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Abstract. Stoichiometry-based models brought into sharp focus the impor-
tance of the nutritional quality of plant for herbivore-plant dynamics. Plant
quality can dramatically affect the growth rate of the herbivores and may
even lead to its extinction. These results stem from models continuous in
time, which raises the question of how robust they are to time discretization.
Discrete time can be more appropriate for herbivores with non-overlapping
generations, annual plants, and experimental data collected periodically. We
analyze a continuous stoichiometric plant-herbivore model that is mechanisti-
cally formulated in [11]. We then introduce its discrete analog and compare the
dynamics of the continuous and discrete models. This discrete model includes
the discrete LKE model (Loladze, Kuang and Elser (2000)) as a limiting case.

1. Introduction. Mechanistically formulated mathematical models of population
dynamics have advantage over phenomenologically derived models in generating
plausible and verifiable dynamics. However, the challenge of developing a mech-
anistic and predictive theory for biological systems is often daunting. Exciting
progress in understanding and modeling ecological systems in the last decade has
been achieved through the applications of the theory of ecological stoichiometry
[22]. Ecological stoichiometry is the study of the balance of energy and multiple
chemical resources (usually elements) in ecological interactions. It provides rig-
orous and ubiquitous mechanism for modeling population dynamics. It has been
fruitfully deployed in the study of competition for multiple abiotic resources ([23],
[8]), producer-grazer systems ([1], [16], [18]), producer-decomposer systems [9], re-
cycling of nutrients by consumers [6], the maintenance of chemical homeostasis by
herbivores consuming food that is unbalanced relative to their needs ([13],[14]), and
competition among consumers ([17], [10]). When constructing population models,
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one often implicitly assumes that all trophic levels are chemically homogeneous or
are made of a single constituent that often represents energy. But in the real world,
all organisms are composed of many chemical elements such as carbon (C), nitrogen
(N), phosphorus (P), and other essential elements. Moreover, the concentrations
of essential elements vary considerably among species. If the quantity of an es-
sential element in a plant is lower than the minimum threshold for its consumer,
then the consumer’s growth rate may suffer. This has been shown for both aquatic
([24],[26],[19]), and terrestrial systems (e.g., ([12]). For example, Newman et al.
([20]) observed that while elevated carbon dioxide benefited host plants, it resulted
in smaller populations of the bird cherry-oat aphid Rhopalosiphum padi. Loladze
([15]) discusses how elevated carbon dioxide can alter the stoichiometry of crops
and affect human nutrition.

Loladze et al. [16] constructed and studied the simplest dynamic stoichiometric
predator-prey model (LKE model), which is based on a batch culture experiment
([24]), with different light intensities and the limited amount of one essential ele-
ment, P. The model showed that overall, food quality, as measured by P content in
the producer (prey), had significant impact on the grazer (predator). Specifically,
the model showed behavior not seen in the corresponding traditional predator-prey
model:

(1) Extremely low food quality leads to the deterministic extinction of the grazer.
(2) Two stable equilibria (not necessarily simultaneous) are possible: (A) one

with high grazer/producer ratio at the high food quality, and (B) one with low
grazer/producer ratio at the low food quality.

(3) The enrichment of the system, as measured by the intensity of light, can
abruptly halt producer-grazer oscillations; the system settles at an equilibrium
with low grazer/producer ratio.

Are these dynamics simply the artifacts of the particular structure and assump-
tions of the model, or are they the valid outcomes of bringing stoichiometric realities
into predator-prey dynamics? One way to answer these questions is to analyze a
family of models that share stoichiometric underpinning, but differ in their math-
ematical structure or assumptions. If a phenomenon is present across the family
of models, it gives assurance of its robustness. This approach can provide an ad-
ditional benefit. The mathematical structure of the Loladze et al. [16] model
(a two-dimensional autonomous ODE system) precludes a possibility for chaos.
However, Andersen (1997) suggested chaotic dynamics in his higher-dimensional
stoichiometric model. If mathematical restriction on chaos is removed, can chaotic
dynamics arise in a low-dimensional stoichiometric producer-grazer system? For
example, discretizing continuous in time system lifts such a restriction because a
discrete system consisting of just one equation can potentially exhibit chaos.

