings for these
systems, in the next section we offer several current applications where measure or
probability distribution dependent dynamical systems are playing a major role.

2. Motivating Examples with Measure/Probability Density Dependent
Dynamics. Our first example from recent investigations [11, 12] in which the sys-
tems of the type under investigation here arise naturally entails Maxwell’s equations
for electromagnetic waves impinging on a heterogeneous dielectric material such as
biotissue. If we consider a domain D = Ω0 ∪ Ω where the dielectric material is Ω
and the ambient Ω0 is treated as a vacuum, then Maxwell’s equations govern the
electric field E and the magnetic field H in D and are given by the system




(i)
∂D
∂t

+ J−∇×H = 0, in (0, T )×D,

(ii)
∂B
∂t

+∇×E = 0, in (0, T )×D,

(iii) ∇ ·D = ρ, in (0, T )×D,

(iv) ∇ ·B = 0, in (0, T )×D,

(v) E× n = 0, on (0, T )× ∂D,

(vi) E(0,x) = 0, H(0,x) = 0, in D.

(11)

Here ρ is the charge density in Ω and, as usual, the current J is composed of a
source current Js and a material induced conductive current Jc in Ω. Within the
domain D we need constitutive relations that relate the flux densities D,B and the
conductive current Jc to the electric and magnetic fields E and H, respectively.
These are given by in Ω by




(i) D = ε0εrE + Pm,

(ii) B = µ0H,

(iii) Jc = σE,

(12)

where εr = (1 + χ) is the relative permittivity of the dielectric medium and χ
accounts for the instantaneous polarization due to the interface between Ω0 and Ω.
(Of course in Ω0 we have Jc = 0,Pm = 0 and χ = 0 so εr = 1.) The dielectric
material polarization Pm generally has convolution form

Pm(t,x) = g ∗E(t,x) =
∫ t

0

g(t− s,x)E(s,x)ds, (13)

where g is the general dielectric response function (DRF). In every practical example
(Debye, Lorentz, etc.), DRFs are parameter-dependent as well as time-(and possibly
space-) dependent; we represent this as g = g(t,x; ν), where typically ν = (ε∞, εs, τ)
contains parameters such as the high frequency limit dielectric permittivity ε∞, the



SENSITIVITY OF DYNAMICAL SYSTEMS TO PARAMETERS IN A TVS 407

static permittivity εs, and relaxation time τ . Examples of often used DRFs (see
[9]) are the Debye in a material region Ω defined in the time domain by

g(t,x) = ε0(εs − ε∞)/τ e−t/τ ,

and the Lorentz given by

g(t,x) = ε0ω
2
p/ν0e

−t/2τsin(ν0t).

The macroscopic polarization model (13) can be derived from microscopic for-
mulations such as those for dipoles or electron clouds by passing to a limit over the
molecular population. However, such derivations tacitly assume that one has similar
individual (molecular, dipole, etc.) parameters; that is, all dipoles, molecules, “elec-
tron clouds,” etc., have the same relaxation parameters, plasma frequencies, and
other parameters. Historically, such models based on molecular-level homogene-
ity throughout the material have often performed poorly when trying to compare
models with experimental data. Indeed, in 1907 Von Schweidler [28, 57] observed
the need to assume multiple relaxation times when considering experimental data,
and in 1913 Wagner [28, 58] proposed continuous distributions of relaxation times.
There are now incontrovertible experimentally based arguments for distributions of
relaxation parameters in mechanisms for heterogeneous materials (see [38]). More-
over, there is compelling evidence of the presence of multiple mechanisms in complex
materials such as tissue and modern polymeric composites. These multiple mecha-
nisms may involve interfacial polarization, dipolar orientation, or ionic diffusion and
may often require a selection of several types of distributional representations from
examples such as the Debye and Lorentz models. To allow for a distribution P1 of
parameters ν over some admissible set N , it is useful to generalize the polarization
law (13) to

Pm(t,x; P1) = (h(P1) ∗E)(t,x) =
∫ t

0

∫

N
g(t− s,x; ν)E(s,x)dP1(ν)ds, (14)

where

h(t,x; P1) =
∫

N
g(t,x; ν)dP1(ν). (15)

We expect to chose P1 from (or from a subset of) the space P(N ) of all probability
measures P1 on N .

To allow for dielectric materials with multiple mechanisms or multiple DRFs (i.e.,
heterogeneous molecular structures), one may further generalize (14) by considering
a family G of possible DRFs and distributions P2 over this family. This leads to
the polarization constitutive relationship

Pm(t,x; P2, P1) =
∫ t

0

∫

G

∫

N
g(t− s,x; ν)E(s,x)dP1(ν)dP2(g)ds

=
∫ t

0

K(t− s,x; P2, P1)E(s,x)ds, (16)

where for P1 ∈ P(N ) and P2 ∈ P(G), K is defined by

K(t− s,x; P2, P1) =
∫

G

∫

N
g(t− s,x; ν)dP1(ν)dP2(g). (17)

When we use (16)–(17) in the Maxwell system (11)–(12), we are led to a system
of partial differential equations where lower-order terms (in time) depend on prob-
ability measures. These resulting systems have the form of a partial differential
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equation which can be written as an abstract ordinary differential equation in a
Banach or Hilbert space

ẋ(t) = F (t, x(t), P1, P2),

where P1, P2 are probability distributions or measures.
A second class of models [5] depending explicitly on distributions to incorporate

uncertainty in the system dynamics involves the use of shrimp grown in production
“raceways” (essentially large growth chambers wherein environmental factors such
as temperature, oxygen, nutrient levels, etc., can be carefully controlled) artificially
infected to efficiently produce large quantities of an associated vaccine. In such
systems one recruits the biochemical machinery in an existing biomass for the pro-
duction of a vaccine or antibody by infection using a virus carrying a passenger
gene for the desired antibody response.

In the example developed in [5] one begins with a population of healthy shrimp
and infects them with a recombinant viral vector (e.g., recombinant Taura Syn-
drome virus or rTSV in the example developed in [5]) expressing a foreign antigen,
resulting in vaccine production in live infected shrimp. For simplicity, the amount
of vaccine produced can be assumed equal to the total infected biomass, so that
vaccine production will essentially follow the course of the viral dynamics in the
shrimp. This requires modeling the dynamics of shrimp at the population level.
Since shrimp have size-dependent characteristics as well as structure-dependent
responses to external environment, an appropriate model might be based on the
classical McKendrick-von-Foerster/Sinko-Streifer size-structured population equa-
tions [43, 49], with mass as the structure variable; i.e., one equates the size variable
with the mass in this model.

Experimental results suggest that mortality rates in acutely infected shrimp
depend on the length of time that the shrimp remain acute. Moreover, individuals
in a latent phase have varying residency times before they progress into the acute
phase. To account for the different residency periods of individual shrimp, one
can record the variable residency times in the different stages by introducing a
new variable which one calls the class age of an individual. The class age of an
individual in a given stage represents the length of time that the individual spends
in that stage and serves as a surrogate for time delays.

