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Abstract. A final size relation is derived for a general class of epidemic mod-
els, including models with multiple susceptible classes. The derivation depends
on an explicit formula for the basic reproduction number of a general class of
disease transmission models, which is extended to calculate the basic repro-
duction number in models with vertical transmission. Applications are given
to specific models for influenza and SARS.

1. Introduction. The purpose of this paper is to obtain a relation between the
basic reproduction number and the final size of an epidemic in a general deteministic
model of disease transmission.

The basic reproduction number, a central concept in the study of the spread of
communicable diseases [1], is defined as the spectral radius of the next generation
operator [7, 8], and if the model is formulated as a system of ordinary differential
equations the basic reproduction number is the spectral radius of a matrix whose
entries are determined by the model parameters [16]. We concentrate mainly on the
very common case that this matrix has rank 1, and in Section 2 we obtain an explicit
formula for a general class of models with horizontal disease transmission only.
While this representation has been mentioned in [7, p.107], it has not been used
for explicit calculations. In Section 3 we incorporate vertical disease transmission
into the model. In this case the matrix may have rank 1, so that this formula is
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applicable, but we also describe some examples in which the matrix has rank higher
than 1.

In Sections 4 and 5 we show that for a general class of epidemic models the
infection will die out and the representation formula for the basic reproduction
number can be used to derive an explicit relation between the basic reproduction
number and the final size of the epidemic. This final size relation generalizes the
one originally given by Kermack and Mckendrick [10] to models in which there
are multiple susceptible classes, such as models including vaccination. A final size
relation for models with multiple susceptible classes has previously been established
in [15, Theorem 2.2] but without reference to the basic reproduction number. It has
recently been shown [13] that the final size relation of Kermack and McKendrick [10]
holds for models with multiple infective stages and models in which the durations
of stages are arbitrarily distributed. In Section 6 we extend the epidemic results
to models with a continuing inflow of infectives. In Sections 7 and 8 we give
examples for specific disease models to illustrate applications of the formulae and
a heterogeneous mixing epidemic model. We end with some conclusions in Section
9.

2. The basic reproduction number. Consider a general disease transmission
model in which x ∈ Rn represents the set of infected compartments, y ∈ Rm

represents the set of susceptible compartments, and z ∈ Rk represents the set
of compartments removed from disease either by immunity or by recovery with
immunity. While y and z correspond to disease-free compartments, we separate
them because only y contributes to disease transmission. The vectors x, y, z are
functions of time t, and we use ′ to denote differentiation with respect to t.

We let D be an m × m diagonal matrix whose diagonal entries σi > 0 are
the relative susceptibilities of the corresponding susceptible class; we take σ1 = 1
without loss of generality. Note that if m = 1, then D is the scalar 1. We let Π
be an n×m matrix with the property that the (i, j) entry represents the fraction
of the jth susceptible compartment that goes into the ith infective compartment
on becoming infected. We also let b be an n-dimensional row vector of relative
horizontal transmissions. This vector is multiplied by a scalar factor representing
infectivity. For general incidence this factor is a function of total population size
and/or infective population size, and we write it as β(x, y, z). For mass action
incidence β(x, y, z) is a constant β.

We assume here that there is no vertical transmission, so that there is no re-
cruitment term in the infected compartments. However, we will return to the case
of vertical transmission in Section 3. The disease model can be represented by the
system

x′ = ΠDyβ(x, y, z)bx− V x

y′ = g(x, y, z)−Dyβ(x, y, z)bx (1)
z′ = h(x, y, z) + Wx,

with non-negative initial conditions such that at least one component of x(0) is
positive. This form assumes that there is no transfer out of the class z, that is,
that there is no temporary immunity after recovery. However, the results of this
section are applicable to models with temporary immunity. Here, the n×n matrix
V describes the transitions between infected states as well as removals from infected
states through death and recovery. For any non-negative vector x, the components
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of the vector V x represent the net rate of decrease of each infected compartment.
Since this rate cannot be positive if the compartment is empty, it follows that
the off-diagonal entries of V must be negative or zero. Similarly, the sum of the
components of the vector V x, which represents the net rate of decrease in infected
individuals due to death and recovery, must be non-negative for every non-negative
vector x. It is shown in [16] that V is a non-singular M -matrix. This implies
that the eigenvalues of V all have positive real part, and V −1 is a matrix with
non-negative entries [3].

The k × n matrix W has the property that the (i, j) entry represents the rate
at which members of the jth disease compartment go into the ith removed com-
partment on recovery. The function g(x, y, z), assumed continuous, represents re-
cruitment of uninfected members through birth or immigration as well as deaths
of uninfected members, and the function h(x, y, z), also assumed continuous, rep-
resents the flow into and out from the system of members immune to infection
through natural immunity or inoculation against infection.

