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Abstract. In this paper we give a contribution to the systematic investiga-
tion of cannibalism in predator-prey models commenced since the publication
of the paper by Kohlmeier and Ebenhöh in 1995. We present a stage-structured
predator-prey model and study its dynamics. We use a Hopf bifurcation anal-
ysis to prove that cycles are possible and that cannibalism suppresses these
cycles; that is, when cannibalism attack rate is increased so that it passes
a critical value, the coexistence steady state changes from being unstable to
being stable. Numerical simulations are provided together with the mathe-
matical analysis. Our modelling approach is based on balance arguments and
a comparison with some early models which predict that a destabilizing ef-
fect of cannibalism is performed. Our results agree with the output of growth
simulation for some cannibalistic copepods.

1. Introduction. Adults preying on juveniles of the same species have been widely
documented in nature [10]. For example, this behaviour has been observed for a
variety of fish species, such as Atlantic cod [1], salmon, perch and striped bass (see
[12] and the reference contained therein) as well as copepods [24].

This phenomenon has been the subject of a wide mathematical literature, and nu-
merous modelling approaches have been proposed. For example, the McKendrick-
von Foerster model for age-structured populations has been implemented for studies
on cannibalism by M. E. Gurtin and his coauthors (see, e.g., [12]). Their model is
still inspiring a series of papers (see, e.g., [20]). A further example stands in dis-
crete stage-structured models. For such models one can refer to the papers by J. M.
Cushing and his coauthors (see, e.g., [5] and the reference contained therein). This
approach has been recently applied to study cannibalism in Atlantic cod [27]. For
a deeper survey on the population dynamic theory of cannibalism and the related
literature, we refer to the recent review [4].
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In the present paper we are concerned with a specific class of models, i.e.,
predator-prey models where the predator is stage structured and has an instanta-
neous maturation rate. The analysis focuses mainly on the stabilizing-destabilizing
effect of cannibalism.

Our study is motivated by the following discussion. In 1995 Kohlmeier and
Ebenhöh [15] showed that cannibalism could stabilize a predator-prey system. A
high cannibalism rate may cause the internal steady state to change from being
unstable to stable. The same conclusion has been pointed out by van den Bosch
and Gabriel [22] for an age-structured predator-prey system. This conclusion has
been regarded as somewhat surprising (see, e.g., [14]) because of several disadvan-
tages that cannibalism presents for populations that practise it. For example, the
cannibalism would waste the high-cost energy needed for breeding (see, e.g., [18]).
In 1999 K.G. Magnusson [16] and, more recently, Kaewmanee and Tang [14] pre-
sented a predator-prey continuous model including cannibalism, which shows that
cannibalism has a destabilizing effect. In [14] the result obtained by Kohlmeier and
Ebenhöh is explained as a consequence of the use of a Holling type-II functional
response. This implies that a predatory switching is included in the model, which
would have a stabilizing effect. On the other hand, the predator-prey cycles in [22]
are viewed as essentially generated by the age structure. Increasing the cannibalism
attack rate would diminish the effects of the age structure.

In this paper we give a new possible approach to predator-prey interaction in-
cluding predators’ cannibalism and study the effect of cannibalism on the related
model. The model and the results are compared with the ones presented in [14]
and [16].

The paper is organized as follows. In section 2 the models quoted in this in-
troduction are recalled in some detail, and some relevant aspects are discussed. In
section 3 our model is presented. Its analysis is performed in section 4, where the
main result of the paper is stated. In section 5 numerical simulations complete the
discussion. The conclusions contained in section 6 close the paper.

2. Predator-prey models including cannibalism: survey and shortcom-
ings. In 1995 Kohlmeier and Ebenhöh [15] published the first of a series of sys-
tematic investigations on predator-prey systems with cannibalistic predators. They
considered a predator-prey system with logistic prey growth. The Holling type-II
functional response was used to describe the predator uptake. The model they
considered is the following:

dz
dt = rz

(
1− z

K

)− αf(z, x)x
dx
dt = γαf(z, x)x− ωx− θg(z, x)x,

(1)

where
f(z, x) =

z

1 + αh1z + θh2x
; g(z, x) =

x

1 + αh1z + θh2x
.