In the vaccine production stage, the shrimp can be infected by distributing
chopped dead shrimp infected with a recombinant virus evenly throughout the
raceway, and it might be reasonably assumed that all the shrimp have an equal
chance of becoming infected by eating the infected biomass. The expected time
interval for infection is 7 to 10 days. During this time interval almost no shrimp
progress into the chronic state. Therefore it is reasonable to consider three com-
partment states, susceptible (S), latently infected (L) and acutely infected (A), in
a model (as depicted schematically in Figure 1) where it is assumed that shrimp
will become instantly infected (i.e., progress into latent state) as soon as they in-
gest some of the infected biomass. As we have noted earlier, however, experimental
observations suggest that there exists a temporal delay between the initial latent
infection and initial acute infection [40]. Moreover, it is biologically unrealistic to
expect all members of the shrimp population to progress into the acute phase at
a fixed number of days after initial latent infection. In addition the shrimp in the
acute phase have varying mortality rates because of the different times that they
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Figure 1. Stages in TSV-infected shrimp.

progress into the acute phase and also because of the differences in genetic make-
up of the host. It is difficult to account for the class age history (i.e., the length
of time that shrimp spend in a state) of shrimp in a particular (latent or acute)
state using a system of delay PDE’s with only size as the structure variable. So, to
model variable residency times, one may keep track of the class age and the size of
shrimp by incorporating both size structure and class age structure into the latent
and acute states.

It is expected that there is a positive probability that shrimp can stay in each
the latent and acute state for more than 7 to 10 days. Thus one can assume that
the class age interval for both states is the same as the time interval TV that we
consider in our model.

The vaccine production model based on the above discussions, the stages as
depicted in Figure 1, and as developed in [5], is given by

∂tS(x, t) + ∂x(gS(x)S(x, t)) + mS(x)S(x, t) = −λS(x, t),

∂tL(x, t, θ) + ∂x(gL(x)L(x, t, θ)) + ∂θL(x, t, θ) + mL(x)L(x, t, θ)

= −pL(θ)L(x, t, θ),

∂tA(x, t, θ) + ∂θA(x, t, θ) + mA(θ)A(x, t, θ) = 0,

L(x, t, 0) = λS(x, t),

A(x, t, 0) =
∫ t

0

L(x, t, θ)dPL(θ),

S(0, t) = 0, L(0, t, θ) = 0, A(0, t, θ) = 0,

S(x, 0) = S0(x), L(x, 0, θ) = 0, A(x, 0, θ) = 0, [2ex]

where (x, t, θ) ∈ [xmin, xmax] × [0, TV ] × [0, TV ]. In the above S(x, t) denotes the

density of susceptible individuals having mass x at time t and ∂t =
∂

∂t
. The function

L(x, t, θ) denotes the density of latent individuals having mass x at time t that have
spent θ days in the latent state, whereas the function A(x, t, θ) denotes the density
of acute individuals having mass x at time t that have spent θ days in the acute
state. The quantity gS(x) denotes the growth rate of individuals in the susceptible
state and gL(x) denotes the growth rate of individuals in the latent state. The
function mS(x) denotes the mortality rate of individuals in the susceptible state,
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Figure 2. HIV infection pathway in acutely infected cells.

the function mL(x) denotes the mortality rate of individuals in the latent state,
and mA(θ) denotes the mortality rate of the shrimp that spend θ days in the acute
state. The latent to acute probability density rate function pL(θ) = P ′L(θ) defined
for θ ∈ [0, TV ] denotes the rate at which the shrimp in the latent state that have
spent θ days in the latent state become acutely infected, while the quantity λ
denotes the infection rate due to ingestion of chopped infected shrimp. Finally,
S0(x) denotes the initial population density of susceptible shrimp produced from
the biomass production model.

We note that this is again a probability distribution (PL) dependent dynamical
system (in this case a complicated system of partial differential equations) for which
the distribution PL must be estimated in some type of inverse problem.

Our next example is one developed and investigated in [6, 7] for models of pro-
gression of human immunodeficiency virus (HIV) at the cellular level in mice. The
resulting system is typical of delay systems that arise in biochemical pathways
and cellular level kinetics of drug metabolism and in other synthesis models. The
HIV system based on the schematic for activity within an acutely infected cell as
depicted in Figure 2 has the form

V̇ (t) = −cV (t) + nA

∫ 0

−∞
A(t + θ)dP1(θ) + nCC(t)− nIV (t)T (t)

Ȧ(t) = (rv − δA − δX(t))A(t) + nIV (t)T (t)− γ

∫ 0

−∞
A(t + θ)dP2(θ)

Ċ(t) = (rv − δA − δX(t))C(t) + γ

∫ 0

−∞
A(t + θ)dP2(θ) (18)

Ṫ (t) = (rv − δA − δX(t)− nIV (t))T (t) + S,
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which is a vector system of integro-differential equations. Special cases of such
systems include those in which the probability measures are defined on some finite
interval Q = [−r, 0] of possible delay values θ. In this model one has compartments
T,A, C, and V for in vitro blood level counts in mice of target (CD4+) cells, acutely
infected cells, chronically infected cells, and active viral particles, respectively. Free
virus V infects target cells T , transforming them into acutely infected cells A which
at some time later become chronically infected cells C. The basic pathway for
infection and production of virus for acutely infected cells is schematically depicted
in Figure 2. For models in which the individual kinetics for loss of envelope and
capsid, integration, transcription, and assembly are not detailed, it is necessary
(see [7]) to include a delay τ1 from the time of infection of a target cell T until it
first produces free virus V . There is also some delay τ2 before an acutely infected
cell A as depicted in Figure 2 becomes a chronically infected cell C. However,
these delays vary over the population of cells, and hence it is the distributions
P1, P2 of these delays, not a specific value of the delays, that are of interest in the
modeling. The variables C and V then become the expected values of the chronic
cell levels and the viral loads, respectively (see [7] for a detailed derivation). This
model was successfully used (again see [7]) to describe in vitro mice data from Dr.
Michael Emerman’s lab at Fred Hutchinson Cancer Research Center. Using inverse
problem methodology and statistical analysis it was shown that improvement of fit
to data by inclusion of the delays τ1 or P1 is statistically significant while inclusion
of delays τ2 (or distributions P2) is less important. Indeed, it was found that the
experimental data could not be properly fit with an ODE version (i.e., with the
delay distributions omitted) of the model.

