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Abstract. We consider the mathematical model originally created by Lud-
wig, Jones, and Holling to model the infestation of spruce forests in New
Brunswick by the spruce budworm. With biologically plausible parameter val-
ues, the dimensionless version of the model contains small parameters derived
from the time scales of the state variables and smaller parameters derived from
the relative importance of different population change mechanisms. The small
time-scale parameters introduce a singular perturbation structure to solutions,
with one variable changing on a slow time scale and two changing on a fast
time scale. The smaller process-scale parameters allow for the existence of
equilibria at vastly different orders of magnitude. These changes in scale of
the state variables result in fast dynamics not associated with the time scales.
For any given set of parameters, the observed dynamics is a mixture of time-
scale effects with process-scale effects. We identify and analyze the different
scenarios that can occur and indicate the relevant regions in the parameter
space corresponding to each.

1. Introduction. The spruce budworm model of Ludwig, Jones, and Holling [8]
has become a classic example of nonlinear population dynamics because of the
existence of a stable periodic orbit that shows good agreement with data obtained
from a spruce forest in New Brunswick. Portions of the model have appeared in
several textbooks [7, 6], and the full model has appeared in at least two [4, 1].
None of these treatments is complete in the sense of correctly identifying all of
the model behaviors that can be obtained over a wide range of parameter values.
In this paper, we describe the various scenarios that can arise, detail the specific
behavior of each, and indicate the circumstances in which each scenario can arise.
The model is seen to exhibit a rich variety of behaviors despite being a caricature
rather than a complete description of forest dynamics.

The standard approach in the analysis of dynamical systems with variables that
change at very different rates is to use singular perturbation to identify slow pe-
riods, during which the fast variables are in quasi-equilibrium, and fast periods,
during which the slow variables are roughly constant and the fast variables ap-
proach a new quasi-stable equilibrium [11]. The singular perturbation method can
be advantageously combined with geometric analysis to yield additional insights
into the complex behavior of dynamical systems [3, 10, 9, 2].

A complete treatment of the LJH model requires a more sophisticated use of
dominant balance arguments and quasi-equilibria than the classic singular pertur-
bation scheme because the various stable quasi-equilibria are of very different orders
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of magnitude and because those orders of magnitude have a dramatic effect on the
rates of change. This situation results from two factors that are not often present in
singular dynamical system models: (1) the presence of terms on the right-hand sides
of the equations that contain parameters significantly smaller than the time-scale
parameters, and (2) rates that can become large when dynamic variables are small.
It is therefore necessary to delineate several regimes, each with its own scaling of
the dependent variables, with the singular perturbation method applied separately
to each regime.

In the development that follows, we attempt to provide a careful outline of the
use of dominant balance and singular perturbation arguments to analyze models
that feature complex dynamics with a variety of possible scenarios delineated by
various ranges of parameter values. We also emphasize the connections between
the different scenarios and the biological processes in the model, with the goal of
yielding further insight into the question of what biological differences between
specific ecological systems lead to the different observed outcomes.

2. The forest defoliation model. The forest defoliation model of Ludwig, Jones,
and Holling [8] (see Fowler [4] for a derivation and scaling of the model) is a system
of three nonlinear ordinary differential equations:

ε1
dB

dt
= B

[
1− B

S

(
δ2 + E2

E2

)]
− λB2

ν2S2 + B2
, (1)

ε2
dE

dt
= E(1− E)− γB

S

(
E2

δ2 + E2

)
, (2)

dS

dt
= S

(
1− S

E

)
. (3)