To answer the above questions, we compare the dynamics of four stoichiometric
models: two continuous models and their two discrete analogs. The continuous
LKE model assumes immediate recycling of P from excreted and dead matter and
instantaneous P uptake by the producer. While this model provides a qualitatively
good match to experimental data ([25]), it nevertheless raises the question of the
robustness of the results to such an assumption. A potentially substantial pool of
free P exists in many real systems. Although the concentration of free P is very low
in nutrient-limited pelagic systems, it is unlikely to be so for terrestrial systems.
Kuang et al. [11] introduced a simple and mathematically tractable continuous
model (KHE model) that provides a slightly more mechanistic formulation of the
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dynamics of some plant-herbivore interactions in P-limited environment. It incor-
porates the LKE model in [16] as a special case. The model’s derivation is based on
the Droop equation and without the hypothesis of immediate recycling of P. That
is, there exists free P in the system. The study in [11] reveals that the details in eco-
logical stoichiometry models matter for quantitative predictions of plant-herbivore
dynamics, especially at intermediate ranges of the carrying capacity. This interest-
ing conclusion is based purely on numerical simulations.

Both stoichiometric models mentioned above are continuous in time. However,
experimental data are usually collected on discrete time intervals, many plants in
wild and agricultural settings have non-overlapping generations, and many her-
bivores have clear annual or seasonal dynamics. Such scenarios call for discrete
models. This raises the question about the sensitivity of the results to the dis-
cretization of time. Fan et al. [7] compared the continuous stoichiometric LKE
producer-grazer model to its discrete analog both theoretically and numerically.
They show that in continuous models and in discrete models, the stoichiometric ef-
fects of producer quality on grazers are similar. In this paper, we study analytically
and numerically the dynamics of the continuous KHE plant-herbivore model and its
discrete analogue. In addition, we compare the findings in [7] with ours. This allows
us to compare the robustness of stoichiometric results in four models: the LKE,
the KHE, and their discrete analogs. We show that all three stoichiometric effects
listed above are present in all four models. In addition, we show that discretizing
either of the continuous systems allows for chaotic dynamics within the biologically
meaningful range of parameter values. Section 2 focuses on the qualitative analysis
of the continuous KHE plant-herbivore model in [11]. Then, in Section 3, we will
investigate the dynamics of its discrete analogue and compare their dynamics. In
Section 4, we will systematically discuss the similarities and the differences of the
four models.

2. The continuous KHE model. We introduce the continuous plant-herbivore
model established in [11], which is called the KHE model in this paper for conve-
nience and simplicity.

Assume the following:
(A1) The total mass of phosphorus in the entire system is fixed; i.e., the system

is closed for phosphorus.
(A2) Phosphorus to carbon ratio(P:C) in the plant varies, but it never falls below

a minimum; the herbivore maintains a constant P:C ratio.
(A3) The phosphorus in the system is divided into three pools: phosphorus in

plant, phosphorus in herbivore, and free phosphorus.
Based on these assumptions, and with the help of a variable-internal-stores model

based on the Droop equation relating growth rate to the internal cell quota ([3]),
Kuang et al. [11] proposed the following continuous stoichiometric plant-herbivore
model:

dx

dt
= bx

[
1−max

(
x

K
,

x + µmα−1

[b/µm][µmα−1 + (Pt − θy)/q]

)]
− f(x)y,

dy

dt
= e min(1,

Q

θ
)f(x)y − dy.

(2.1)
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Table 1. A sample set of parameters and their biological meaning
in (2.1).

Parameters Biological definition
x the density of plant (mg C/l)
y the density of herbivore (mg C/l)
b = µm −D the intrinsic growth rate of plant (day −1)
d the specific loss rate of herbivore (day−1)
e a constant production efficiency (yield constant)
K the plant’s carrying capacity depending on other factors
q the minimum P:C ratio in the plant (mg P/mg C)
µm the plant’s true maximal growth rate
D the plant’s death rate
Q the plants cell quota for P
α nutrient recruitment rate
θ the herbivore maintains a constant P:C ratio ((mg P/mg

C))
f(x) the herbivore’s ingestion rate
Pt the total mass of phosphorus in the entire system
Pp the phosphorus in plant
Pz the phosphorus in herbivore
Pf the free phosphorus

Here

Pt = Pp + Pz + Pf , Q = q +
α

µm + αx
(Pt − qx− θy). (2.2)

A sample set of parameters in (2.1) and their biological meanings are listed in Table
1.

In the following, we assume that f(x) in (2.1) is a bounded smooth function
satisfying

f(x) = xp(x), f(0) = 0, f ′(x) > 0, f ′(0) < ∞, f ′′(x) < 0, x > 0.

Then, from [16] (Appendix A), it follows that for any x > 0,

lim sup
x→0

p(x) = f ′(0) < ∞, p′(x) < 0.