In (1), z(t) and x(t) are the density of prey and predator, respectively; r and K
are the growth rate and carrying capacity of the prey population; α and θ are the
attack rates on prey and conspecifics; h1 and h2 are the handling times of prey and
conspecifics; γ is the predator yield, that is, the conversion efficiency of eaten prey
into predator biomass, and ω is the predator death rate.

The analysis of this model allowed the authors to conclude that cannibalism
is a stabilizing mechanism, in the sense that when the cannibalism attack rate θ
increases, the internal steady state changes from unstable to stable.
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Van den Bosch and Gabriel [22] have emphasized that oscillations in model (1)
are due to the interaction of logistic prey growth and the hyperbolic functional re-
sponse. They asked themselves if oscillations could also be due to other mechanisms.
Precisely, they proposed an age-structured model and showed that cannibalism is a
stabilizing mechanism also when population oscillations are due to this age struc-
ture. They concluded that in predator-prey systems, cannibalism by predators can
stabilize both externally generated (consumer-resource) as well as internally gener-
ated (age-structure) fluctuations. The model they considered is a structured model
where the predators may have four stages: small juveniles S, vulnerable juveniles
V , large juveniles L and adults A. The juvenile stage has fixed duration time a and
juveniles are vulnerable to cannibalism only in the fixed interval [a1, a2]. Prey z is
not divided into classes. Their model reads as follows:

dz
dt = rz

(
1− z

K

)− αzA
dS
dt = ξαzA− ϕS(z, A)− µS
dV
dt = ϕS(z, A)− ϕV (z,A)− µV − θAV
dL
dt = ϕV (z, A)− ϕL(z,A)− µL
dA
dt = ϕL(z, A)− ωA.

(2)

In (2) the parameter µ represents the juvenile death rate. The other parameters
have the same meaning as in model (1). The functions ϕ represent the maturation
rates from one stage to the next one. For example, the rate at which individuals
age from S into the vulnerable class V equals the rate of birth at time t − a1

multiplied by the probability that an individual born at t− a1 is still alive at time
t. When the maturation from V to L is formulated, the probability to survive
to cannibalism is also considered. This probability is found from the first term
of Poisson distribution. These considerations lead to the following form for the
functions ϕ:

ϕS(z,A) = ξαz(t− a1)A(t− a1) exp(−µa1)

ϕV (z, A) = ξαz(t− a2)A(t− a2) exp

(
−µa2 − θ

∫ t

t−(a2−a1)

A(σ)dσ

)

ϕL(z, A) = ξαz(t− a)A(t− a) exp

(
−µa− θ

∫ t−(a−a2)

t−(a−a1)

A(σ)dσ

)
.

In 1999 Magnusson [16] reconsidered the use of predator-prey models for the
analysis of cannibalism’s role (and in particular its stabilizing or destabilizing ef-
fect). He stressed that in model (1) the absence of structure means that the predator
feeds on itself. On the other hand, he remarked that in model (2) the only effect
of cannibalism is additional mortality for the vulnerable class of juveniles (the last
term in the third equation of system (2)), so that the consumption of juveniles does
not influence the growth rates of adults.

The model proposed by Magnusson is a system with three ordinary differential
equations. He assumed an instantaneous maturation into the adult class, instead of
a delayed one as in (2), and a constant per capita rate of maturation kM . He also
stressed that the simplifying assumption of instantaneous maturation means that
the oscillations that may occur are not caused by a delay inherent in the system,
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as in (2). The model he proposed reads
dz
dt = rz

(
1− z

K

)− αzA
dJ
dt = βA− kMJ − sAJ − kJJ
dA
dt = kMJ + γsAJ + kzAz − kAA,

(3)

where z, A and J are the measure (biomasses) of prey, adult predators and juve-
nile predators, respectively. The parameter γ is the conversion efficiency of eaten
juveniles into adult biomass. He found that if the mortality rate of juveniles is
high and/or the recruitment rate of mature population is low, then there exists
a unique internal equilibrium which is stable for low levels of cannibalism, but a
loss of stability by a Hopf bifurcation will take place as the level of cannibalism
increases. He concluded therefore that cannibalism can have a destabilizing effect
in a predator-prey system.