Here B is the population density of consumers (spruce budworms in the original)
per unit land area, E is a measure of the average tree health, roughly equivalent
to the density of leaves per unit surface, and S is a measure of the forest density,
roughly equivalent to the amount of tree surface area per unit land area. The
factors ε1 and ε2 are the ratios of the characteristic times of the consumers and
the tree health, respectively, to that of the forest density. These ratios should be
small and comparable, and they are usually taken as 1/15 and 1/9, respectively.
Each of the dynamic variables is governed by a modified version of the logistic
equation. The equation (3) for the tree density differs from the logistic equation
only in that the environmental capacity is taken to be the tree health rather than
a fixed parameter. The capacity for the tree health is unity, and the capacity for
the consumer population is the tree density S reduced by the factor E2/(δ2 + E2)
when the tree health is particularly low. The parameter δ represents the level of tree
health for which consumer capacity per tree surface area is half its normal value.
The additional term in the tree health equation represents the damage done to the
trees by the consumers; this damage is assumed to be proportional to the density of
consumers per unit tree surface, again reduced by the factor E2/(δ2+E2) when the
tree health is particularly low. The parameter γ represents the maximum damage
rate relative to the tree health time scale. The additional term in the consumer
equation represents predation (by birds in the original). The predators are assumed
to have a variety of food sources. Since they do not rely on the population of our
particular consumer, we may safely assume their population to be independent of
B. Thus, the predators are represented by a maximum kill rate λ and a functional
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response indicating the density dependence of that kill rate. The sigmoidal Holling
type 3 [5] functional response is preferable when predators have alternative food
sources. The parameter ν measures the density of consumers per tree surface area
at which predation is reduced by half. The density of consumers per tree surface
area (B/S) is more meaningful in this context than the density of consumers per
land area (B) because the density per tree area is what determines the ease with
which the predators can spot and kill their prey. For this reason, we will sometimes
find it useful to plot B/S rather than B.

2.1. An interesting example. Imagine a four-dimensional space of the param-
eters γ, δ, λ, and ν. Hypersurfaces in this space mark the boundaries between
different possible behaviors of the system. With focused hindsight, it is possible to
choose a set of parameter values that lies in the region with the most interesting
behavior, but near all of these hypersurfaces. Here, we choose the parameter set

γ = 0.3, ε1 =
1
15

, ε2 =
1
9
, δ = 0.03, λ = 0.003, ν = 0.00167. (4)

as a specific example.1 In this set of values, γ is the only parameter that is not small.
The parameters λ and ν are significantly smaller than the time scale parameters;
hence, the system admits of both singular perturbation with small parameters ε1
and ε2 and regular perturbation with smaller parameters ν, λ, and δ. We want the
model to represent defoliation scenarios, but we don’t want to overly restrict the
possible behaviors of the model. In the subsequent analysis, we assume

λ, ν ¿ ε1, ε2 ¿ 1,
ε1
ε2

= O(1),
λ

ν
= O(1). (5)

We leave open for now the issue of whether to take δ to be comparable to ε1,
comparable to λ, or of an order between the two.

Figures 1 and 2 illustrate the results of a computer simulation using our exam-
ple. We see a stable periodic solution (period ≈ 13) that exhibits two slow stages
characterized by approximately fixed values of E, separated by stages in which E
is changing rapidly. The vertical lines in the time series graphs indicate the ap-
proximate boundaries of several different regimes, each distinguished by the orders
of magnitude of the dependent variables and the time scale on which significant
changes occur. Regime IV is very brief, with its location indicated by the vertical
line separating Regimes III and V. Figure 2b shows a cross-section of the B null-
cline surface on a plane parallel to the SB-coordinate plane. This cross-section is
correct when E À δ, but not when E = O(δ) or E ¿ δ. Note also that the portion
of the nullcline surface having B ¿ 1 extends only to the value S = σ < 1, where
σ = λ/(2ν). Similarly, the quasi-equilibrium curve in Figure 2a extends only to
S = σ.

Our example serves as an excellent backdrop for the explanation of the different
regimes. Once we understand the example, other scenarios can be easily explained
by comparison.

1The values for the time-scale parameters are those reported in the literature, while the other
parameters have been chosen for mathematical interest. However, none of the parameters differs
from its typical value by as much as a factor of three (Fowler [4] gives γ = 0.7, δ = 0.02, λ = 0.004,
and ν = 0.003), so conceivably these parameter values could apply to some forest system similar
to the spruce budworm forest used to obtain the parameter estimates.
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Figure 1. Time series for the example, with approximate delin-
eation of several distinct regimes.

3. Analysis of the model. A considerable insight into the possible behaviors of
the model can be gleaned from a careful examination of the equations, prior to
any mathematical analysis. Note that dB/dt is positive as B → 0 and negative as
B → S. From this and similar considerations, we see that stable equilibria must
have 0 < B < S = E < 1. Predation will occur at a constant maximum rate
whenever the consumer-to-surface ratio B/S is much greater than ν; however, this
predation can limit the consumer population only when the consumer population
is O(λ) or smaller.