The disease-free set {(x, y, z)|x = 0, y ≥ 0, z ≥ 0} is invariant. Suppose that a
point (0, y0, z0) is a locally stable equilibrium of the system without disease

y′ = g(0, y, z)
z′ = h(0, y, z)

in the sense that solutions that start close to (0, y0, z0) remain close to (0, y0, z0).
Such a point is referred to as a disease-free equilibrium. The community matrix of
the system without disease at this equilibrium is

Jyz =
[

gy(0, y0, z0) gz(0, y0, z0)
hy(0, y0, z0) hz(0, y0, z0)

]
,

and this assumption implies that all the eigenvalues of Jyz have negative or zero
real parts.

The point (0, y0, z0) is also an equilibrium of the system (1). We define

Fh = ΠDy0β(0, y0, z0)b.

If all eigenvalues of Fh − V have negative real parts, then this point is also locally
stable. If, in addition, all eigenvalues of Jyz have negative real parts, this equi-
librium is locally asymptotically stable. If some eigenvalues of Jyz have zero real
parts, a case that arises in epidemic models where demographic effects are not in-
cluded, the local centre manifold of the equilibrium is contained in the disease-free
set. Thus solutions initially near the equilibrium remain near the equilibrium and
approach the disease-free set asymptotically.

According to the theory of [7, 16], the basic reproduction number R0 is the
spectral radius of the matrix FhV −1. We recall that the spectral radius ρ(A) of
a matrix A is defined as the maximum modulus of an eigenvalue of A, and that
a non-negative matrix has a real eigenvalue equal to its spectral radius [3]. We
remark also that the spectral radius of FhV −1 has absolute value less than 1 if and
only if all eigenvalues of the matrix Fh − V have negative real part [16].

Since Fh is the product of the column vector ΠDy0 and the row vector b it has
rank 1. Therefore (n − 1) of the eigenvalues of FhV −1 are zero, and the spec-
tral radius is the remaining eigenvalue. This eigenvalue is the trace of the ma-
trix ΠDy0β(0, y0, z0)bV −1, and it is easy to verify that this is equal to the scalar
β(0, y0, z0)bV −1ΠDy0. The basic reproduction number is calculated with respect
to a disease-free equilibrium (0, y0, z0). This gives the following result.
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Theorem 2.1. The basic reproduction number R0 for the model (1) at a disease-
free equilibrium (0, y0, z0) is given by

R0 = β(0, y0, z0)bV −1ΠDy0.

The disease-free equilibrium is (locally) asymptotically stable if R0 < 1 and is un-
stable if R0 > 1.

3. Vertical disease transmission. Vertical disease transmission is the transmis-
sion of disease from infected members of the population to some of their offspring at
birth. Such transmission occurs in many diseases, including malaria, AIDS, Chagas’
disease, cholera, and dengue fever. The standard reference on vertical transmission
is [6], and a more recent contribution is [11].

We assume that births are distributed proportionally among all the compart-
ments, so that the rate of births to parents in a disease compartment i has the
form xiϕ(x, y, z) with ϕ assumed continuous. We assume that pij is the fraction of
infected births to a member of the infected compartment xj born into the infected
compartment xi, and we define the matrix P = [pij ]. Then an extension of the
model (1) to include vertical transmission is

x′ = ϕ(x, y, z)Px + ΠDyβ(x, y, z)bx− V x

y′ = g(x, y, z)−Dyβ(x, y, z)bx
z′ = h(x, y, z) + Wx,

with non-negative initial conditions such that at least one component of x(0) is
positive.

Now the matrix F is the sum of two matrices representing horizontal and vertical
transmission respectively, F = Fh + Fv, with Fh as before and

Fv = ϕ(0, y0, z0)P.

The horizontal basic reproduction number is, as before,

Rh = ρ(FhV −1) = tr(FhV −1),

and we define the vertical basic reproduction number

Rv = ρ(FvV −1).

If Fh + Fv has rank 1, which is true, for example, if all new infections, both
horizontally and vertically transmitted, come from a source in one infected com-
partment, or if all new infections go into the same infected compartment, then

R0 = tr(FV −1) = tr((Fv + Fh)V −1) (2)
= tr(FhV −1) + tr(FvV −1) = Rh +Rv.

Intuitively, we would expect this to be true in general. However, if Fv has rank
greater than 1, then Rv is not necessarily equal to the trace of FvV −1, and if Fh+Fv

has rank greater than 1 then R0 is not necessarily equal to the trace of FV −1 even
if Fh and Fv both have rank 1. We now give some examples illustrating that (2)
is not always true. In our examples we assume for simplicity that P is a diagonal
matrix, and this choice appears to be biologically reasonable. It is possible to carry
out the calculations with a general P .
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Some vertical transmission examples. In disease transmission models it has
become standard to use E to denote the class of exposed (infected but not yet
infective) members. However, epidemiologists also use the term latent to describe
such individuals. This terminology is less ambiguous because it makes it clear that
these individuals will develop infection while the term exposed could be interpreted
to include the possibility of contact with an infective without developing infection.
Accordingly, we use L to denote the number of latent (infected but not yet fully
infective) members, and we use L in place of E in identifications of models. Thus
we speak of SLIR models rather than SEIR models. Latent members may have
some infectivity, usually less than infective members. Letting S, I, R denote the
number of susceptible, infective, and removed members respectively, we consider
some SLIR models that include vertical transmission. For simplicity, we assume
mass action incidence so that β(x, y, z) is a constant β, but it is easy to extend the
examples to general incidence.