First we state a theorem on the boundedness and postivie invariance of the
solutions of (2.1). The proof is very similar to those in [16] (Appendix C), so the
details are omitted here.

Theorem 2.1. Solutions with initial conditions in the open trapezoid (or triangle
if K > Pt/q)

∆ ≡ {(x, y) : 0 < x < k, 0 < y, qx + θy < Pt} (2.3)

remain there for all forward times, where

k = min (K, Pt/q). (2.4)

We use ∆ to denote the region ∆ together with its boundary with the exception
of (0,Pt/θ) (which is biologically insignificant because at this point the herbivore
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contains all phosphorus and plant is absent from the system). In other words,

∆ = (∂∆/(0, Pt/θ)) ∪∆. (2.5)

For convenience, we rewrite (2.1) in the following form:

dx

dt
= xF (x, y),

dy

dt
= yG(x, y), (2.6)

where

F (x, y) = b [1−max (
x

K
,

x + µmα−1

[b/µm][µmα−1 + (Pt − θy)/q]
)]− f(x)

x
y,

G(x, y) = e min (1,
Q

θ
) f(x)− d.

(2.7)

In the following, we let

A(x) ≡ (
−µm(Kx + Kµmα−1)

xb
+ µmα−1 +

Pt

q
)
q

θ
,

B(x) ≡ Pt/θ − (x + µm/α− qµm/αθ).
After some trivial algebraic calculations, the partial derivatives of F and G read

Fx = −b max (
1
K

,
1

[b/µm][µmα−1 + (Pt − θy)/q]
)− (

f(x)
x

)′y,

Fy =




−p(x), y < A(x),

− µmθ(x + µmα−1)
q(µmα−1 + (Pt − θy)/q)2

− p(x), y > A(x),

Gx =





e[p(x) + xp′(x)], y < B(x),
e(Pt − θy + µmqα−1)

θ(µmα−1 + x)2
(f ′(x)(µmα−1 + x)− f(x)), y > B(x),

Gy =





0, y < B(x),

− x · e · p(x)
µmα−1 + x

, y > B(x).

(2.8)

The equilibria of (2.1) solve the algebraic equations xF (x, y) = 0, yG(x, y) = 0.
It is easy to see that the boundary equilibria of (2.1) are E0 = (0, 0) and E1 = (k, 0).
To determine the local stability of these equilibria, we calculate the Jacobian of
(2.1),

J(x, y) =
(

F (x, y) + xFx(x, y) xFy(x, y)
yGx(x, y) G(x, y) + yGy(x, y)

)
. (2.9)

Theorem 2.2. E0 = (0, 0) is always a saddle. For E1 = (k, 0), if G(k, 0) > 0, then
it is a saddle; if G(k, 0) < 0, then it is locally asymptotically stable (LAS).

Proof. The conclusions directly follow from the fact that

J(E0) =


 b

(
1− µ2

mα−1

b (µmα−1 + Pt/q)

)
0

0 −d


 , J(E1) =

( −b kFy(k, 0)
0 G(k, 0)

)
.

Remark 1. We cannot determine the sign of Gx when Q < θ, so we cannot use
the intermediate value theorem to determine the solutions of G(x, y) = 0 or restrict
the range of the boundary equilibria stability as in [16].
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Now we turn to the LAS of the internal equilibrium of (2.1). Note that −(Fx/Fy)
and −(Gx/Gy) represent the slopes of the plant and herbivore nullclines at (x, y),
respectively. Suppose that E∗(x∗, y∗) is one such equilibrium; i.e., F (x∗, y∗) = 0
and G(x∗, y∗) = 0. The Jacobian at E∗ is

J(x∗, y∗) =
(

x∗Fx(x∗, y∗) x∗Fy(x∗, y∗)
y∗Gx(x∗, y∗) y∗Gy(x∗, y∗)

)
,

and its determinant and trace are

Det(J(x∗, y∗)) = x∗y∗(FxGy − FyGx), (2.10)

Tr(J(x∗, y∗)) = x∗Fx + y∗Gy. (2.11)

Let
Ω1 = {(x, y) : x > 0, y > 0, y < Pt/θ − (x + µm/α− qµm/αθ)},
Ω2 = {(x, y) : x > 0, y > 0, y > Pt/θ − (x + µm/α− qµm/αθ)}.

Notice that Ω1 and Ω2 are the regions in the positive cone separated by the line
y = −x + Pt/θ − µm/α + qµm/αθ.