In a final example we introduce briefly a model for sublethal damage in popula-
tions of insects (pea aphids in this case) being exposed to pesticides. Background
for such models can be found in [3] where both Leslie matrix models and size-
structured partial differential equation models are employed. Here we discuss a
different approach involving models we are currently investigating; this formulation
focuses on uncertainty with respect to the delay after exposure before death. While
the exact mechanisms for death are still being investigated by entomologists, there
is sufficient understanding to attempt to develop and test models against experi-
mental data. Insecticides generally affect neonates and adults somewhat differently
and at different rates. Therefore, we let A(t) and N(t) denote the population den-
sity of the adult pea aphids and neonates, respectively, at time t. From previous
studies, entomologists learned that the adult pea aphids reproduce best around 65
degrees Fahrenheit (18 degrees Celsius) and 80 percent of humidity [50]. Further-
more, each adult female aphid produces 6 to 8 neonates (nymphs) a day up to 100
nymphs. These reproductive characteristics of adult aphids can be incorporated
into the birth rate b(t, e, s) as a function of time t, environment e (temperature and
humidity) and offspring productivity s. However, for simplicity, here we assume a
constant birthrate b(t, e, s) = b. In addition, one finds that it takes a newborn pea
aphid or neonate τ days to become an adult aphid, where τ can range from 5 to
7 days. Hence, a simple model for the pea aphids population density without the
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insecticides can be described by a distributed delay differential system

Ȧ(t) =
∫ 7

5

m(τ)N(t− τ)dτ − dA(t)A(t)

Ṅ(t) = bA(t)−
∫ 7

5

m(τ)N(t− τ)dτ − dN (t)N(t) (19)

N(s) = 0, s ∈ [−7, 0),

N(0) = N0, A(0) = 0,

where dA(t) and dN (t) represent the natural death rate at time t of the adults
and the neonates, respectively. Here m(τ) denotes the rate (probability) at which
nymphs N become adults at age τ and move into the A compartment. Next we
introduce the effects of the insecticide Margosan-O on the pea aphids into equation
(19). It is known that Margosan-O can act on neonates and adults in several ways.
First, the surfactant that causes the insecticide to adhere to plants’ leaves can coat
an aphid’s exoskeleton upon contact, causing it effectively to smother to death
shortly after exposure. Define pA(t) and pN (t) to be the probability of the adult
and neonate aphids dying at time t due to Margosan-O. In the 1994 experiments
[56], Stark and Rangus concluded that Margosan-O also affects the reproduction
rate of the adult pea aphids. Thus, the birthrate b is no longer a constant but is
a function of insecticide concentration γ ∈ [0, 100] for Margosan-O concentration
ranges from 0 to 100 parts per million (ppm). The functional form of b(γ) can be
any decreasing function where b(0) = bmax and b(100) = 0. A further cause of death
in the neonates is mutation and subsequent death during molting in the presence of
insecticide. One manner in which one can represent this is to make the probability
density pN for death of neonates also dependent on the insecticide concentration
γ. Of course, the adult death rate pA also depends on γ. The aphids population
density, taking into account insecticide effects, can then be modelled by the system
of differential equations

Ȧ(t) =
∫ 7

5

m(τ)N(t− τ)dτ − dA(t)A(t)− pA(t, γ)A(t)

Ṅ(t) = b(γ)A(t)−
∫ 7

5

m(τ)N(t− τ)dτ − dN (t)N(t)− pN (t, γ)N(t) (20)

N(s) = 0, s ∈ [−7, 0),
N(0) = N0, A(0) = 0.

This is a simple first model in which the quantities of interest include the probabil-
ity densities pA and pN (which carry information about the sublethal effects of the
insecticide) as well as the probability density m. It is easy to extend this model to
more sophisticated and more useful models. For example, one might assume the
birthrate is a probability density at time t over a continuum of pesticide concentra-
tions γ. That is, b(t, γ) is a probability density with corresponding time-dependent
distribution dB(t, γ) = b(t, γ)dγ describing frequencies at which adult aphids give
birth to neonates.

Our group is currently using models such as (20) with the data investigated in
[3]; initial results are quite promising.

3. Theoretical Framework. To achieve our goal in a rigorous manner, we es-
tablish first existence and uniqueness results for equations (1) and (4), continuous
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dependence of the solution x on the parameter µ, and finally the fact that the
directional derivative y(t) = δx(t, µ; ν − µ) exists and satisfies (4). Throughout
this section, we will make use of the following form of Gronwall’s inequality, whose
proof we do not present.

Lemma 1. (Gronwall’s inequality) Let ϕ, ψ : [t0, T ] → R be two continuous and
nonnegative functions and let K and L be positive constants, such that the inequality

ϕ(t) ≤ K + L

∫ t

t0

ψ(s)ϕ(s) ds

holds for all t ∈ [t0, T ]. Then

ϕ(t) ≤ K exp
(

L

∫ t

t0

ψ(s) ds

)

for all t ∈ [t0, T ].

Consider the abstract differential equation (1) where f : R+ ×X ×M → X is
a continuous mapping in all three arguments; it is clear that for t ≥ t0, a solution
x(t, µ) of (1) satisfies the equivalent integral equation

x(t, µ) = x0 +
∫ t

t0

f(s, x(s, µ), µ) ds t ≥ t0. (21)

Before studying the sensitivity of the solution of (1) with respect to the parameter
µ, one must first establish that the solution of (1) exists and is unique. We define
the successive approximations for the system (1) to be the functions x0, x1, ..., given
recursively by

x0(t, µ) = x0,

xk+1(t, µ) = x0 +
∫ t

t0

f(s, xk(s, µ), µ) ds t ≥ t0,

for k = 0, 1, 2, ....

Lemma 2. (Existence and Uniqueness) Let f : R+ ×X ×M → X be continuous
in t, x and µ and Lipschitz continuous in x; i.e.

|f(t, x1, µ)− f(t, x2, µ)| ≤ C|x1 − x2| (22)

for some constant C > 0. Then the successive approximations xk converge uni-
formly on [t0, T ] to the unique solution x of (1).

Lemma 3. (Continuous Dependence on Parameters) Let f : R+×X×M→ X be
continuous in t, x and µ and Lipschitz continuous in x and for µ = µ0 let x(t, µ0)
be a solution of (1) existing on [t0, T ]. Assume further that

lim
µ→µ0

f(t, x, µ) = f(t, x, µ0), (23)

uniformly in (t, x). Then the differential equation (1) has a unique solution x(t, µ)
satisfying

lim
µ→µ0

x(t, µ) = x(t, µ0), t ∈ [t0, T ]. (24)

The proofs of Lemma 2 and Lemma 3 above are omitted because they are very
similar to those provided in [19] and in standard abstract differential equation
results in the literature.
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Theorem 1. Let f : R+ × X ×M → X of (1) be a continuous function in t,
x and µ and have a Frechet derivative fx(t, x, µ) with respect to x such that fx ∈
C[R+ ×X ×M, B(X, X)], |fx(t, x, µ)| ≤ M0 for some constant M0 > 0. Assume
further that for µ, ν ∈M, f has a continuous directional derivative δf(t, x, µ; ν−µ)
with respect to µ ∈M in the direction of (ν −µ) such that |δf(t, x, µ; ν −µ)| ≤ M1

where M1 > 0. Then the directional derivative y(t) = δx(t, µ; ν −µ) with respect to
µ exists, with y : R+ ×X ×M→ X and satisfies the equation

ẏ(t) = fx(t, x(t, µ), µ)y(t) + δf(t, x(t, µ), µ; ν − µ) if t ≥ t0,

y(t0) = 0.
(25)

Proof: Since fx ∈ C[R+ ×X ×M, B(X, X)] and δf ∈ C[R+ ×X ×M, X], by
applying Lemma 2 we find that the differential equation (25) has a unique solution
which we denote by y(t). Let us consider the difference

m(t, µ, ν, ε) = x(t, µ + ε(ν − µ))− x(t, µ)

for any two arbitrarily fixed µ, ν ∈M. Equivalently, we have

m(t, µ, ν, ε) =
∫ t

t0

{f(s, x(s, µ + ε(ν − µ)), µ + ε(ν − µ))− f(s, x(s, µ), µ)}ds.