We consider an SLIR model with a birth rate Nφ(N) divided proportionally
among the classes in which infected births may arise from parents in both L and
I, and in which each newborn infected is in the same compartment as the infected
parent. We let µ be the natural death rate and we assume the population has
a carrying capacity K in the absence of disease with φ(K) = µ, φ′(K) < 0. We
let 1/κ the mean latent period, 1/α the mean infective period, p1 the fraction of
infected births to a parent in L, and p2 the fraction of infected births to a parent in
I. We assume also that a fraction f of infectives recovers while the complementary
fraction 1 − f dies of disease. Finally, we assume that there is some infectivity
in the latent class, multiplying the infectivity in the infective class by a factor ε.
This leads to the model generalizing that of [7, Exercise 2.2] by the inclusion of
infectivity in the latent class,

S′ = (N − p1L− p2I)ϕ(N)− µS − βS(I + εL)
L′ = p1Lϕ(N) + βS(I + εL)− (κ + µ)L
I ′ = p2Iϕ(N) + κL− (α + µ)I
R′ = fαI − µR

with N = S + L + I + R. There is a disease-free equilibrium with L = I = R = 0,
and at the disease-free equilibrium N = S = S0 = K.

In terms of our notation, m = 1, n = 2, D is the scalar 1, and

b = [ε, 1], Π =
[
1
0

]
, P =

[
p1 0
0 p2

]
.

Also,

F =
[

εS0β + µp1 S0β
0 µp2

]
.

We separate F into horizontal and vertical parts,

Fh =
[
εS0β S0β

0 0

]
, Fv =

[
µp1 0
0 µp2

]
.

We have

V =
[

κ + µ 0
−κ α + µ

]
, V −1 =




1
κ + µ

0

κ

(κ + µ)(α + µ)
1

α + µ


 .
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Since Fh has rank 1, Theorem 2.1 gives

Rh =
S0βκ

(κ + µ)(α + µ)
+

εS0β

κ + µ
.

Since the eigenvalues of FvV −1 are λ1 = µp1/(κ + µ) and λ2 = µp2/(α + µ),

Rv = max
(

µp1

κ + µ
,

µp2

α + µ

)
.

The basic reproduction number R0 is the larger eigenvalue of the matrix

FV −1 =




εS0β

κ + µ
+

S0βκ

(κ + µ)(α + µ)
+

µp1

κ + µ

S0β

α + µ
κµp2

(κ + µ)(α + µ)
µp2

α + µ


 =



Rh + λ1

S0β

α + µ
κ

κ + µ
λ2 λ2


 .

If p2 = 0 (no vertical transmission in the infective class) or if p1 = 0 and ε = 0
(no infectivity in the latent class and no vertical transmission in the latent class)
then F = Fh + Fv has rank 1 and (2) is valid.

The spectral radius of a 2 × 2 non-negative matrix is at least as large as the
maximum of the diagonal elements. Thus

R0 ≥ max(Rh + λ1, λ2).

The second diagonal entry of FV −1 corresponds to births in I from mothers in
I, and the first diagonal element corresponds to the sum of secondary infections,
both horizontal and vertical, due to an index case in L. Thus, if λ1 ≥ λ2, that
is, if vertical transmission from L to L is equal to or exceeds vertical transmission
from I to I, then R0 ≥ Rh + Rv. However, if λ1 < λ2 then it remains true that
R0 ≥ Rh +λ1, but as we show below it is not necessarily true that R0 ≥ Rh +Rv.

The characteristic polynomial of FV −1 is

g(λ) = λ2 − (λ1 + λ2 +Rh)λ + λ2

[
λ1 + (Rh − κ

κ + µ

S0β

α + µ
)
]

.

If g(Rh + Rv) < 0, then, since g′(Rh + Rv) > 0, it follows that R0 > Rh + Rv.
Likewise, g(Rh + Rv) = 0 implies R0 = Rh + Rv, and g(Rh + Rv) > 0 implies
R0 < Rh +Rv. We have

g(Rh +Rv) = (Rv − λ1)(Rh +Rv) + λ2

[
λ1 −Rv − κ

κ + µ

S0β

α + µ

]
.