Theorem 2.3. In region Ω1, if the plant nullcline is decreasing at E∗, then E∗ is
LAS; if the plant nullcline is increasing at E∗, then E∗ is a repeller. In region Ω2,
if −Gx/Gy < −Fx/Fy, then E∗ is a saddle; if (ln f(x∗))′(µmα−1 +x∗)− 1 < 0 and
−Gx/Gy > −Fx/Fy, then E∗ is LAS.

Proof. Suppose that E∗ ∈ Ω1, then (2.8) yields that Fy < 0, Gx > 0, Gy = 0 at
(x∗, y∗). Hence, Det(J(x∗, y∗)) > 0. Moreover,

sign(Tr(J(x∗, y∗))) = sign(Fx) = sign(−Fx

Fy
).

If the plant nullcline decllines at E∗ (i.e., −Fx/Fy < 0), then Tr(J(x∗, y∗) < 0, and
hence E∗ is LAS. If the plant nullcline at E∗ is increasing, then E∗ is a repeller.

Suppose that E∗ ∈ Ω2; then (2.8) implies that at E∗, Fy < 0, Gy < 0. Then

sign(Det(J)) = sign(FxGy−FyGx) = sign(
(FxGy − FyGx

FyGy
) = sign(−Gx

Gy
− (−Fx

Fy
)).

If −Gx/Gy < −Fx/Fy, i.e., the slope of the plant nullcline at E∗ is greater than
that of the herbivore, then (2.10) is negative. So we can claim that E∗ is a saddle.
If −Gx/Gy > −Fx/Fy (i.e., the herbivore nullcline at (x∗, y∗) is greater than that
of the plant), then (2.10) is positive. Moreover, if (ln f(x∗))′(µmα−1 + x∗)− 1 < 0,
we have Gx < 0. Then

0 > −Gx

Gy
> − Fx

Fy,

which, together with Fy < 0, implies that Fx < 0. Therefore, Tr(J(x∗, y∗)) < 0,
and E∗ is LAS.

Remark 2. If (ln f(x∗))′(µmα−1 + x∗) − 1 > 0, then Gx > 0. In this case, we
cannot determine the sign of Fx directly. Hence, we cannot obtain the sign of
Tr(J(x∗, y∗)) unless we can choose some interval of x which helps us determine the
sign of Tr(J(x∗, y∗)).

Remark 3. In [16], the authors establish exactly the same criteria for the LKE
model, except for the second case in region Ω2. For the LKE model, Gx < 0
implies the LAS of internal equilibrium. But here, the situation is more complex
and difficult.
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3. The discrete KHE model. In this section, we consider the discrete analogue
of the continuous KHE model (2.1). There are several ways of deriving discrete
time versions of dynamical systems corresponding to a continuous time formulation.
Here we follow the method used in [7].

Assume that the per capita growth rates in (2.1) change only at a t = 0, 1, 2, ...;
then

1
x(t)

x(t)
dt

= b [1−max (
x([t])

K
,

x([t]) + µmα−1

b

µm
(
µm

α
+

(Pt − θy([t]))
q

)
)]− f(x[t])y([t])

x([t])
,

1
y(t)

y(t)
dt

= e min (1,
Q([t])

θ
)f(x([t]))− d, t 6= 0, 1, 2, . . . .

(3.1)

Here [t] denotes the integer part of t ∈ (0, +∞). Let

C(n) ≡ b

µm
(µmα−1 +

(Pn − θy(n))
q

).

On any interval [n, n + 1), n = 0, 1, 2, ..., we can integrate (3.1) and obtain the
following equations for n ≤ t < n + 1 :

x(t) = x(n) exp {[b [1−max (
x(n)
K

,
x(n) + µmα−1

C(n))
)]− f(x(n))y(n)])

x(n)
](t− n)},

y(t) = y(n) exp {[e min (1,
Q(n)

θ
)f(x(n))− d](t− n)}.

Letting t → n + 1 gives

x(n + 1) = x(n) exp
{

b

[
1−max(

x(n)
K

,
x(n) + µmα−1

C(n)
)
]
− f(x(n))y(n)

x(n)

}
,

y(n + 1) = y(n) exp
{

emin(1,
Q(n)

θ
)f(x(n))− d

}
,

(3.2)

which is a discrete time analogue of (2.1). In this section, we focus our attention on
the dynamics of (3.2). Considering the biological significance of (3.2), we assume
that x(0) > 0 and P/θ > y(0) > 0.