Based on a quick inspection of the differential equations, O(1) changes in B and
E would seem to occur in time intervals of O(εi). However, the changes will not
be so fast when the solution lies near the curve marking the intersection of the B
and E nullcline surfaces. At such points, the right sides of equations (1) and (2)
will be small, and changes will occur at a slower rate. It is as if the BE subsystem
were at equilibrium, except that the value of S is slowly changing rather than
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Figure 2. Phase portrait for the example. The circles mark the
approximate boundaries between regimes. The heavy curves mark
the BE quasi-equilibrium curve, the B nullcline surface (except
where E is small), and the E nullcline surface, respectively. The
plane in (a) is the S nullcline surface.

constant; hence, it makes sense to use the term “quasi-equilibrium” to describe
equilibria in the BE subsystem. When the system is at quasi-equilibrium, the
observed dynamics is driven by equation (3), and is therefore said to be “slow.”
The values of B and E change via the movement of the solution along the quasi-
equilibrium curve. If the parameter values are such that the solution can follow
the quasi-equilibrium curve all the way to the S nullcline surface, the system will
evolve to a stable equilibrium. Regimes II and V in Figure 1 are typical examples of
slow dynamics; in both cases, the solution curve follows the quasi-equilibrium curve
for a while, but it cannot follow the quasi-equilibrium curve all the way to the S
nullcline surface. Eventually, S increases or decreases to a point where the solution
must leave the quasi-equilibrium curve, and the dynamics ceases to be slow.

Suppose the system is at a state that is not close to the quasi-equilibrium curve.
Then at least one of B and E will exhibit O(1) changes in time intervals of O(εi),
ending when quasi-equilibrium is restored, either because the solution is near the
quasi-equilibrium curve or because either B or E has become small. During these
short time intervals, changes in S are relatively small. The observed dynamics
in these intervals is said to be “fast.” Regimes I and III in Figure 1 are typical
examples of fast dynamics.

Regime IV is somewhat different from the standard fast regimes characteristic
of singularly perturbed dynamical systems because the “slow” variable S exhibits
fast changes. Why does this occur? In typical singularly-perturbed dynamical
systems, the dependent variables are sometimes small, and normally this can slow
the dynamics, as we see in Regime V. What is unusual about the forest defoliation
model is that small variable values can make the dynamics faster. The factor E in
the denominators of the B and S equations, rather than the small parameters εi, is
responsible for the fast dynamics of Regime IV. Rapid decreases in S occur whenever
E is small relative to S. The rate of these changes depends on the correct rescaling
of E for that regime. In biological terms, the environmental capacity changes by
an order of magnitude comparable to or larger than the ratio of the time scales.

These observations serve to explain the qualitative features of the complex limit
cycle illustrated in Figures 1 and 2. However, it is essential to note that we could not
have obtained a set of parameter values to produce this complex limit cycle without
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having already identified, through asymptotic analysis, the various scenarios that
the model can produce, which include several simpler scenarios as well as the cycle
we have been examining. Simulations with different sets of parameter values can
be used to obtain a sampling of possible behaviors of a dynamical system, but only
analysis can guarantee that all possible behaviors have been found.

In the asymptotic analysis that follows, we want to tease out the proper order-
ings for the three dynamic variables. There are two basic principles that must be
followed. First, we may make any initial assumptions about possible orderings as
long as we are careful not to omit any possible cases. We will sometimes be ex-
plicit about ordering assumptions from the outset; at other times, we will benefit
by postponing such explicit assumptions. Second, we must only discard terms that
are clearly dominated by other terms, given the postponement of explicit ordering
assumptions.

3.1. Regimes I and II. We begin by looking at the model under the assumptions
E, S = O(1) and B ¿ S, which appear to be appropriate for Regime II. As
immediate consequences of these assumptions, we have

B

S

(
δ2 + E2

E2

)
¿ 1,

γB

S

(
E2

δ2 + E2

)
¿ E(1− E);

we may therefore simplify the BE subsystem to

ε1
dB

dt
= B − λB2

ν2S2 + B2
, (6)

ε2
dE

dt
= E(1− E). (7)