If λ1 ≥ λ2, so that Rv = λ1, then

g(Rh +Rv) = − κ

κ + µ
λ2

S0β

α + µ
.

Thus g(Rh +Rv) = 0 if λ2 = 0, that is, if p2 = 0, and g(Rh +Rv) < 0 if p2 > 0.
This implies that

R0 > Rh +Rv

if p2 > 0. In this case, Rv counts only one of the two infected compartments in
which there are births, but the births not counted here do contribute to R0.

If λ1 ≤ λ2, so that Rv = λ2,

g(Rv +Rh) =
εS0β

κ + µ
Rv − µp1

κ + µ
Rh.

Thus, if
εS0βRv > µp1Rh,
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then R0 < Rh +Rv. This is true, for example, if ε > 0 and p1 = 0. Note that here
Fh and Fv have rank 1 but Fh + Fv has rank 2. In this situation there are some
births in the infective class who do not go through a latent stage in which they
would contribute secondary infections, and this is the reason for the inequality.

To summarize these calculations, if ε = 0 and p1 = 0, so that there are no
infections arising from the latent class, or if p2 = 0, so that there are no new
infections arising from births in the infective class, then the basic reproduction
number is equal to the sum of the horizontal and vertical reproduction numbers.
If there are infected newborns in both latent and infective classes, with the latent
class contribution at least as large, then R0 > Rh +Rv. On the other hand, it is
possible to have R0 < Rh +Rv if the contribution to new infections arising from
births in the infective class is large compared to the contribution coming from the
latent class.

4. Epidemic models. In the special case of an epidemic, we ignore demographic
effects, and may assume that g(x, y, z) = h(x, y, z) = 0 in (1). In particular, the
possibility of vertical disease transmission does not arise. Also, the matrix V no
longer includes natural deaths. Then the epidemic model can be represented by
the system

x′ = ΠDyβ(x, y, z)bx− V x

y′ = −Dyβ(x, y, z)bx (3)
z′ = Wx

with non-negative initial conditions such that at least one component of x(0) is
positive. The equation for z enters into the analysis of the first two equations of
(3) only if the incidence is more general than mass action.

For the model (3) every point (0, y0, z0) is an equilibrium. The calculation of the
basic reproduction number with respect to any equilibrium (0, y0, z0) is the same as
for the model (1) with demographic effects, and Theorem 2.1 applies to the model
(3).

For epidemic models we first show that the number of members in each infected
compartment tends to zero as t → ∞. In analyzing the system (3) we adopt
the conventions that for an arbitrary continuous function w(t) with non-negative
components,

w∞ = lim
t→∞

w(t), ŵ =
∫ ∞

0

w(t)dt.

Addition of the equations in (3) gives

(x + Πy)′ = −V x. (4)

Integration of (4) with respect to t from 0 to ∞ gives

(x(0)− x∞) + Π(y(0)− y∞) = V x̂. (5)

The left side of (5) is finite because the components of x(0), y(0), x∞ and y∞ are
bounded by the initial total population size. Therefore the right side is also finite
and because V is non-singular, x̂ < ∞. Since each component of x is a smooth
non-negative function, x∞ = 0, and

x̂ = V −1Π(y(0)− y∞) + V −1x(0). (6)
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Since the components of V x̂ are the numbers of infected individuals leaving each
infected compartment over the course of the epidemic, the total number of cases of
disease in the epidemic is the sum of the components of

V x̂ = Π(y(0)− y∞) + x(0).

5. The final size relations. The final size relations are relations involving the
basic reproduction number and the number of members of the population that
remain in each disease-free compartment over the course of the epidemic. If m = 1
the relations are explicit in R0, while if m > 1 they are given in terms of a vector
Γ to be defined shortly with R0 = Γy0. For mass action incidence (β constant),
the final size relations are equalities. For general incidence, there are always upper
and lower bounds for β(x, y, z) and these bounds give upper and lower bounds
for the quantities ln[yi(0)/yi(∞)]. These bounds yield the final size relations as
inequalities. In this section, we use mass action incidence and treat β as constant
and give some remarks at the end of this section on the interpretation of the final
size inequalities as approximate equalities in the general case.

In terms of components, the equations for y in (3) take the form

y′i = −σiβbxyi, i = 1, 2, . . . ,m. (7)

If yi(0) = 0, then yi(t) = 0 for t ≥ 0, while if yi(0) > 0, then yi(t) > 0 for t > 0.
Next, we show that yi(∞) > 0. Division of (7) by yi and integration of these scalar
equations gives

ln
(

yi(0)
yi(t)

)
= σiβb

∫ t

0

x(s)ds ≤ σiβbx̂.

Since the right side of this inequality is finite for 0 ≤ t < ∞, the left side remains
finite and yi(t) > 0. We let t →∞, and obtain, using (6),

ln
(

yi(0)
yi(∞)

)
= σiβbx̂ (8)

= σiβbV −1Π(y(0)− y∞) + σiβbV −1x(0).