Note, that (3.2) incorporates the discrete LKE model [7] as a limiting case. We
use the same assumption in [11], in which it is proved that the LKE model

dx

dt
= bx[1− x

min(K, (P − θy)/q)
]− f(x)y,

dy

dt
= e min(1,

P − θy

θx
)f(x)y − dy

(3.3)

is a limiting case of (2.1). One key difference between the LKE model and the
KHE model is that, in the LKE model, all phosphorus is divided into two pools:
phosphorus in the herbivore and phosphorus in the plant. That is, there is no
freely available phosphorus in the system (Pf = 0). This is equivalent to α = ∞
or α−1 = 0. In addition, we assume that the plant death rate D is extremely small
compared to µm. One may approximate the value of b/µm = (µm-D)/µm≈1, then



36 G. SUI, M. FAN, I. LOLADZE AND Y. KUANG

(3.2) reduces to

x(n + 1) = x(n) exp {(b− b max (
x(n)
K

,
x(n)

(Pt − θy(n))/q
)− f(x(n))y(n)

x(n)
},

y(n + 1) = y(n) exp {emin (1,
Q(n)

θ
)f(x(n))− d}.

(3.4)

From equation (2.2), we can get the discrete form of Q

Q(n) =
1

µmα−1 + x(n)
(Pt − θy(n) + µmqα−1).

Hence, as α tends to ∞, Q tends to (Pt − θy(n))/x(n). So, when there is no free
phosphorus in the system, the discrete KHE model reduces to the discrete LKE
model proposed and investigated in [7],

x(n + 1) = x(n) exp
{

b

[
1−max

(
x(n)
K

,
qx(n)

Pt − θy(n)

)]
− f(x(n))y(n)

x(n)

}
,

y(n + 1) = y(n) exp
{

e min
(

1,
Pt − θy(n)

θx(n)

)
f(x(n))− d

}
.

(3.5)

First, we prove some preliminary results for (3.2), such as boundedness and
positive invariance. It is easy to see that both components of the solution of (3.2)
stay positive when they exist. By carrying out arguments like those in Theorems
3.1 and 3.2 in [7], we reach the following theorem.

Theorem 3.1. For (3.2), we have

x(n) ≤ max{x(0),
K

b
exp{b− 1}} := U, y(n) ≤ max{y(0), v} exp{2ef(U)− 2d},

where v is any number satisfying ef(U exp{b− p(U)v}) < d. In addition,

∆ =
{

(x, y) : 0 < x <
K

b
exp{b− 1}, 0 < y < v

}

is positively invariant and ∆ is globally attractive with respect to initial values
(x(0), y(0)) such that x(0) > 0 and P/θ > y(0) > 0.

Next, we focus on analyzing the stability of the equilibria of (3.2). For conve-
nience, we rewrite (3.2) as

x(n + 1) = x(n) exp{F (x(n), y(n))},
y(n + 1) = y(n) exp{G(x(n), y(n))}, (3.6)

where

F (x, y) = b− bmax (
x

K
,

x + µmα−1

(b/µm)(µmα−1 + (Pt − θy)/q)
)− yp(x),

G(x, y) = e min(x,
Qx

θ
) p(x)− d.

(3.7)

The nullclines of (3.2) are given by

Producer nullclines: x[1− exp[F (x, y)] = 0, i.e., x = 0 or F (x, y) = 0,
Grazer nullclines: y[1− expG(x, y)] = 0, i.e., y = 0 or G(x, y) = 0.

The Jacobian of (3.2) is

J(x, y) =
(

J11(x, y) x exp{F (x, y)}Fy(x, y)
y exp{G(x, y)}Gx(x, y) J22(x, y)

)
, (3.8)
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where

Fx = −b max (
1
K

,
1

[b/µm][µmα−1 + (Pt − θy)/q]
)− (

f(x)
x

)′y,

Fy =




−p(x), y < A(x),

− µmθ(x + µmα−1)
q(µmα−1 + (Pt − θy)/q)2

− p(x), y > A(x),

Gx =





e[p(x) + xp′(x)], y < B(x),
e(Pt − θy + µmqα−1)

θ(µmα−1 + x)2
(f ′(x)(µmα−1 + x)− f(x)), y > B(x),

Gy =





0, y < B(x),

− x · e · p(x)
µmα−1 + x

, y > B(x),

J11(x, y) = exp{F (x, y)}+ x exp{F (x, y)}Fx(x, y),
J22(x, y) = exp{G(x, y)}+ y exp{G(x, y)}Gy(x, y).

(3.9)

To study the stability of the equilibria, we first introduce the standard Jury test
(p57 of [4]).