This system is decoupled, with E = 1 a stable equilibrium for the second equation.
We now assume B = O(λ) to balance the growth and predation terms in equation
(6) and admit a possible quasi-equilibrium solution. The substitution

b = λ−1B

yields the rescaled equation

ε1
db

dt
= b

(
1− b

(νS/λ)2 + b2

)
. (8)

Given S as a fixed parameter (a reasonable assumption for times of O(ε1)), equation
(8) has the equilibrium solutions

b =
1±

√
1− (2νS/λ)2

2
,

provided S < λ/(2ν). The smaller of these solutions is asymptotically stable, so
these scalings yield a stable quasi-equilibrium solution

B ∼ λ

2


1−

√
1−

(
S

σ

)2

 , E ∼ 1, S < σ ≡ λ

2ν
, (9)

which is what we see in Regime II.
The initial conditions used in the simulation do not satisfy the quasi-equilibrium

equations because of the small starting value of E. Thus, Regime II is preceded
by a fast regime (Regime I), in which E changes on the fast scale to the stable
quasi-equilibrium (9). Then (Regime II) S increases on the slow time scale toward
S = 1, B increases with S according to (9), and E is fixed at 1. If λ < 2ν, the slow
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phase ends when S reaches the critical value λ/(2ν), at which point equation (8)
no longer has an equilibrium solution. In our example, this occurs at t ≈ 7, and
Regime II ends as B increases to O(1). Figure 3 shows the time series curves and
the b versus S curve for Regimes I and II for the example. The Sb plane shows
why the solution must leave the quasi-equilibrium curve: S must increase because
S < E, yet the quasi-equilibrium curve reaches a maximum at S = σ < 1. If the
quasi-equilibrium curve were extended farther to the right, it would be possible for
the solution curve to follow it all the way to S = 1, achieving an equilibrium state
with trees at full health.
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Figure 3. Regimes I and II (a: dash=B, solid=E, dash-dot=S;
b: dash=B-nullcline surface, dot=solution curve).

3.2. Regime III. Regime II ends with λ−1B → ∞, so we next consider the case
of E, S, B = O(1). Here, the BE subsystem is given by

ε1
dB

dt
= B

(
1− B

S

)
, (10)

ε2
dE

dt
= E(1− E)− γB

S
. (11)

This system is decoupled, with B = S a stable quasi-equilibrium for the first
equation. The second equation then has the equilibria

E =
1±√1− 4γ

2
,

provided γ < 1
4 . The larger of these two solutions is asymptotically stable, so

Regime II yields a stable equilibrium solution

B, E, S ∼ 1
2
(1 +

√
1− 4γ), γ <

1
4
. (12)

In Regime III, B approaches S on the fast time scale, while E decreases rapidly,
as illustrated in Figure 4. If γ > 1

4 , as in the example, the B and E nullcline surfaces
do not intersect; consequently, there is no quasi-equilibrium solution and only fast
dynamics occur. Decreasing γ raises the E nullcline surface. If γ < 1

4 , the surface is
high enough that it intersects the B nullcline surface, forming a quasi-equilibrium
curve that is not present in our example. This curve would appear in Figure 4c as
the rightmost of the two points of intersection. In this case, the solution will move
on the fast time scale to the quasi-equilibrium curve and then follow it, on the slow
time scale, to the stable equilibrium point (12).
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Figure 4. Regime III (a: dash=B, solid=E, dash-dot=S; b, c:
dash=B-nullcline surface, solid=E-nullcline surface, dot=solution
curve).

3.3. Regime IV. We have now completely analyzed the regimes in which S and
E are O(1). We turn now to E = O(δ), which is the ordering in which the factor
E2/(δ2 + E2) will be retained. With the substitution

Ē = δ−1E,

the full system becomes

ε1
dB

dt
= B

[
1− B

S

(
1 + Ē2

Ē2

)]
− λB2

ν2S2 + B2
, (13)

ε2
dĒ

dt
= Ē − γB

δS

(
Ē2

1 + Ē2

)
, (14)

dS

dt
= S − S2

δĒ
. (15)

Given E = O(δ), we see from equation 15 that an equilibrium solution can only
occur with S = O(δ). Similarly, examination of equation 14 shows that B = O(δ2)
is the only ordering that can yield an equilibrium solution in the full system or the
BE subsystem. However, these assumptions result in the approximation