To show that the directional derivative of the solution x of (1) with respect to the
parameter µ satisfies the sensitivity equation (25), we will prove that

lim
ε→0
ε>0

∣∣∣∣
x(t, µ + ε(ν − µ))− x(t, µ)

ε
− y(t)

∣∣∣∣ = lim
ε→0
ε>0

∣∣∣∣
m(t, µ, ν, ε)

ε
− y(t)

∣∣∣∣ = 0.

From the Frechet differentiability of f with respect to x ∈ X, we have

f(t,x(t, µ + ε(ν − µ)), µ + ε(ν − µ))− f(t, x(t, µ), µ)

= f(t, x(t, µ + ε(ν − µ)), µ + ε(ν − µ))− f(t, x(t, µ), µ + ε(ν − µ))

+ f(t, x(t, µ), µ + ε(ν − µ))− f(t, x(t, µ), µ)

= fx(t, x(t, µ), µ + ε(ν − µ))[x(t, µ + ε(ν − µ))− x(t, µ)] + w1(m(t, µ, ν, ε))

+ f(t, x(t, µ), µ + ε(ν − µ))− f(t, x(t, µ), µ)

where
|w1(m(t, µ, ν, ε))|
|m(t, µ, ν, ε)| → 0

as |m(t, µ, ν, ε)| → 0. Consequently, we define g1(t, µ, ν, ε) by

g1(t, µ, ν, ε) =
|w1(m(t, µ, ν, ε))|
|m(t, µ, ν, ε)| , (26)

so that g1(t, µ, ν, ε) → 0 uniformly in t as ε → 0. Now for y(t) satisfying (25), we
have

∣∣∣m(t, µ, ε)
ε

− y(t)
∣∣∣ =

∣∣∣
∫ t

t0

{
fx(s, x(s, t0, x0, µ), µ + ε(ν − µ))

m(s, µ, ε)
ε

+
w1(m(s, µ, ε))

ε
+

f(s, x(s, t0, x0, µ), µ + ε(ν − µ))− f(s, x(s, t0, x0, µ), µ)
ε

− fx(s, x(s, t0, x0, µ), µ)y(s)− δf(s, x(s, t0, x0, µ), µ; ν − µ)
}

ds
∣∣∣
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≤
∫ t

t0

∣∣∣fx(s, x(s, µ), µ + ε(ν − µ))
∣∣∣
∣∣∣m(s, µ, ν, ε)

ε
− y(s)

∣∣∣ds +
∫ t

t0

|w1(m(s, µ, ν, ε))|
ε

ds

+
∫ t

t0

|fx(s, x(s, µ), µ + ε(ν − µ))− fx(s, x(s, µ), µ)||y(s)|ds

+
∫ t

t0

∣∣∣∣
f(s, x(s, µ), µ + ε(ν − µ))− f(s, x(s, µ), µ)

ε
− δf(s, x(s, µ), µ; ν − µ)

∣∣∣∣ ds.

Since the Frechet derivative fx is bounded and continuous with respect to the
parameter µ, we have that

|fx(s, x(s, µ), µ + ε(ν − µ))| ≤ M0 for all s ∈ [t0, t],

and

g2(s, µ, ν, ε) = |fx(s, x(s, µ), µ + ε(ν − µ))− fx(s, x(s, µ), µ)|
converges to 0 uniformly in s as ε → 0. In addition, we note that the solu-
tion y(t) of equation (25) is continuous and therefore bounded by a constant
K0 > 0 for all t ∈ [t0, T ]. Also, from the definition of the directional derivative
δf(s, x(s, µ), µ; ν − µ), we have that

g3(s, µ, ν, ε) =
∣∣∣∣
f(s, x(s, µ), µ + ε(ν − µ))− f(s, x(s, µ), µ)

ε
− δf(s, x(s, µ), µ; ν − µ)

∣∣∣∣

converges in s to 0 as ε → 0. Using all the arguments above, we obtain that
∣∣∣m(t, µ, ν, ε)

ε
− y(t)

∣∣∣ ≤
∫ t

t0

M0

∣∣∣m(s, µ, ν, ε)
ε

− y(s)
∣∣∣ ds +

∫ t

t0

|w1(m(s, µ, ν, ε))|
ε

ds

+
∫ t

t0

K0g2(s, µ, ν, ε) ds +
∫ t

t0

g3(s, µ, ν, ε) ds.

Next we want to show that

|w1(m(t, µ, ν, ε))|
ε

≤ K1
|w1(m(t, µ, ν, ε))|
|m(t, µ, ν, ε)|

for some constant K1 > 0. Hence, we want to consider

|m(t, µ,ν, ε)| =
∣∣∣
∫ t

t0

{
fx(s, x(s, µ), µ + ε(ν − µ))[m(s, µ, ν, ε)] + w1(m(s, µ, ν, ε))

+ f(s, x(s, µ), µ + ε(ν − µ))− f(s, x(s, µ), µ)
}

ds
∣∣∣

≤
∫ t

t0

{|fx(s, x(s, µ), µ + ε(ν − µ))||m(s, µ, ν, ε)|+ |w1(m(s, µ, ν, ε))|} ds

+
∫ t

t0

|f(s, x(s, µ), µ + ε(ν − µ))− f(s, x(s, µ), µ)| ds.

From equation(26), we obtain

|w1(m(t, µ, ν, ε))| = g1(t, µ, ν, ε)|m(t, µ, ν, ε)|.
Using the definition of the directional derivative of δf(t, x, µ; ν − µ), we have that

|f(s, x(s, µ), µ + ε(ν − µ))− f(s, x(s, µ), µ)| ≤ εg3(s, µ, ν, ε) + ε|δf(s, x, µ; ν − µ)|.
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Furthermore, with the assumptions that |fx| ≤ M0 and |δf(t, x, µ; ν − µ)| ≤ M1,
we find

|m(t, µ, ν, ε)| ≤
∫ t

t0

[M0 + g1(s, µ, ν, ε)]|m(s, µ, ν, ε)| ds

+
∫ t

t0

{εg3(s, µ, ν, ε) + |εδf(s, x, µ; ν − µ)|} ds

≤
∫ T

t0

ε[g3(s, µ, ν, ε) + M1]ds +
∫ t

t0

[M0 + g1(s, µ, ν, ε)]|m(s, µ, ν, ε)|ds.

Applying Gronwall’s inequality, we obtain that

|m(t, µ, ν, ε)| ≤ K1ε,

where K1 =
(∫ T

t0

(M1 + g3)ds
)
e
∫ T

t0
(M0+g1)ds and g1(s, µ, ν, ε) and g3(s, µ, ν, ε) con-

verge to 0 in s as ε → 0. It follows
|w1(m(t, µ, ν, ε))|

ε
≤ K1

|w1(m(t, µ, ν, ε))|
|m(t, µ, ν, ε)| .

Then we obtain
∣∣∣m(t, µ, ν, ε)

ε
− y(t)

∣∣∣ ≤
∫ t

t0

M0

∣∣∣∣
m(s, µ, ν, ε)

ε
− y(s)

∣∣∣∣ ds +
∫ t

t0

K1g1(s, µ, ν, ε) ds

+
∫ t

t0

K0g2(s, µ, ν, ε) ds +
∫ t

t0

g3(s, µ, ν, ε) ds.