Lemma 3.1. Let A be a 2× 2 constant matrix. Both characteristic roots of A have
magnitude less than 1 if and only if

2 > 1 + Det(A) > |Tr(A)|.
Solving the system of algebraic equations

x[1− exp{F (x, y)}] = 0, y[1− exp{G(x, y)}] = 0, (3.10)

yields two boundary equilibria E0 = (0, 0) and E1 = (k, 0). At E0 and E1, the
Jacobians are

J(E0) =


 exp

{
b(1− (µm)2α−1

b(µmα−1 + Pt/q)
)
}

0

0 e−d


 , (3.11)

and

J(E1) =
(

1− b kFy(k, 0)
0 exp{G(k, 0)}

)
, (3.12)

respectively, where

G(k, 0) = e min (k,
Q

θ
k)p(k)− d.

By Lemma 3.1, we obtain the following theorem.

Theorem 3.2. For (3.2), E0 is always unstable. E1 is LAS if

0 < b < 2 and emin(k,
Q

θ
k)p(k) < d,

and it is unstable if

b > 2 or e min(k,
Q

θ
k)p(k) > d.

Proof. The claim for E0 is clear. If we let λ1 and λ2 be the characteristic roots
of J(E1), then the condition

0 < b < 2 and e min(k,
Q

θ
k)p(k) < d
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ensures that | λi |< 1, i = 1, 2, while condition

b > 2 or e min(k,
Q

θ
k)p(k) > d,

implies λ1 > 1 or λ2 > 1.

The fact that both (3.2) and (2.1) have the same equilibria suggests that (3.2)
could have multiple equilibria. Now we assume that E∗ = (x∗, y∗) is such an
equilibrium and discuss its local stability.

The Jacobian at the positive equilibrium (x∗, y∗) reads

J(E∗) = J(x∗, y∗) =
(

1 + x∗Fx x∗Fy

y∗Gx 1 + y∗Gy

)
, (3.13)

where

Fx = Fx(x∗, y∗), Fy = Fy(x∗, y∗), Gx = Gx(x∗, y∗), Gy = Gy(x∗, y∗).

Its trace and determinant are

Tr(J(E∗)) = 2 + x∗Fx + y∗Gy, (3.14)

Det(J(E∗)) = 1 + x∗Fx + y∗Gy + x∗y∗[FxGy − FyGx], (3.15)

respectively. By carrying out arguments similar to those in Theorem 4.2 in [7], we
obtain the following geometric statements on the locally asymptotic stability of the
internal equilibrium E∗.

Theorem 3.3. In region Ω1 (y < Pt/θ − (x + µm/α − qµm/αθ)), the following is
valid. If the plant’s nullcline is increasing at E∗ (i.e.,Fx > 0), then E∗ is unstable.
If the plant’s nullcline is decreasing at E∗(i.e., Fx < 0) and

1
2
x∗y∗FyGx − 2 < x∗Fx < x∗y∗FyGx, (3.16)

then E∗ is LAS. If the plant’s nullcline is decreasing at E∗(i.e., Fx < 0) and

Fx > y∗FyGx or x∗Fx < 1
2x∗y∗FyGx − 2 (3.17)

, then E∗ is unstable.
The following statements are true in region Ω2 (y > Pt/θ−(x+µm/α−qµm/αθ)).

If the slope of the plant’s nullcline at E∗ is greater than the herbivore’s (i.e.,
−Gx/Gy < −Fx/Fy), then E∗ is unstable. If the slope of the herbivore’s nullcline
at E∗ is greater than the plant’s (i.e., −Gx/Gy > −Fx/Fy) and

1
2
x∗y∗[FyGx − FxGy]− 2 < x∗Fx + y∗Gy < x∗y∗[FyGx − FxGy], (3.18)

then E∗ is LAS. If the slope of the grazer’s nullcline at E∗ is greater than the
producer’s (i.e., −Gx/Gy > −Fx/Fy) and one of the following inequalities holds,

x∗Fx + y∗Gy <
1
2
x∗y∗[FyGx − FxGy]− 2,

x∗Fx + y∗Gy > x∗y∗[FyGx − FxGy],

then E∗ is unstable.
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Table 2. Parameter values used in simulation.

Parameter Value Unit
Pt 0.025 (mg P)/l
e 0.8
b 1.2 day−1

d 0.25 day−1

θ 0.03 (mg P)/(mg C)
q 0.0038 (mg P)/(mg C)
c 0.81 day−1

a 0.25 (mg C)/l
µm 1.2 day−1

α 10.0 day−1

K 0.25-2.0 (mg C)/l

4. Numerical simulations. In this section, we provide numerical simulations for
(2.1) and (3.2) to confirm and complement the analytical analysis. We choose the
Monod-type function f(x) = cx/(a+x) as the functional response of the herbivore.
The parameter values listed in Table 2 are adapted from Andersen (1997) and
Urabe & Sterner (1996). They are biologically realistic values. All the numerical
simulations are done with MATLAB 7.0.