ε1
dB

dt
= B − λ,

which admits no stable equilibria. Thus, Regime IV is a fast regime governed by
equations 13–15, with some appropriate ordering for B and S. Clearly S = O(1),
because S is a slow variable and was O(1) in the previous regime. There is no loss
of generality in assuming B = O(1), which is consistent with the earlier observation
that the solution is on the B nullcline surface at the end of Regime III. With these
scalings, the leading order B and S equations are

ε1
dB

dt
= B

[
1− B

S

(
1 + Ē2

Ē2

)]
(16)

dS

dt
= − S2

δĒ
. (17)

The rescaling of E makes S a fast variable that should undergo O(1) changes in time
intervals of O(δ). This makes the dynamics in Regime IV faster than the “fast”
dynamics of Regimes I and III. Figure 5 illustrates the details of the dynamics of
Regime IV.
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Figure 5. Regime IV (a: dash=B, solid=E, dash-dot=S; b:
dash=B-nullcline surface, solid=E-nullcline surface, dot=solution
curve).

3.4. Regime V. We have considered all possible regimes with E À δ and with
E = O(δ). It remains to consider the possibility of a slow regime with O(S) =
O(E) ¿ δ. With these scalings, the BE subsystem becomes

ε1
dB

dt
= B

(
1− δ2B

SE2

)
− λB2

ν2S2 + B2
, (18)

ε2
dE

dt
= E

(
1− γB

δ2

E

S

)
. (19)

A nontrivial equilibrium for equation 19 requires B = O(δ2). Then νS ¿ νδ < δ2,
so νS ¿ B and the B equation simplifies further to

ε1
dB

dt
= B

(
1− δ2B

SE2
− λ

B

)
. (20)

We must now have SE2 = O(δ2B), so S, E = O(δ4/3). Hence, either λ = O(δ2)
or λ ¿ δ2; we assume the former to retain more of the dynamics. Note that this
scaling is not substantially different from E = O(δ). One consequence of this is that
we can arbitrarily decide to continue to plot δ−1E as the tree health variable, rather
than the more complicated δ−4/3E. Another consequence is that the simplification
δ2 + E2 ∼ δ2 used in this scaling results in a perturbation expansion in which the
first correction term is O([δ/γ]2/3) relative to the leading order solution. Despite
the relatively large size of this correction term, the asymptotic results are borne
out by numerical simulations.

To simplify the subsequent calculations in this regime, we make the substitutions

E =
δ4/3

γ1/3
e, S =

γ2/3λ

δ2/3
s, B = λb, η =

γλ

δ2
.

In addition to correctly scaling the variables, these substitutions yield a system in
which the quasi-equilibrium equations contain no parameters other than s:

ε1
db

dt
= b

(
1− b

se2
− 1

b

)
, (21)

ε2
de

dt
= e

(
1− be

s

)
, (22)

ds

dt
= s

(
1− ηs

e

)
. (23)
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Figure 6. Regime V (a: dash=b, solid=δ−1E, dash-dot=δ−1S,
dot=δ−1Scr; b: thick=E-nullcline surface, thin=solution curve).

Analysis of the BE subsystem yields the result that there are quasi-equilibrium
solutions b = b∗, e = s/b∗, where b∗ is a solution of the equation

b4

b− 1
= s3.

This equation has two solutions whenever

s >
28/3

3
≡ scr,

the larger of the two being stable provided either

ε2 < 2ε1 or b∗ >
2ε2

ε1 + ε2
.

For our study, the first condition is always met; hence, this scaling does have a
stable quasi-equilibrium solution. If this solution is achieved, the result could be
either progression to the full equilibrium solution, given by

b = η−1, e = (1− η)−1/3, s = be, (24)

which is asymptotically stable if

η < min
(

3
4
,
ε1 + ε2

2ε1

)
,

or progression to a point where s < scr. The latter occurs in our example, as illus-
trated in Figure 6. Points where the trajectory is horizontal indicate approximate
points on the B nullcline surface. When S drops below the minimum value for a
quasi-stable equilibrium, the solution oscillates with growing amplitude until b < 1.
At this point, the consumer population drops drastically because the gain from
growth is no longer sufficient to offset the loss from predation. This drastic reduc-
tion can be seen at the boundary between Regime V and the subsequent Regime
I.
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Table 1. Properties of the five regimes in the example. (k =
min(0.75, 0.5[ε1 + ε2]/ε1), NCS=nullcline surface, QEC=quasi-
equilibrium curve)