Applying Gronwall’s inequality one more time, we have
∣∣∣m(t, µ, ν, ε)

ε
− y(t)

∣∣∣ ≤
∫ T

t0

[K1g1(s, µ, ν, ε) + K0g2(s, µ, ν, ε) + g3(s, µ, ν, ε)]ds e
∫ T

t0
M0 ds

and taking the limit of ε → 0, we have

lim
ε→0
ε>0

∣∣∣m(t, µ, ν, ε)
ε

− y(t)
∣∣∣ = 0,

which completes the proof.

As noted in [19], under somewhat weaker assumptions of local Lipschitz con-
ditions on f plus domination of f by an affine function, one can establish results
similar to those presented here.

4. Sensitivity Analysis for Probability Distribution Dependent Systems.
We next apply the theoretical results established in the previous section to provide
sensitivity equations for specific probability distribution dependent systems. We il-
lustrate the ideas above with two examples possessing similarities to systems arising
in modeling HIV cell dynamics [7] where a four-dimensional nonlinear distributed
delay differential equation system is employed. Previous studies have focused on
the theories and computations of sensitivity of the HIV model with respect to the
distribution for separate cases of discrete distributions [6] and absolutely contin-
uous (continuous) probability distributions or measures [19]. Other contributions
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where sensitivity with respect to delays in HIV dynamics have been investigated
include [27]. Here we are interested in a theoretical and computational framework
for the sensitivity with respect to a class of mixed probability distributions which
have an absolutely continuous component and a saltus component in nonlinear dis-
tributed delay systems. Since we will be dealing with measures on real intervals,
we recall that there is a one-to-one identification between the probability measures
and their representations by probability distributions. Therefore, in general, we
will not distinguish between a measure and its corresponding distribution when no
confusion can occur. We first consider a scalar linear distributed delay differen-
tial equation and then a two-dimensional nonlinear distributed delay system. We
present the theoretical framework for the sensitivity analysis in this section and
discuss corresponding computations in the next section.

We consider the delay differential equation

ẋ(t) = f(t) +
∫ 0

−r

x(t + τ)dP (τ), t ≥ 0

x(θ) = Φ(θ), θ ∈ [−r, 0) (27)
x(0) = x0,

where x0 ∈ R, Φ ∈ C(−r, 0) and f ∈ L2(0, T ) for a fixed T > 0. We wish to
analyze the sensitivity of the solution x with respect to the probability distribution
P , which in this case is assumed to be the sum of an absolutely continuous part and
a singular part with respect to the Lebesgue measure on the interval S = [−r, 0],
i.e.

P (τ) =
∫ τ

−r

p(s) ds +
I∑

i=1

pαi∆αi(τ), τ ∈ [−r, 0]. (28)

Here p is the density of the absolutely continuous part of P (guaranteed to exist
a.e. by the Radon-Nikodym theorem), and ∆αi are Dirac measures with atoms at
αi, i = 1, . . . , I in the interval [−r, 0]. The main inconvenience we encounter when
we try to investigate the sensitivity of x with respect to P results from the fact
that the set of the probability distributions of the form (28) is no longer a linear
subspace of a Banach space and therefore we have to find a meaningful way in which
to perturb the probability distribution P and how to quantify the corresponding
change in the solution x. As we shall see below, our general theoretical framework
derived in Section 3 provides an elegant answer to this question if we interpret P
as a “parameter” in an appropriately chosen space.

Let us denote by (P(S), ρ) the general space of probability measures defined on
S = [−r, 0] endowed with the Prohorov metric ρ, which can be formally defined
as follows. For any closed subset F ⊂ S and ε > 0, we consider F ε = {q ∈ S :
d(q̃, q) < ε, q̃ ∈ F} and define the Prohorov metric ρ : P(S)× P(S) → R+ as

ρ(P1, P2) ≡ inf{ε > 0 : P1[F ] ≤ P2[F ε] + ε, F closed, F ⊂ S}.
Although the definition of ρ is not intuitive, one can show that

(a) (P(S), ρ) is a complete metric space, and
(b) ρ(Pk, P ) → 0 as k →∞ is equivalent to

∫

S

fdPk(s) →
∫

S

fdP (s)

as k →∞, for all bounded uniformly continuous f : S → R.
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If we view P(S) as a subset of X = C∗B(S), from the equivalence (b) above we
obtain that convergence in the Prohorov metric is equivalent to the weak∗ con-
vergence in P(S) [4, 23]. Here C∗B(S) denotes the topological dual of CB(S), the
usual space of bounded continuous functions on S taken with the supremum norm,
and we take X = C∗B(S) with the weak∗ topology. It is important to note that
X = C∗B(S) endowed with the weak∗ topology is a topological vector space which
is not metrizable. However, the restriction of this topology to P(S) is metrizable
and the metric which induces it is precisely the Prohorov metric ρ. In subsequent
discussions in this paper, we shall take P(S) as the equivalent set of probability
distributions on the finite interval S = [−r, 0].

Next, let us denote by M the subset of P(S) of probability distributions P of
the form (28), that is,

M =
{

P ∈ P(S) | P (τ) =
∫ τ

−r

p(s) ds +
I∑

i=1

pαi
∆αi

(τ), I ∈ N
}

, (29)

where N is the set natural numbers. Thus M is the set of probability distributions
which can be expressed as the sum of an absolutely continuous part with respect
to the Lebesgue measure and a singular part consisting of a finite sum of Dirac
measures. Using the definition (29), one can easily check that M is a convex
subset of (P(S), ρ) and therefore a convex subset of C∗B(S). If we take the convex
set M defined above with the Prohorov metric, we can apply the previous theory
developed in Section 3 to perform the sensitivity analysis of (27) with respect to
P .

Let (x(t), xt) ∈ X = R × C(−r, 0;R) and M be given by (29); then (27)
can be reformulated as an abstract system of the form (5) where the right side
F : R+ ×X ×M→ X is defined as

F (t, x, xt, P ) = f(t) +
∫ 0

−r

xt(τ)dP (τ), (30)

which is precisely that of the linear delay equation (27). To quantify how the
solution of the equation (27) changes with respect to variations in the probability
distribution P , we fix another probability distribution Q in the space M and show

that the sensitivity y =
∂x

∂P
(t, P ;Q − P ) of x with respect to P defined as the

directional derivative of x at P in the direction Q−P exists and is uniquely defined.
Then, by the theory of the previous section, y : R+ ×X ×M→ X satisfies

ẏ(t) =
∂F

∂x
(t, x, xt, P )y(t) +

∂F

∂xt
(t, x, xt, P )yt +

∂F

∂P
(t, x, xt, P ; Q− P ),

y(τ) = 0, τ ∈ [−r, 0],
(31)

where F is defined in (30). In the equation above, xt represents the delay function
defined on [−r, 0] and given by xt(τ) = x(t + τ). Similarly, yt represents the delay
sensitivity function given by yt(τ) = y(t + τ) for −r ≤ τ ≤ 0. The quantities
∂F/∂x, ∂F/∂xt and ∂F/∂P represent the Frechet derivatives of F with respect to
x, xt and, respectively, the directional derivative of F at P in the direction Q−P .
It is easy to verify that ∂F/∂x = 0, and because the integral appearing in (30) is
linear in xt, the Frechet derivative of F with respect to xt is simply

∂F

∂xt
(t, x, xt, P )[yt] =

∫ 0

−r

yt(τ)dP (τ). (32)
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To evaluate the directional derivative ∂F/∂P , let Q ∈ M be another probability
distribution of the form

Q(τ) =
∫ τ

−r

q(s) ds +
J∑

j=1

qβj ∆βj (τ).