One can easily see that

(ln f(x))′(µmα−1 + x)− 1 < 0

is satisfied with the initial conditions x = 0.5 (mgCl−1), y = 0.25(mgCl−1). With
this f(x) and the parameters we have chosen, we have Gx < 0. This ensures
stability changes when we vary light intensities.

In Figure1, for four different K values, we compare the dynamics of the KHE
model (2.1) and the discrete KHE model (3.2). All solutions begin with the same
initial conditions x = 0.5 (mgCl−1), y = 0.25(mgCl−1).

First, we study the dynamics of the continuous KHE model (see Fig.1 (a1) (a2)
(a3) (a4)). When K = 0.25, population densities stabilize around a stable equilib-
rium: E∗ = (x∗, y∗) = (0.16, 0.22) (see Fig.1 (a1)). When K = 0.75, population
densities oscillate around an unstable equilibrium E∗ = (0.16, 0.48) (see Fig.1 (a2)).
When K = 1.0, oscillatory solutions disappear and a stable equilibrium emerges
with x∗ = 0.70, y∗ = 0.42 (see Fig.1 (a3)). When K = 2, the food is abundant,
but the herbivore is driven to extinction due to low food quality: E1 = (2, 0) is
the boundary equilibrium and G(2, 0) < 0, so E1 is stable by Theorem 2.2. We
can use the same ways to study the dynamics of the discrete KHE model by The-
orem 3.2 and Theorem 3.3 (see Fig.1 (b1) (b2) (b3) (b4)). In Figure 1 (a1)-(a2)
and (b1)-(b2), increasing K destabilizes the dynamics. This phenomenon is the
Rosenzweig’s paradox enrichment([21]). When K increases further, another posi-
tive equilibrium emerges (see Fig.1 (a3)-(b3)); although the plant density increases
as K increases, its low quality (i.e., P : C) greatly constrains the herbivore’s growth.
This phenomenon is the paradox of energy enrichment ([16],[2]). In this situation,
the herbivore-plant relationship is (−,−) type. Finally, for large values of K(see
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Figure 1. Here the parameters are defined in Table 1 and the
initial conditions are x = 0.5 (mgCl−1), y = 0.25(mgCl−1). (ai)
and (bi) denote the dynamics of the KHE model (2.1) and the
discrete KHE model (3.2) with different K, respectively.
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Figure 2. The bifurcation curves versus K for the discrete KHE
model, the continuous KHE model, the discrete LKE model, and
the continuous LKE model.
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Figure 3. The bifurcation curves versus K for the discrete KHE model
and the continuous KHE model, respectively. Here b = 2.9.

Fig. 1 (a4)-(b4)), the plant quantity is high, but its low quality drives the herbivore
to extinction.

Figure 2 displays bifurcation curves with bifurcation parameter K for the discrete
KHE and LKE models and for the continuous KHE and LKE models. When K
is very small, the herbivore cannot survive because of starvation. As K increases,
the herbivore persists at a stable equilibrium, and its density rises (see Fig. 2 (a)
(b)). The herbivore-plant relationship is now a usual predator-prey (+,−) type (see
Fig. 2 (a) (b) (e) (f)). As we further increase K, the stable equilibrium loses its
stability through a Hopf bifurcation, and a limit cycle emerges. When K increases
still further, the limit cycle disappears through an saddle-node bifurcation, and a
new stable equilibrium emerges. Although the plant density increases as K increases
(see Fig.2 (e) (f)), the herbivore’s density decreases because of plant’s low quality
(see Fig.2 (a) (b)). The LKE model generates similar dynamics as the KHE model
(see Fig.2 (c) (d) (g) (h)).

The numerical simulations in Figures 1 and 2 reveal that both the KHE model
and its discrete analogue exhibit similar dynamics. But there are some notable
differences. The amplitudes of the plant and herbivore densities in the discrete
KHE model are larger than that of the continuous KHE model. The same holds for
the LKE model and its discrete analogue. In addition, for both the KHE model and
the LKE model, the internal equilibrium of the discrete systems loses its stability
earlier than does that of the corresponding continuous models.