In 2003 Kaewmanee and Tang [14] reexamined model (3). By means of a different
rescaling they obtained the same results as in [16]; i.e., the loss of stability by Hopf
bifurcation of the internal equilibrium as the level of cannibalism increases. Unlike
[16], their results do not require any restriction on the mortality rate of juveniles
and on the recruitment rate of mature population.

Model (3) presents an unusual property. It may predict that the predator can
persist in the absence of the prey; that is an equilibrium of kind Ez0 ≡ (0, J∗, A∗)
exists which may be stable in the AJ-plane. Magnusson notes that the existence of
such a state means that the predator is only partially coupled to the prey. In other
words, the predator has an alternative food source, which is not modelled explicitly,
and the prey species may be only the preferred food. Kaewmanee and Tang argue
that model (3) does not contain any reference to the second prey population so
that it is invisible to the predator species: this means that predators could not feed
on them when the primary prey species becomes extinct. They conclude that the
above steady state Ez0 would be impossible. Nevertheless, this equilibrium is still
admissible for their model.

In (3) the variables are expressed in terms of biomasses. The interactions consist
in source uptake and consequent growth through suitable yields. The predator
birth rate is independently defined as a linear function of adult predators. The
circumstance that the model (3) may predict that the predator sustains itself at a
steady state with no recourse to the prey, comes essentially from the assumption
of a constant birth rate. This can be verified by observing that the dynamics of
perturbations with initially zero z-component is ruled by

dJ
dt = βA− kMJ − sAJ − kJJ
dA
dt = kMJ + γsAJ − kAA.

It is easy to verify that the origin is unstable if kMβ > kA(kM + kJ). Further, If

kAγ−1 < β < kAk−1
M (kM + kJ),

then a positive equilibrium E = (J∗, A∗), where

J∗ =
kA(kM + kJ)− βkM

s(γ − 1)kM + sγkJ
, A∗ =

kA(kM + kJ)− βkM

s(γβ − kA)
,

exists and is stable.
Differently from model (3), our approach expresses the variables in terms of

number of individuals, and the adult-prey and adult-juvenile interactions consist
of source uptake and conversion (through suitable yields) in new birth. Hence, the
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number of adults varies only in cause of mortality and maturation from the juvenile
class. This last aspect is common to models in [22], [25] and [26].

3. The model. Assume that R(t) represents the number of individuals of a preda-
tor population at time t. Let R(t) = J(t)+A(t), where A(t) and J(t) represent the
number of adults and juveniles of the population at time t, respectively. Let P (t)
represent the number of individuals of a nonstructured prey population at time t.
The classical predator-prey model reads

dR
dt = −αR + βRP
dP
dt = γ1P − γ2P

2 − δRP,

where a logistic growth for the prey population in absence of predators has been
assumed. Assuming that only the adults may eat the prey, one gets

d(A+J)
dt = −α(A + J) + ηIδAP

dP
dt = γ1P − γ2P

2 − δAP,

where ηI is the yield; i.e., it denotes the coefficient in converting prey into new
immature predators (juveniles). Now we separate the dynamics of A and J , taking
into account that A and J have different death rates, dA and dJ , and assuming
that the juveniles maturate at a constant rate M . One has

dA
dt = MJ − dAA
dJ
dt = ηIδAP −MJ − dJJ
dP
dt = γ1P − γ2P

2 − δAP.
(4)

The cannibalism is assumed to have the same mechanism of prey uptake: some
amount σAJ is taken from J by A and a new amount ηCσAJ contributes to the
juvenile birth rate, where ηC denotes the coefficient in converting juveniles into new
juveniles. This choice means that a balance between killing (i.e., victim mortality)
and energy extraction (according to the terminology used by Claessen and his
coworkers; see [4]) has been included in the evolution equation of juveniles. Model
(4) with the inclusion of the cannibalism reads

dA
dt = MJ − dAA
dJ
dt = ηIδAP − (1− ηc)σAJ −MJ − dJJ
dP
dt = γ1P − γ2P

2 − δAP.