Then the partial derivative ∂F/∂P at P in the direction Q− P is well defined and
given by

∂F

∂P
(t, x, xt, P ; Q− P ) = lim

ε→0

F (t, x, xt, P + ε(Q− P ))− F (t, x, xt, P )
ε

= lim
ε→0

∫ 0

−r
x(t + τ)d[P + ε(Q− P )](τ)− ∫ 0

−r
x(t + τ)dP (τ)

ε
.

Given the form of P + ε(Q− P ) and P , we obtain that

∂F

∂P
(t, x, xt, P ; Q− P ) =

= lim
ε→0

∫ 0

−r
x(t + τ)[p(τ) + ε(q(τ)− p(τ))]dτ − ∫ 0

−r
x(t + τ)p(τ)dτ

ε

+ lim
ε→0

∑I
i=1(1− ε)pαixt(ταi) +

∑J
j=1 εqβj xt(τβj )−

∑I
i=1 pαixt(ταi)

ε

=
∫ 0

−r

xt(τ)[q(τ)− p(τ)]dτ +
J∑

j=1

qβj xt(τβj )−
I∑

i=1

pαixt(ταi).

(33)

With F given in (30) and ∂F/∂xt and ∂F/∂P , respectively, derived in equation
(32) and equation (33), Theorem 1 provides the existence and uniqueness of y(t)

defined in (31) above. More explicitly, the sensitivity y(t) =
∂x

∂P
(t, P ;Q − P ) is

well defined and satisfies the delay differential equation

ẏ(t) =
∫ 0

−r

yt(τ)dP (τ) +
∫ 0

−r

xt(τ)[q(τ)− p(τ)]dτ +
J∑

j=1

qβj xt(τβj )−
I∑

i=1

pαixt(ταi),

y(τ) = 0, τ ∈ [−r, 0].
(34)

We next consider a nonlinear example

ẋ1(t) = f(t) + x2(t)
∫ 0

−r

x1(t + τ)dP (τ)

ẋ2(t) = g(t) + ax1(t) + bx2(t)
x1(θ) = Φ(θ), θ ∈ [−r, 0) (35)
x1(0) = c1

x2(0) = c2,

where c1, c2 ∈ R, Φ ∈ C(−r, 0) and f, g ∈ L2(0, T ) for fixed T > 0. We define
X = R2 × C(−r, 0;R2) and let (x(t), xt) ∈ X where x(t) = (x1(t), x2(t))T . Then
for M defined in (29), the system (35) can be written in the vector form

ẋ(t) = F (t, x, xt, P ) (36)

(x(0), x0) = ((c1, c2)T , (Φ, 0)T ), (37)
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where xt(τ) = x(t + τ) and F : R+ × X ×M → X is a vector function whose
components are given by the right sides of (35). Again, applying Theorem 1
from Section 3, we find that the sensitivity y : R+ × X × M → X given by
y(t) = (∂x/∂P )(t, P ; Q− P ) of system (36) satisfies

ẏ(t) =
∂F

∂x
(t, x, xt, P )y(t) +

∂F

∂xt
(t, x, xt, P )[yt] +

∂F

∂P
(t, x, xt, P ; Q− P ),

y(τ) = 0, τ ∈ [−r, 0]. (38)

Using the definition of the Frechet derivative we can easily establish that

∂F

∂x
(t, x, xt, P )y(t) =

(
y2(t)

∫ 0

−r

x1(t + τ)dP (τ) , ay1(t) + by2(t)
)T

∂F

∂xt
(t, x, xt, P )[yt] =

(
x2(t)

∫ 0

−r

y1(t + τ)dP (τ) , 0
)T

and using the definition of the directional derivative of F at P in the direction
Q− P , we have
∂F

∂P
(t, x, xt, P ; Q− P ) =


x2(t)

(∫ 0

−r

x1(t + τ)[q(τ)− p(τ)]dτ +
J∑

j=1

qβj x1(t + τβj )−
I∑

i=1

pαix1(t + ταi)
)
, 0




T

.

By substituting these derivatives in (38) we obtain the sensitivity equation for (35).

5. Examples. In this section we present numerical results for the two examples
given in the previous section. We outline the scheme to approximate the state solu-
tion and the solution of the corresponding sensitivity equation and then illustrate
the convergence of the scheme with numerical simulations.

5.1. A Linear Example. We first discuss numerical simulations for the linear
delay differential equation defined in (27) and the corresponding sensitivity equation
(34). The two equations can be written together as a coupled system

ẋ(t) = f(t) +
I∑

i=1

pαix(t + ταi) +
∫ 0

−r

x(t + τ)p (τ) dτ, t ≥ 0

ẏ(t) =
I∑

i=1

pαiy(t + ταi) +
J∑

j=1

qβj x(t + τβj )−
I∑

i=1

pαix(t + ταi)

+
∫ 0

−r

y(t + τ)p (τ) dτ +
∫ 0

−r

x(t + τ)[q(τ)− p (τ)]dτ

x(θ) = Φ(θ), y(θ) = 0, θ ∈ [−r, 0)

x(0) = x0, y(0) = 0,

(39)

where ταi , i = 1, . . . , I, and τβj , j = 1, . . . , J, are atoms in [−r, 0] for the associated
Dirac measures. To define approximations for (39), we first rewrite the system as
an operator equation in a Hilbert space Z (e.g., see [10, 13]). We let v = (x, y)T and
z(t) = (v(t), vt) ∈ Z ≡ R2 × L2(−r, 0;R2), where vt is the function τ → v(t + τ)
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for τ ∈ [−r, 0). Given η = (ψ0, ζ0)T ∈ R2 and ϕ = (ψ, ζ)T ∈ C(−r, 0;R2), we
define a linear operator A : D(A) ⊂ Z → Z with domain D(A) = {(η, ϕ) ∈ Z |ϕ ∈
H1(−r, 0;R2) and η = ϕ(0)} by A(P, Q)[η, ϕ] = (L(P, Q)[ϕ], ϕ̇) where

L(P, Q)[ϕ] =
[

1 0
−1 1

] I∑

i=1

pαiϕ(t + ταi) +
[

0 0
1 0

] J∑

j=1

qβj ϕ(t + τβj )

+
[

1 0
0 1

] ∫ 0

−r

ϕ(τ)p (τ) dτ +
[

0 0
1 0

] ∫ 0

−r

ϕ(τ)[q(τ)− p (τ)] dτ.