Moreover, the discretization can significantly affect the nature of attractors. For
example, in Fig. 3, for the continuous model the global attractor is either the
boundary equilibrium or the internal equilibrium (see Fig.3 (b)). However, for the
corresponding discrete model (3.2) (see Fig.3 (a)), the global attractor can be a
boundary equilibrium, an internal equilibrium, a limit cycle attractor, or even a
strange attractor (chaos).

Figure 4 shows bifurcation diagrams for (3.2), (2.1), (3.3) and (3.5) against the
intrinsic growth rate of the plant, b. Figure 4 (e) and (g) reveal the periodic doubling
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Figure 4. Bifurcation diagrams for the discrete KHE model, the
continuous KHE model, the discrete LKE model, and the contin-
uous LKE model, respectively. Here K = 1.6.
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route to chaos for the plant’s density, when b increases near 3. Interestingly, (a)
and (c) in Figure 4 show that the herbivore’s density quickly reaches zero shortly
after the plant enters the chaos zone. This phenomenon shows that chaotic plant
densities can be an important factor leading to the extinction of herbivores. But for
the continuous KHE and LKE models, this biological conclusion is lost (see Fig.4
(b), (d), (f), (h)).

5. Discussion. The complexity of biological processes demands alternative, plau-
sible models. A family of well-formulated models allows researchers to separate
phenomena that are both robust and intrinsic to these processes, while recognizing
those that are specific to a particular model structure. With this in mind, we have
presented here a comparative study of four basic stoichiometric plant-herbivore
models.

Although stoichiometric population models received increasing attention and
support in the last decade (e.g., [1], [16], [18], [9], [13], [10]), almost all existing
models have yet to be fully studied mathematically, and many can be modified
or generalized to suit various new biological scenarios. All four models studied in
this work have a main common feature: plant quality, expressed as C:P ratio, can
vary and is determined by mass balance equations that track all P in the system.
The distinct feature of the KHE model is that it allows free P in the system. In
nutrient-limited pelagic systems, the concentration of free P is very low, making the
LKE model appropriate. In terrestrial systems, the substantial soil compartment
pool and delays in nutrient release cannot be ignored, and they demand explicit
tracking of inorganic (free) P. In this sense, the KHE model can be viewed as a
natural and important extension of the well-studied LKE model. To expand the
applicability of the LKE and KHE models to non-overlapping generation dynamics,
to annual plants, and to processes that are subject to periodic perturbations, it is
desirable to study their discrete analogs.

Our analysis of the family of four models shows that stoichiometric effects of low
food quality on herbivores are robust to discretization of time and addition of a free
P pool. In all four models, poor plant quality is detrimental to herbivore growth,
and, at its extreme, can drive herbivores to extinction. The reason is that prey with
very low P:C, despite being a good source of calories, do not provide enough P to
support the predator’s growth. If prey quality is good (i.e., P:C is high), then these
models behave like traditional energy-based predator-prey models such as Lotka-
Volterra type models. All four stoichiometrically explicit models considered here
show that an ever-increasing amplitude of the limit cycle is not the only possible
scenario for enrichment of prey as suggested by the classical predator-prey models
with Holling type II functional response ([21]). If the enrichment fuels the system
with only one of the elements of which a plant is made, in our case C (e.g., via
carbon dioxide fertilization or increase in incoming intensity of light), then the
resulting low quality of the prey can halt oscillations and stabilize the system at an
equilibrium with low grazer biomass (see Fig. 2); any further enrichment benefits
the plant but leads to further decline in the grazer densities, a phenomena known as
the paradox of energy enrichment ([16],[17],[2]). The models show that at different
plant quality levels it is possible to have two (not simultaneous) equilibria: a high
predator-prey ratio at high plant quality and low predator-prey ratio at low food
plant quality. The existence of two such equilibria with strikingly different prey to
predator ratios has been experimentally confirmed by Nelson et al. (2001)([19]).
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While stoichiometric effects of low food quality are present in both continu-
ous and discrete models, there are quantitative and qualitative effects that arise
from discretization. Namely, the amplitude of the limit cycles is larger in discrete
systems, and they are present at a larger range of parameter value, K. More im-
portant, the two discrete models reveal a possibility of chaotic dynamics and its
role in the extinction of herbivores. As in Fan et al. [7], the discrete model shows
that chaos can arise in a stoichiometric system because of variation in food quality.
Andersen [1] was first to discuss such a possibility, and he provided some analysis
in his higher-dimensional continuous model. Both discrete models clearly show a
period-doubling route to chaos, which occurs within biologically plausible param-
eter ranges. This further supports Andersen’s [1] argument on the possibility of
chaos in stoichiometric systems.
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