(5)

Set now the following nondimensional variables and parameters as follows:

x =
δ

dA
A; y =

Mδ

d2
A

J ; z =
γ2

dA
P ; τ = dAt;

a = ηIMδ/γ2dA; b = σ/δ; c = (M + dJ)/dA; d = γ1/dA.

System (5) becomes
dx
dτ = y − x
dy
dτ = axz − b(1− ηc)xy − cy
dz
dτ = dz − z2 − xz.

(6)

Throughout the paper, we will assume that ηc < 1. This assumption means that the
killing always prevails over the energy extraction. This does not allow the model
to represent some aspect of cannibalism which derives from a prevailing energy
gain, as for example the so-called “life-boat mechanism,” which enables a canni-
balistic population to survive periods of food shortage, whereas a non-cannibalistic
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but otherwise identical population would go extinct. A way to overcome this sim-
plification should be to consider a more complex nonlinearity through a suitable
functional response. For example, the cannibalistic term in the second equation of
system (6) might give a positive contribution to juvenile growth when the presence
of prey is scarce. However, there is no biological evidence (as far as we know) for
the possible correct form of such functional response and for the parameters to be
included therein. Hence, we here limit ourselves to consider a bilinear term as a
local approximation of a more complex (and biologically more unsure) nonlinearity.
From a mathematical point of view, this assumption avoids the existence of an
equilibrium at (x∗, y∗, 0).

4. Model analysis.

4.1. Absorbing set. We start our analysis by proving the existence of an absorb-
ing set for system (6). First, it can be easily seen that the set

{(x, y, z) : x > 0, y > 0, z ≥ 0}
is positively invariant for the solution to system (6). Further, from the third equa-
tion of system (6) it follows that a positive constant M exists such that z(t) < M
for large t. Now set

X = αx; and Y = βy + γ,

where α, β and γ are positive constants to be chosen later. On the solutions to (6)
it follows that:

1
2

d

dτ

(
X2 + Y 2

)
= α2xẋ + β (βy + γ) ẏ

≤ α2xy −X2 + Y [aβMx− bβ(1− ηc)xy − cY + cγ]
= −X2− cY 2 + cγY +α2xy + aβ2Mxy− bβ2(1− ηc)xy2 + aβMγx− bβγ(1− ηc)xy

Now let be α, β and γ such that:

α2 + aβ2M = bβγ(1− ηc).

It follows that
1
2

d

dτ

(
X2 + Y 2

) ≤ −X2 − cY 2 + cγY + aβMγx.

But given the Cauchy inequality,

cγY ≤ 1
2

(
ε1c

2γ2 +
Y 2

ε1

)
and aβMγx ≤ 1

2

(
ε2a

2M2β2γ2 +
X2

α2ε2

)
.

Hence,

1
2

d

dτ

(
X2 + Y 2

) ≤ −
[
1− 1

2α2ε2

]
X2 −

[
c− 1

2ε1

]
Y 2 +

1
2

(
ε1c

2γ2 + ε2a
2M2β2γ2

)
.

Now choose ε1 and ε2 such that

1− 1
2α2ε2

= λ1 and c− 1
2ε1

= λ2,

where λ1 and λ2 are positive constants; set

k =
1
2

(
ε1c

2γ2 + ε2a
2M2β2γ2

)
; m = min(λ1, λ2).