This implies that yi(∞) > 0 for i = 1, 2, . . . ,m.
If we define the m-dimensional row vector

Γ = [Γ1, Γ2, · · ·Γm] = βbV −1ΠD,

then, from Theorem 2.1,
R0 = Γy(0)

and we may rewrite (8) as

ln
(

yi(0)
yi(∞)

)
= σiΓD−1(y(0)− y∞) + σiβbV −1x(0), i = 1, 2, . . . , m.

Then
1
σi

ln
(

yi(0)
yi(∞)

)
= ΓD−1(y(0)− y∞) + βbV −1x(0) =

1
σ1

ln
(

y1(0)
y1(∞)

)
(9)

for i = 1, 2, · · · ,m. Thus

yi(∞) = yi(0)
(

y1(∞)
y1(0)

)σi/σ1

,

and we may express yi(∞) in terms of y1(∞) for i = 1, · · · , m, then substitute into
(9) with i = 1 and solve to determine y1(∞).
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We summarize our results for the epidemic model.

Theorem 5.1. Consider the epidemic model (3). Then x∞ = 0 and the final size
relation is given by (9) if yi(0) > 0.

The multi-dimensional form is related to a result in [15]. If m = 1, that is, if
there is only one susceptible class, so that y,D and Γ = R0/y(0) are scalars and
D = 1, σ1 = 1, (9) takes the form

ln
(

y(0)
y∞

)
=

R0

y(0)
[y(0)− y∞] + βbV −1x(0). (10)

This is the well-known Kermack-McKendrick form [10]; it has also been used with
the initial term βbV −1x(0) approximated by zero; see for example [7, Sec. 1.3]. We
note that (10) holds both for R0 < 1 and R0 > 1; the equation

ln
(

y(0)
y(t)

)
=

R0

y(0)
[y(0)− y(t)] + βbV −1x(0)

describes the orbit of the solution of the model in the phase space.
For a contact rate that is more general than mass action incidence β is a non-

increasing function β(N) of total population size N , so that

β(K) ≤ β(N(t)) ≤ β(N∞)

on the solution curve, where K is the initial total population size and N∞ > 0 is the
limiting total population size as t →∞, with K ≥ N∞. More generally, if infectives
withdraw partially from contact, β may be a function of both total population size
and infective population size [4]. Then instead of (9), obtained with mass action
incidence, we obtain a set of inequalities

ln
(

yi(0)
yi(∞)

)
≥ σiΓD−1(y(0)− y∞) + σiβ(K)bV −1x(0), i = 1, 2, . . . ,m,

giving lower bounds for ln(yi(0)/yi(∞)). In addition, there are upper bounds involv-
ing the vectors β(N∞)b and Γ. It is possible to prove that if the disease mortality
rate is small, so that the contact rate does not change much over the course of the
epidemic, then for realistic transmission terms the differences between the upper
and lower bounds are small so that yi(∞) can be approximated by treating the
final size relations as if they were equalities.

Immunity against re-infection is often only temporary. It is not difficult to for-
mulate models of SLIRS type and to calculate the basic reproduction number.
However, for epidemic models with loss of immunity there can be an endemic equi-
librium even without demographic effects and it is not necessarily true that the
number of infectives always tends to zero. Thus, there can not be a final size
relation for such models.

6. Immigration in epidemic models. Normally an epidemic is triggered by the
introduction of an infective into a wholly susceptible population, and the classical
models for epidemics have incorporated this in the initial conditions. However,
especially in the modern era with frequent global travel, it may be more realistic to
assume a continuing flow of infectives into the population. Such models have been
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studied in [5]. We model this by replacing (3) by

x′ = ΠDyβ(x, y, z)bx− V x + x∗

y′ = −Dyβ(x, y, z)bx (11)
z′ = Wx,

with the vector x∗ of infected immigrants having non-negative components with
at least one positive component, and with non-negative initial values for x(0). We
assume that x̂∗, representing the total number of infected immigrants during the
epidemic, is finite.

The calculation of R0 in Section 2 can not be applied because the model (11)
does not have a disease-free equilibrium. Nevertheless, we may carry out the same
calculation formally and use its result in developing the final size relation. There
is a threshold behavior, as shown for a special case in [5].

The derivation of the final size relation parallels that of Section 5. The equation
(4) is replaced by

(x + Πy)′ = −V x + x∗,

and (5) becomes

(x̂∗ + x(0)− x∞) + Π(y(0)− y∞) = V x̂. (12)

Because of the assumption x̂∗ < ∞, the left side of (12) is finite, and from this
we conclude as in Section 4 that x̂ < ∞. Since each component of x is a smooth
non-negative function, x∞ = 0, and

x̂ = V −1Π(y(0)− y∞) + V −1[x(0) + x̂∗].