stable
E S B/S B time scale location equilibrium

I O(1) ¿ 1 ¿ 1 ¿ λ O(ε2) B NCS never
II ∼ 1 O(1) O(λ) O(λ) O(1) QEC if λ > 2ν
III O(1) O(1) O(1) O(1) O(ε2) B NCS if γ < 1/4
IV O(δ) O(1) O(1) O(1) O(δ) E NCS never
V O(δ4/3) O(δ4/3) O(δ2/3) O(λ) O(1) QEC if γλ < kδ2

4. Results and discussion. Table 1 summarizes the properties of the five regimes,
including the orderings of the dynamic variables, the time scale with the parameter
values in the example, the location of the solution curve relative to the nullcline
surfaces of the fast variables, and the possible existence of stable equilibria for other
sets of parameter values.

Suppose we have the initial data B = B0 ≈ λ, E = 1, S = 1, corresponding to a
small but significant initial consumer population in a forest not previously exposed
to the consumers. Based on the information in the last column of Table 1, we can
delineate four basic scenarios:

1. An endemic infestation scenario, consisting of a stable equilibrium in Regime
III, will occur if γ < 1/4.

2. An ecological disaster scenario, consisting of a stable equilibrium in Regime
V, will occur if γ > 1/4 and γλ < kδ2, where k = min(0.75, 0.5[ε1 + ε2]/ε1).

3. A temporary defoliation scenario, consisting of a stable equilibrium in Regime
II, will occur if γ > 1/4, γλ > kδ2, and λ > 2ν.

4. A limit cycle with a long period of depression (Regime V), as seen in the first
example, will occur if none of the conditions leading to stable equilibria exist.

Two additional scenarios can occur if we relax some of the restrictions imposed on
the above.

5. A nonevent scenario, consisting of a stable equilibrium in Regime II without
moving through the cycle once, can occur if the initial consumer level is below
the value given by the larger of the equilibrium solutions of equation 8. This
scenario is of minimal interest, as there would be no observations to call
attention to an outbreak that is contained without affecting tree health.

6. A limit cycle with a short period of depression can occur if none of the other
equilibria are indicated and δ2 ¿ λ.

Table 2. Parameter values for scenarios 1–6

Scenario γ λ ν δ B0
1 0.24 0.0030 0.00167 0.03 0.003
2 0.30 0.0021 0.00167 0.03 0.003
3 0.30 0.0036 0.00167 0.03 0.003
4 0.30 0.0030 0.00167 0.03 0.003
5 0.30 0.0036 0.00167 0.03 0.002
6 0.70 0.0040 0.00300 0.02 0.003
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Figure 7. Tree health and bifurcation plot for scenarios 1–6. The
dashed curve in (a) is scenario 4. The numbers in (c) indicate the
scenarios corresponding to each region in the parameter space.

These scenarios are illustrated in Figure 7, using the parameter values indicated in
Table 2. The parameters in scenario 6 are those estimated by Ludwig, Jones, and
Holling [8] and/or Fowler [4]. In each case, we illustrate the scenario using a plot
of tree health. Scenario 5 uses the same parameters as scenario 3, except that the
initial consumer population is smaller. Scenario 4 is the complex limit cycle of our
example. We consider each of these scenarios in turn.

• endemic infestation
The lower value of γ means that the consumers are not quite as damaging
to the trees as in the standard example. The quasi-stable equilibrium of
Regime III exists in this case. It is quickly achieved and evolves to the stable
equilibrium solution with all variables O(1). The cycle is broken because the
tree health does not fall far enough to ruin the consumer habitat.

• ecological disaster
With a small decrease in λ, the solution is nearly the same as the standard
example through the first four regimes. In Regime V, however, the solution
reaches the stable equilibrium in which E = O(δ4/3). Here, the maximum
predation rate is not sufficient to cause the consumer population to crash,
so the tree health is never able to recover. Scenario 2 is observed when an
invasive insect pest causes the local extinction of the affected tree species.
Note that the equilibrium state achieved in scenario 2 is also stable when the
parameters lie in regions marked “1” in Figure 7c and below the dotted curve;
however, this equilibrium state is not achieved in these regions with realistic
initial conditions.