It follows that
d

dτ

(
X2 + Y 2

)
+ 2m

(
X2 + Y 2

) ≤ 2k.
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Hence
d

dτ

[
e2mτ

(
X2 + Y 2

)] ≤ 2ke2mτ ,

so that
X2 + Y 2 ≤ (

X2(0) + Y 2(0)
)
e−2mτ +

k

m

(
1− e−2mτ

)
,

and hence, setting u2 = X2 + Y 2 + z2, it follows that

u2 ≤ (
X2(0) + Y 2(0)

)
e−2mτ +

k

m

(
1− e−2mτ

)
+ M2, (7)

so that u remains bounded as the time tends to infinity:

lim sup
τ→+∞

|u| ≤
√

km−1 + M2.

Now let us consider the ball B(0, R0), where R0 =
√

km−1 + M2. We are in
position to prove the following:

Proposition 4.1. Every ball B(0, ρ∗), where ρ∗ > R0, is an absorbing set for
system (6).

Proof. We must show that if C is a bounded set of R3, a time instant τ∗ exists
such that every solution starting in C belongs to B(0, ρ∗), for τ > τ∗ [21].
Let B(0, R), where R > ρ∗, such that C ⊆ B(0, R), and let us impose that

u2(0) ≤ R2 ⇒ u2(t) ≤ ρ2
∗; for all τ > τ∗.

It sufficies from (7) that

u2 ≤ R2e−2mτ +
k

m

(
1− e−2mτ

)
+ M2 < ρ2

∗.

Hence (
R2 − k

m

)
e−2mτ < ρ2

∗ −R2
0.

This means that

τ > τ∗ =
1

2m
log

R2 − km−1

ρ2∗ −R2
0

⇒ u2 < ρ2
∗,

which completes the proof. ¦.

4.2. Equilibria. System (6) admits the trivial equilibria E0 ≡ (0, 0, 0) and E1 ≡
(0, 0, d). As for nontrivial equilibria, we observe that a unique equilibrium E ≡
(x∗, y∗, z∗) exists, with

x∗ =
ad− c

a + b(1− ηc)
; y∗ = x∗; z∗ = d− x∗. (8)

The inequality

0 <
ad− c

a + b(1− ηc)
< d,

that is,
ad > c, (9)

ensures that E has positive components. It may be observed from (8) that increas-
ing the cannibalistic parameter b results in an increase of the prey steady state z∗

and in a decrease of adult x∗ and juvenile y∗ predator steady states, irrespective of
parameter values. This feature accords with the analysis presented in [22] for an
age-structured model including delayed juvenile maturation.
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The Jacobian matrix corresponding to the generic E = (x, y, z) reads

M(E) =




−1 1 0
az − b(1− ηc)y −b(1− ηc)x− c ax

−z 0 d− 2z − x


 , (10)

so that E0 is clearly unstable (saddle point). Moreover, where the equilibrium E1

is concerned,

M(E1) =



−1 1 0
ad −c 0
−d 0 −d


 ,

so that the eigenvalue equation is

λ3 + (1 + c + d) λ2 + (c + d + cd− ad)λ + (cd− ad2) = 0.

By applying the Routh Hurwitz criterion, one gets eigenvalues that all have negative
real parts if

1 + c + d > 0
cd− ad2 > 0

(1 + c + d) (c + d + cd− ad)− (cd− ad2) > 0
so that the equilibrium E1 is unstable if (9) holds, and it is locally stable otherwise.
We remark that the stability property of E0 and E1 does not depend on the pa-
rameter b, which in turn depends on the cannibalism attack rate. This means that
the cannibalism per se can not lead to predator extinction.

The local stability of the coexistence equilibrium is pointed out in the following:

Proposition 4.2. There exists a unique b∗ > 0 such that E is unstable for b < b∗

and locally stable for b > b∗.

Proof. It can be easily seen that, in view of (8), the matrix (10) evaluated for the
equilibrium E becomes

M(E) =




−1 1 0
c −aϕ ax∗

−ϕ 0 −ϕ


 , (11)

where we have set

ϕ(b) =
c + bd(1− ηc)
a + b(1− ηc)

.