Thus x(0) is replaced by x(0) + x̂∗ in (9). In other words, in the final size relation
the flow of infectives into the population during the epidemic is added to the initial
infective population. A convenient way to assure that x̂∗ remains finite is to cut off
the flow of infected immigrants when the epidemic has passed. However, numerical
simulations indicate that continuing the flow indefinitely does not significantly alter
the shape of the epidemic curve.

7. Examples. In this section we describe several epidemic model examples to il-
lustrate the calculation of the basic reproduction number and the final size relation.
The calculation of the basic reproduction number requires only matrix multiplica-
tions and the inversion of the matrix V . Since V is usually in block lower triangular
form, this matrix inversion can be carried out relatively simply. As in Section 3 we
assume mass action incidence so that β(x, y, z) is constant, but there is no difficulty
in extending the results to general incidence.

7.1. An influenza model. As a first example, we consider a model for influenza
described in [2] based on the disease properties described in [12]. In this model,
which we call an SLIAR model, there is a latent stage in which there is some
reduced infectivity (represented by a factor ε < 1). A fraction p of the members of
the latent stage go to an infective stage, while the remainder go to an asymptomatic
stage in which there is some reduced infectivity (represented by a factor δ < 1).
There may be some deaths due to disease in the infective stage; we assume that
a fraction f of infectives recover. The mean latent, infective, and asymptomatic
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periods are assumed to be 1/κ, 1/α and 1/η, respectively. The model may be
described by the system

S′ = −Sβ[I + εL + δA]
L′ = Sβ[I + εL + δA]− κL

I ′ = pκL− αI (13)
A′ = (1− p)κL− ηA

R′ = fαI + ηA

N ′ = −(1− f)αI

with initial conditions

S(0) = S0, I(0) = I0, L(0) = A(0) = R(0) = 0,

where S0 + I0 = K. We consider the disease-free equilibrium

S = S0, L = I = A = R = 0.

In terms of our notation, m = 1, n = 3, D is the scalar 1,

b = [ε, 1, δ], F =




εS0β S0β δS0β
0 0 0
0 0 0


 , Π =




1
0
0


 .

Also,

V =




κ 0 0
−pκ α 0

−(1− p)κ 0 η


 , V −1 =




1/κ 0 0
p/α 1/α 0

(1− p)/η 0 1/η


 .

Then from Theorem 2.1,

R0 = S0β

[
ε

κ
+

p

α
+

δ(1− p)
η

]
,

and from Theorem 5.1,

ln
S0

S∞
= R0

S0 − S∞
S0

+
βI0

α
.

More generally, if the initial conditions were

L(0) = L0, I(0) = I0, A(0) = A0,

the initial term βI0/α would be replaced in the final size relation by

β

[
ε

κ
+

p

α
+

δ(1− p)
η

]
L0 +

βδA0

η
+

βI0

α
.

A refinement of the model (13), as suggested in [12] includes the possibility that
the contact rate β may be a non-increasing function β(N) of total population size
and also withdrawal of a fraction q of infectives from contact, so that the average
contact rate of infectives is multiplied by a factor 1− q. Then

Ψ(N, I) =
Nβ(N)
N − qI

is the replacement for β in the model equations. In our notation,

βb = [εΨ, (1− q)Ψ, δΨ]
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and at the equilibrium S = S0, L = I = A = R = 0, Ψ = β(S0). Thus, at this
equilibrium

b = [ε, (1− q), δ].

This gives

R0 = S0β(S0)
[

ε

κ
+

p(1− q)
α

+
δ(1− p)

η

]
,

and from Theorem 5.1,

ln
S0

S∞
≥ R0

S0 − S∞
S0

+
(1− q)β(S0)I0

α
.

7.2. A SARS model. A second example, based on a model for SARS [9] includes
quarantine of latent members and isolation of diagnosed infectives. Members of the
latent compartment are moved to a quarantined compartment Q at rate γ1 while
members of the quarantined class go directly to an isolated compartment J when
they become infective. In addition, infectives are isolated at rate γ2. Infectivity is
assumed multiplied by factors εL, εQ, εJ , each less than 1, respectively, in the classes
L,Q, J . The mean latent and quarantine periods are 1/κ1, 1/κ2 respectively. The
mean infective and isolated periods are 1/α1, 1/α2 respectively. The quarantine and
isolation rates are γ1, γ2 respectively, and the fractions that recover in the infective
and isolated compartments are f1, f2 respectively. The model is

S′ = −βSΛ
L′ = βSΛ− (γ1 + κ1)L
Q′ = γ1L− κ2Q

I ′ = κ1L− (γ2 + α1)I
J ′ = κ2Q + γ2I − α2J

R′ = f1α1I + f2α2J,

with

Λ = εLL + εQQ + I + εJJ,

and initial conditions

S(0) = S0, I(0) = I0, L(0) = Q(0) = J(0) = R(0) = 0.