• temporary defoliation or nonevent
A slight increase in λ has the effect of making the crash in the consumer popu-
lation happen earlier, leading to an earlier recovery of tree health. Moreover,
if the maximum predation rate is large enough, then the tree surface area
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needed to enable the explosive population growth of the consumer (Regime
III) is larger than what can be achieved at maximum tree health. As a re-
sult, the stable equilibrium solution of Regime II exists and can be achieved.
In scenario 3, the initial consumer density is above the equilibrium curve in
Figure 3b. This means that the system goes through one full cycle before
eventually approaching the stable equilibrium. With a more modest initial
consumer density, as in scenario 5, the system evolves immediately to the
stable equilibrium solution without going through one defoliation cycle. In
this case, there is no observable change from the initial maximum tree health.

• limit cycle with long period of depression
Scenario 4 differs from our standard example only in the initial conditions,
which are similar to the solution values that we see near the end of Regime
II. The system approaches the stable periodic orbit quickly. The tree health
remains high until the end of Regime II, which occurs very quickly with the
given set of initial conditions. The tree health falls precipitously in Regime
III when the consumer population is briefly O(1), remains low in Regime IV
during the rapid decline of the consumer population, and oscillates at a low
value during Regime V. Regime I begins at about time 6, with the tree health
rapidly rising up to its normal value. The cycle of defoliation begins again at
about time 13.

• limit cycle with short period of depression
The significant difference between scenario 6 and scenario 4 is in the loca-
tion of the hypersurface that separates scenarios 2 and 4. The parameter
set reported for the spruce budworm forest has a noticeably smaller semi-
saturation level for the effect of tree health on consumption. With γλ À δ2,
Regime V has no quasi-equilibrium. It is therefore very short-lived, with the
drastic reduction in consumer population occurring immediately, rather than
over time as in Figure 6. The result is that Regimes IV, V, and I merge into
a single fast regime marked by a rapid recovery of tree health following the
very quick decrease in consumers. In practice, we would expect this scenario
to be more likely than our primary example, which was chosen for its math-
ematical interest rather than its accuracy in describing real systems. When
the parameters are within the space in which the tree health is low for a long
period, as in our primary example, we might anticipate that other factors,
such as competition among tree species, would intervene to drive the affected
tree species to local extinction, as in scenario 2.

5. Conclusions. A complete explanation of the dynamics of the LJH forest de-
foliation model requires consideration of the effects of small parameters on the
right-hand sides of the dynamic equations as well as small parameters that repre-
sent the ratios of time scales. Small parameters appear on the right-hand side in
any model in which the relative importance of the different contributing processes
depends strongly on the magnitudes of the dependent variables. In the forest de-
foliation model, for example, predation can be a key process in the limitation of
the consumer population; however, predation is insufficient to affect the consumer
population unless that population is already much smaller than at breakout levels.
Normally, predation at low levels plays only a minimal role in limiting population
size. In the LJH model, however, the capacity of the environment to support the
consumer population is reduced by the success of those consumers in exploiting
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that environment. Eventually, the reduced environmental capacity decreases the
consumer population to the point where predation can serve as an additional con-
trol on the population, leading to a dramatic further decrease in the population.
Once the consumer population is reduced to a minimal level, the forest can re-
cover, leading to an increased environmental capacity, which eventually renders the
predators ineffective in population control again. Delicate balances of the various
processes are necessary to effect this cycling behavior, with other scenarios also
possible. If the maximum predation level is above the range necessary for cycling,
the consumer population can stabilize at a low level with the resource at a healthy
level. Paradoxically, when the maximum predation is below the range for cycling,
the consumer population also stabilizes at a low level, this time with the resource at
a catastrophic level as well. The consumers are most successful in the case where
the extent to which they injure the forest is sufficiently low (γ < 1/4). In this
case, the drastic decrease in tree health is avoided and the consumer population
can become endemic at breakout levels. Thus, natural selection pressure on the
consumer, as well as that on the resource, acts in the direction of reduced impact
of the consumer on the resource. This phenomenon helps explain why it is com-
mon for invasive species to be very damaging to an ecosystem—in the case of a
sudden invasion, as compared to a gradual invasion resulting from natural changes
in organism ranges, there is no time for selection pressure to act to stabilize the
system.
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