Then the delay system (39) above, when formulated as an abstract Cauchy problem,
is given by

ż(t) = A(P, Q)z(t) + G(t)
z(0) = z0, (40)

where G(t) = (f(t), 0)T and z0 = ((x0, 0)T , (Φ, 0)T ).
Under the assumption that P, Q ∈ M are known and fixed, the solution z of

(40) can be approximated using either the averaging scheme developed by Banks
and Burns in [10] or the spline scheme developed by Banks and Kappel in [13].
Here we chose the linear spline approximation scheme for our computations, and
hence we briefly discuss the resulting numerical framework. Following [13], we
define ZN to be an approximating piecewise linear spline subspace of Z, ΠN as the
orthogonal projection of Z onto ZN , and AN (P, Q) as the approximating operator
for A(P, Q) given by AN (P, Q) = ΠNA(P,Q)ΠN . Then the Cauchy problem (40)
is approximated by the finite-dimensional Cauchy problem

żN (t) = AN (P,Q)zN (t) + ΠNG(t), t ≥ 0

zN (0) = ΠNz0. (41)

It follows from arguments in [13] that for fixed (P, Q) ∈ M2, the approximating
scheme {ZN , ΠN , AN (P, Q)} yields solutions zN (t) which converge to the solution
z(t) of (40) uniformly in t on any finite interval as N → ∞. For the linear spline
approximation, we fix the basis for a special case ZN

1 of ZN corresponding to the
partition of [−r, 0] by tNk = −k(r/N) for k = 0, 1, ..., N . Then the bases are defined
by β̂N = (βN (0), βN ) for βN = (eN

0 , eN
1 , ..., eN

N )
⊗

In where In denotes the n × n

identity matrix, and the piecewise linear eN
l ’s are defined by

eN
l (tNk ) = δlk for l, k = 0, 1, .., N.

When AN (P,Q) is restricted to ZN
1 , we have a matrix representation AN

1 (P, Q) of
AN . Next we define wN (t) and GN (t) so that zN (t) = β̂NwN (t) and ΠNG(t) =
β̂NGN (t), respectively. Then solving for zN (t) in system (41) is equivalent to
solving for wN (t) in the linear ordinary differential equation (ODE)

ẇN (t) = AN
1 (P, Q)wN (t) + GN (t), t ≥ 0

wN (0) = wN
0 , (42)

where β̂NwN
0 = ΠNz0. We refer the reader to [13] for more details on conver-

gence theory for the spline approximations and precise details for construction of
AN

1 (P,Q), ΠNz0, and ΠNG. In general, application of the linear spline scheme to
an n dimensional delay system is equivalent to solving an n(N + 1) dimensional
linear ODE system. One can think of the solutions wN as the generalized Fourier
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coefficients when one expands the solution z using (N + 1) piecewise linear splines
as basis elements.

We next define sets of approximating probability distributions by

MM =
{

PM ∈ P |PM (τ) =
∫ τ

−r

M∑

k=0

aM
k lMk (s)ds +

I∑

i=1

pαi
∆αi

(τ)
}

,

where the lMj ’s are the usual piecewise linear splines on [−r, 0]. It is known (see
[14]) that for any P with corresponding absolutely continuous part p, one can, by
appropriate choice of the coefficients {aM

k }, obtain convergence of pM =
∑

aM
k lMk

to p in L2. This guarantees convergence of PM to P in the Prohorov metric.
We note that any approximation scheme that guarantees weak L2 convergence of
pM → p could be used in the approximations PM for P in the Prohorov sense (e.g.,
see [20]).

For a given P,Q suppose that PM , QM ∈ MM have been chosen so that
PM → P , QM → Q in the Prohorov sense. Then we approximate the system
(40) by

żN,M (t) = AN (PM , QM )zN,M (t) + ΠNG(t), t ≥ 0 (43)

zN,M (0) = ΠNz0.

The convergence of zN,M to the solution z of (40) as N, M →∞ can be argued using
standard convergence arguments as in [14], and the convergence zN → z, PM → P
and QM → Q as N, M →∞. We illustrate this convergence with simulations for a
specific case of the linear delay system (27) for special choices of the distributions
P and Q. Let

dP (τ) =
1
4

δ−r(τ)dτ +
3

4 d
p(τ)dτ, (44)

where p (τ) is a Gaussian probability density

p(τ) =
1

σ
√

(2π)
e−

(τ−τ̄)2

2σ2 (45)

with τ̄ = −0.35, σ2 = 0.1, r = 1 and d =
∫ 0

−r

p(s)ds. We take Q to be a simple

uniform distribution on [−1, 0] so that dQ(τ) = q(τ) dτ = 1 dτ , τ ∈ [−1, 0]. We
choose f(t) = 1, Φ(θ) = 0, and x0 = 1. Then the coupled system (39) for x and
the corresponding sensitivity y in the direction Q − P for this specific situation is
given by

ẋ(t) = 1 +
1
4
x(t− 1) +

3
4d

∫ 0

−1

x(t + τ)p (τ) dτ

ẏ(t) =
1
4
y(t− 1)− 1

4
x(t− 1)+

3
4d

∫ 0

−1

y(t + τ)p(τ)dτ +
∫ 0

−1

x(t + τ)
[
1− 3

4d
p (τ)

]
dτ

x(θ) = y(θ) = 0, θ ∈ [−1, 0)

x(0) = 1, y(0) = 0.

(46)

We first fix N = 16 and solve the approximation system (43) for different values of
M and plot the approximations xN,M , yN,M of the solution x and the corresponding
sensitivity y(t), respectively, in Figure 3. These graphs illustrate the convergence
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guaranteed by arguments similar to those in [14]; in Figure 3(a) we observe that
xN,M → x and in Figure 3(b) that yN,M → y for a fixed N = 16 and M increasingly
large. We then fix M = 16 and solve system (43) for different N values. The
approximating solutions xN,M and yN,M for a fixed M = 16 and N increasingly
large are graphed in Figure 4. Again, one can see from Figure 4 that we have
convergence for both the solutions xN,M and sensitivity yN,M as N → ∞ and
M = 16. We remark that by solving here the approximation to the system (46), we
approximate x and y simultaneously. Alternatively, one can approximate x and y
separately by first approximating x to obtain xN,M and then using xN,M in solving
the equation for yN,M .

0 1 2 3 4 5 6
0

20

40

60

80

100

120
Approximations of State Variable xN,M  (N=16)

Time

(a)

0 1 2 3 4 5 6
0

5

10

15
Approximations of Sensitivity yN,M  (N=16)

Time

(b)

Figure 3. (a) Approximations of the state variable x and (b)
corresponding sensitivity y for fixed N = 16 and varying M=4
(cross), M=8 (circle), M=16 (plus), M=32 (dotted line).
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Figure 4. (a) Approximations of the state variable x and (b)
corresponding sensitivity y for fixed M = 16 and varying N=4
(cross), N=8 (circle), N=16 (plus), N=32 (dotted line).
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5.2. A Nonlinear Example. We consider next the nonlinear delay differential
system (35) and the corresponding sensitivity system (38) derived in Section 4.
Upon substituting for P, Q and coupling the delay system (35) and its sensitivity
equation (38), we obtain

ẋ1(t) = f(t) + x2(t)
I∑

i=1

pαi
x1(t + ταi

) + x2(t)
∫ 0

−r

x1(t + τ)p (τ) dτ, t ≥ 0

ẋ2(t) = g(t) + ax1(t) + bx2(t)