In terms of our notation, m = 1, n = 4, D is the scalar 1,

b = [εL, εQ, 1, εJ ], Π =




1
0
0
0


 ,

and

V =




γ1 + κ1 0 0 0
−γ1 κ2 0 0
−κ1 0 γ2 + α1 0
0 −κ2 −γ2 α2


 ,
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V −1 =




1
γ1 + κ1

0 0 0

γ1

κ2(γ1 + κ1)
1
κ2

0 0

κ1

(γ2 + α1)(γ1 + κ1)
0

1
γ2 + α1

0

κ1γ2

α2(γ2 + α1)(γ1 + κ1)
+

γ1

α2(γ1 + κ1)
1
α 2

γ2

α2(γ2 + α1)
1
α2




.

Since this model includes quarantine and isolation arranged prior to the begin-
ning of the epidemic, we call the corresponding reproduction number the control
reproduction number, denoted by Rc [9] rather than the basic reproduction num-
ber. The basic reproduction number would correspond to the choices γ1 = γ2 = 0
so that there are no quarantined or isolated compartments. We calculate from
Theorem 2.1

Rc =
S0β

γ1 + κ1

[
εL +

κ1

γ2 + α1
+

εQγ1

κ2
+ εJ

(
κ1γ2

α2(γ2 + α1)
+

γ1

α2

)]
.

This is similar to the control reproduction number calculated in [9], (where demo-
graphic terms are included and standard incidence is used). From Theorem 5.1 the
final size relation is

ln
S0

S∞
= Rc

S0 − S∞
S0

+ βI0

[
1

γ2 + α1
+

εJγ2

α2(γ2 + α1)

]
.

7.3. A vaccination model. As a final example, we consider an SLIR model in
which a fraction γ of susceptibles have been vaccinated before the beginning of an
epidemic with a vaccine that multiplies susceptibility by a factor σS ≤ 1 and infec-
tivity by a factor σI ≤ 1. This model is a simplified version of an influenza model
analyzed in [2]. We assume that the mean latent periods for unvaccinated and vac-
cinated individuals are 1/κ, 1/κT respectively and that the mean infective periods
for unvaccinated and vaccinated individuals are 1/α, 1/αT respectively. The recov-
ery fractions are f for unvaccinated infectives and fT for vaccinated infectives. We
let S, ST be the number of unvaccinated and vaccinated susceptibles respectively,
L,LT be the number of unvaccinated and vaccinated latent members respectively,
and I, IT the number of unvaccinated and vaccinated infectives respectively. The
model is described by the system

S′ = −βS[I + σIIT ]
S′T = −σSβS[I + σIIT ]
L′ = βST [I + σIIT ]− κL

L′T = σSβST [I + σIIT ]− κT LT

I ′ = κL− αI

I ′T = κT LT − αT IT

R′ = fαI + fT αT I,

with

S(0) = (1−γ)S0, ST (0) = γS0, I(0) = I0, L(0) = LT (0) = IT (0) = R(0) = 0.
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In terms of our notation, m = 2, n = 4,

b = [0, 0, 1, σI ] D =
[

1 0
0 σS

]
Π =




1 0
0 1
0 0
0 0


 ,

V =




κ 0 0 0

0 κT 0 0

−κ 0 α 0

0 −κT 0 αT




V −1 =




1
κ

0 0 0

0
1

κT
0 0

1
α

0
1
α

0

0
1

αT
0

1
αT




.

Then we calculate

Γ =
[
β

α
,
σIσSβ

αT

]
, Rc = S0β

[
1− γ

α
+

σIσSγ

αT

]
,

and from (9) the final size relation is

ln
(

(1− γ)S0

S∞

)
=

β

α
[(1− γ)S0 − S∞] +

σIβ

αT
[γS0 − ST ∞] +

βI0

α
,

ST ∞ = γS0

(
S∞

(1− γ)S0

)σS

.

We have formulated an influenza model based on this example in [2] to compare
the effects of different management strategies in attempting to manage a threatened
pandemic influenza.

8. A simple heterogeneous mixing epidemic model. The assumption of ho-
mogeneous mixing in epidemic models is usually quite unrealistic. Frequently there
are superspreaders, who make many contacts and are instrumental in spreading
disease. To model this heterogeneity in mixing we may assume that the population
is divided into subgroups with different activity levels. A simple compartmental
model may capture some of the essential properties of an epidemic model without
going to a full network model.

Consider two subpopulations of sizes N1, N2 respectively, each divided into sus-
ceptibles, infectives, and removed members with subscripts to identify the subpop-
ulation. Suppose that group i members make ai contacts in unit time and that the
fraction of contacts made by a member of group i that is with a member of group
j is pij , i, j = 1, 2. Then

p11 + p12 = p21 + p22 = 1.