ẏ1(t) = x2(t)
( I∑

i=1

pαi
y1(t + ταi

) +
J∑

j=1

qβj
x1(t + τβj

)
)

+ y2(t)
∫ 0

−r

x1(t + τ)p (τ)dτ

+ x2(t)
[∫ 0

−r

y1(t + τ)p (τ) dτ +
∫ 0

−r

x1(t + τ)[q(τ)− p(τ)]dτ

]

+ (y2(t)− x2(t))
[ I∑

i=1

pαi
x1(t + ταi

)
]

ẏ2(t) = ay1(t) + by2(t)

x1(θ) = Φ(θ), y1(θ) = 0, θ ∈ [−r, 0)

xi(0) = x0
i , yi(0) = 0, i = 1, 2,

(47)

where ταi and τβi ∈ [−r, 0]. We formulate an abstract Cauchy problem for system
(47) by employing η = (ψ0

1 , ψ0
2 , ζ0

1 , ζ0
2 )T ∈ R4, ϕ = (ψ1, ψ2, ζ1, ζ2)T ∈ C(−r, 0;R4),

v = (x1, x2, y1, y2)T ∈ R4, and z = (v(t), vt) ∈ Z = R4 × L2(−r, 0;R4). We may
then define a nonlinear operator A : D(A) ⊂ Z → Z and D(A) = {(η, ϕ) ∈
Z |ϕ ∈ H1(−r, 0;R4) and η = ϕ(0)}. For (η, ϕ) ∈ D(A), define A(P,Q)[η, ϕ] =
(L(η) + F1(P, Q)[η, ϕ], ϕ̇) where

L(η) =




0 0 0 0
a b 0 0
0 0 0 0
0 0 a b


 η

and

F1(P, Q)[η, ϕ] = C1

I∑

i=1

pαiη2ϕ(t + ταi) + D(3,1)

J∑

j=1

qβj η2ϕ(t + τβj )

+ C1

∫ 0

−r

η2p (τ)ϕ(τ) dτ + D(3,1)

I∑

i=1

pαiη4ϕ(t + ταi)

+ D(3,1)

(∫ 0

−r

η2ϕ(τ)q (τ) dτ +
∫ 0

−r

η4ϕ(τ)p (τ) dτ

)

where D(i,j) is a 4×4 matrix with 1 at the (ith, jth) entry and zero everywhere else
and

C1 =




1 0 0 0
0 0 0 0

−1 0 1 0
0 0 0 0


 .
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Then the abstract Cauchy formulation of the distributed delay system (47) above
is

ż(t) = A(P, Q)z(t) + G(t)
z(0) = z0, (48)

where G(t) = ((f(t), g(t), 0, 0)T , (0, 0, 0, 0)T ) and z0 = ((x0
1, x

0
2, 0, 0)T , (Φ, 0, 0, 0)T ).
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Figure 5. (a) Approximations of the state variable x1, and (b)
approximations of the state variable x2 for fixed N = 16 and vary-
ing M=4 (cross), M=8 (circle), M=16 (plus) and M=32 (dotted
line).
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Figure 6. (a) Approximations of y1, the sensitivity of x1, and
(b) approximations of y2, the sensitivity of x2 for fixed N = 16
and varying M=4 (cross), M=8 (circle), M=16 (plus) and M=32
(dotted line).

For numerical purposes one can employ an approximation framework similar to
that in the linear example above; we do not repeat details here. We note that the
combined results in ([2],[7],[13]) can be used to establish that the resulting piecewise
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linear spline approximating scheme {ZN ,ΠN ,AN (P,Q)} provides convergence of
zN (t) to z(t) for the system (47). Here zN (t) is the solution of the corresponding
approximation system similar to system (41) given above for the linear example.
We again may approximate the distributions P, Q in the Prohorov sense so that
PM → P and QM → Q as M → ∞, and again construct corresponding approxi-
mating systems similar to system (43) in the linear example. In this case, one also
can argue the convergence of the approximations zN,M (t) → z(t) as N,M → ∞
using zN (t) → z(t) for N →∞ and PM → P , QM → Q as M →∞.
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Figure 7. (a) Approximations of the state variable x1, and (b)
approximations of the state variable x2 for fixed M = 16 and
varying N=4 (cross), M=8 (circle), N=16 (plus), N=32 (dotted
line).

0 1 2 3 4 5 6
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Approximations of Sensitivity y
1
N,M (M=16)

Time

(a)

0 1 2 3 4 5 6
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Approximations of Sensitivity y
2
N,M (M=16)

Time

(b)

Figure 8. (a) Approximations of y1, the sensitivity of x1, and (b)
approximations of y2, the sensitivity of x2 for fixed M = 16 and
varying N=4 (cross), M=8 (circle), N=16 (plus), N=32 (dotted
line).

We again illustrate convergence with simulations corresponding to specific dis-
tributions P and Q. In particular, we again choose P to be given in (44) and Q
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to be the uniform distribution dQ(τ) = q(τ) dτ = 1 dτ for τ ∈ [−1, 0]. We choose
f(t) = 1, g(t) = 2, a = −3 and b = −2 and define Φ(θ) = 0 for θ ∈ [−1, 0)
and x0

1 = x0
2 = 1. Then we solve the corresponding approximating system which

is similar to the system given in (43); we first fix N = 16 and let M vary. The
approximations of the solution xN,M (t) are plotted in Figure 5, and the sensitivity
yN,M (t) are depicted in Figure 6. We see from Figure 5 and Figure 6 that with
a fixed N = 16 and M → ∞, both xN,M and the corresponding sensitivity yN,M

converge. We then take M fixed at 16 and let N vary. As in the previous case where
N is fixed, we observe from Figure 7 and Figure 8 where we plot xN,M and yN,M

respectively, that xN,M and yN,M converge to x and y for M = 16 and N →∞.

6. Concluding Remarks. In this paper we have developed both theoretical and
computational aspects of a sensitivity methodology for probability measure depen-
dent dynamical systems. In addition to the usual uses of sensitivities, the results
developed here represent a first step toward a general mathematical and statistical
methodology for estimation of uncertainties (in this case represented by probability
distributions P ) in the dynamics of a system. In particular, we refer to a theory for
the asymptotic properties of ordinary least squares (OLS) estimators P̂OLS which
could lead to standard errors and confidence “intervals” in a functional setting. In
the standard finite dimensional parameter theory (see [36] and chapter 12 of [53]),
the asymptotic theory is given in terms of the covariance matrix Σ2 which can be
approximated by

Σ2 ≈ σ2
0(χT χ)−1,

where χ is the sensitivity matrix

χ =
(

∂xi

∂θj

)
.

For the systems of interest here, the goal is to develop a rigorous mathemati-
cal/statistical framework for OLS estimators for “parameters” P ∈ P(S); i.e., the
parameters to be estimated are actually probability distributions in an infinite di-
mensional set. For this, an operator analogue of the covariance matrix will involve
the sensitivities

χ =
(

∂x

∂P

)
.

Thus, in addition to use in routine sensitivity analysis for uncertainty in dynamical
systems, the theory presented above provides a foundation to develop an operator
theoretic form of the needed asymptotic distribution theory similar to the one
currently available for estimation in a finite-dimensional parameter setting.
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