The total number of contacts made by members of group 1 with members of group
2 is a1p12N1 and because this must equal the total number of contacts by members
of group 2 with members of group 1, we have a balance relation

p12a1

N2
=

p21a2

N1
.

Suppose the mean infective periods in the two groups are 1/α1, 1/α2 and the
recovery fractions in the two groups are f1, f2. Then the two-group SIR epidemic
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model is

S′1 = −[p11a1
S1I1

N1
+ p12a1

S1I2

N2
]

I ′1 = [p11a1
S1I1

N1
+ p12a1

S1I2

N2
]− α1I1

R′1 = f1α1I1 (14)

S′2 = −[p21a2
S2I1

N1
+ p22a2

S2I2

N2
]

I ′2 = [p21a2
S2I1

N1
+ p22a2

S2I2

N2
]− α2I2

R′2 = f2α2I2.

We further assume proportionate mixing between groups, that is, that the num-
ber of contacts between groups is proportional to the relative activity levels. In
other words, mixing is random but constrained by the activity levels [14]. Then

pij =
ajNj

a1N1 + a2N2
,

and we may write
p11 = p21 = p1, p12 = p22 = p2,

with p1 + p2 = 1. In other words, proportionate mixing means that each group
makes a fraction pj of its contacts with group j for j = 1, 2.

The model (14) becomes

S′1 = −[p1a1
S1I1

N1
+ p2a1

S1I2

N2
]

I ′1 = [p1a1
S1I1

N1
+ p2a1

S1I2

N2
]− α1I1

R′1 = f1α1I1 (15)

S′2 = −[p1a2
S2I1

N1
+ p2a2

S2I2

N2
]

I ′2 = [p1a2
S2I1

N1
+ p2a2

S2I2

N2
]− α2I2

R′2 = f2α2I2.

We now write

x =
[
I1

I2

]
, y =

[
S1

S2

]
, z =

[
R1

R2

]
.

We put the system (15) into a form

x′ = ΠDQyβbx− V x

y′ = −ΠDQyβbx (16)
z′ = Wx,

with Π and D identity matrices and

Q =
[ a1

N1
0

0 a2
N2

]
, βb = [p1, p2],

and

V =
[
α1 0
0 α2

]
, V −1 =

[ 1
α1

0
0 1

α2

]
.
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Then, as in Section 2,

R0 = tr(QyβbV −1) = βbV −1Qy,

with the variable matrix Q calculated at t = 0 and the vector y calculated at a
disease-free equilibrium (since F = Qyβb has rank 1). Using

p1 =
a1N1

a1N1 + a2N2
, p2 =

a2N2

a1N1 + a2N2
,

this gives

R0 =
a2
1N1

α1(a1N1 + a2N2)
+

a2
2N1

α2(a1N1 + a2N2)
.

The general formulation of a heterogeneous mixing epidemic model with an ar-
bitrary number of activity levels and proportionate mixing has the form

x′ = ΠDQyβ(x, y, z)bx− V x

y′ = −DQyβ(x, y, z)bx
z′ = Wx,

with Q the m ×m diagonal matrix whose j, j entry is the fraction of contacts pj

that each group (including group j) makes with group j. To calculate the basic
reproduction number we must evaluate Q, y and β(x, y, z) at (0, y0, z0) and we
obtain

R0 = tr(DQy0β(0, y0, z0)bV −1) = β(0, y0, z0)bV −1DQy0.

The final size relation may also be calculated as in Section 5, but is an equality
only if the matrix Q is constant. This means that the population sizes N1, N2

must be constant, that is, there are no disease deaths. However, if the number of
disease deaths is small, we conjecture that the final size relation is an approximate
inequality.

If the mixing is not proportionate, it is not possible to write the model in the
form (16). It is known [7] that the final size relation may then take a different form.
However, proportionate mixing seems to be a plausible assumption for an infection
spread by random contacts.

9. Conclusions. The basic reproduction number defined in [7, 8] is character-
ized as the spectral radius of a matrix that in many applications has rank 1. We
have used this to express the basic reproduction number explicitly as a product of
matrices, thus simplifying the calculation.

We have shown how to calculate the number of members of each susceptible com-
partment that escape infection over the course of the epidemic and have illustrated
our results with models for influenza and SARS with disease control measures as
well as for models with vaccination and heterogeneous mixing. For general inci-
dence, the final size relations are inequalities, but they become equalities for mass
action incidence. This suggests that mass action is the natural setting for final size
equations, and points to the importance of results to the effect that the final size
relations are approximate equalities if disease mortality is small.

The results in this paper do not include diseases transmitted by a vector, and
it would be of interest to see if our approach can be adapted to obtain analogous
results for vector-borne diseases. As the vectors in epidemic diseases often have
short life spans, study of an epidemic transmitted by a vector may require inclusion
of demographic effects in the vector population.
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