The eigenvalues are given by

λ3 + (1 + ϕ + aϕ)λ2 +
(
aϕ + ϕ + aϕ2 − c

)
λ + aϕ2 + ax∗ϕ− cϕ = 0. (12)

Searching for roots with negative real parts, an application of the Routh-Hurwitz
criterion leads to the following inequality:

a (a + 1) ϕ3 +
(
3a + a2 + 1

)
ϕ2 + (a + 1− ac− ad) ϕ− c > 0. (13)

When this inequality is satisfied, E is locally stable. If its reverse holds, then E is
unstable. Now denote by ψ(ϕ) the left-hand side of (13). We note that ψ(0) = −c
and ψ(+∞) = +∞, so that there exists at least a ϕ such that ψ(ϕ) = 0. Further,
consider

ψ′(ϕ) = 3a (a + 1) ϕ2 + 2
(
3a + a2 + 1

)
ϕ + (a + 1− ac− ad) ,

and set
∆ =

(
3a + a2 + 1

)2 − 3a (a + 1) (a + 1− ac− ad) .
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A straightforward inspection reveals that ∆ > 0, so that the equation ψ′(ϕ) = 0
admits two negative roots or one positive and one negative root. In the first case
ψ′(ϕ) > 0, for all ϕ > 0. Hence there exists a unique ϕ > 0 such that

ψ(ϕ) = 0; ψ(ϕ) < 0 for 0 < ϕ < ϕ and ψ(ϕ) > 0 for ϕ > ϕ. (14)

In the second case the function ψ(ϕ) has a negative minimum for some ϕm and
(14) holds for a unique ϕ > ϕm.
In view of the monotonicity of the function ϕ(b) we obtain that there exists a unique

b∗ =
aϕ− c

(1− ηc)(d− ϕ)
(15)

such that the inequality (13) holds for b > b∗ and its reverse holds for b < b∗. The
proposition is hence proved. ¦
Remark 1. To ensure the positiveness of b∗, the condition ϕ > c/a should be
imposed. On the other hand it is easy to verify that its reverse, ϕ < c/a, implies
ad < c so that in this case the equilibrium E is not in the positive orthant.

Proposition 4.2 ensures the local stability of E for b > b∗. We stress that the
global analysis might be performed with the geometrical approach based on the use
of a higher-order generalization of the Bendixson’s criterion which has applied in
[2] and [3] for a system with a structure very similar to (6). However, we leave this
investigation to later studies, and here instead we focus on the analysis of Hopf
bifurcation, which may give answers on possible oscillations when the cannibalism
attack rate is varied.

4.3. Hopf bifurcation. We state the following:

Proposition 4.3. The threshold b = b∗, where b∗ is given by (15), is a Hopf
bifurcation point.

Proof. According to the Hopf Theorem [11], at the Hopf bifurcation point the
characteristic polynomial of (11) must have a pair of purely imaginary roots, say
±iβ, and may therefore be expressed as

±(λ2 + β2)(µ + α) = 0;

that is,
λ3 + λ2α + λβ2 + β2α = 0, (16)

where −α represents the third eigenvalue. Moreover, at the Hopf bifurcation, the
two characteristic polynomials (12) and (16) are identical and therefore, equating
their coefficients, we obtain three equations for the three unknowns β, α and ϕ,

α = 1 + ϕ + aϕ, β2 = aϕ + ϕ + aϕ2 − c; and αβ2 = ϕ(ad− c),

that lead to equation

a (a + 1) ϕ3 +
(
3a + a2 + 1

)
ϕ2 + (a + 1− ac− ad) ϕ− c = 0, (17)

where the left hand side is the same as inequality (13). Equation (17) admits a
unique positive solution ϕ, as shown in the proof of proposition 4.2. The corre-
sponding value of b, i.e., b = b∗, given by (15), is therefore the Hopf bifurcation
point.¦

The value of b∗ (or, equivalently, of ϕ) may be found numerically. To give an
example of determination of the exact value of b∗, we set

a = 5; d = 2; c = 1. (18)
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Figure 1. The function b∗ = b∗(ηc), which indicates how the bifurca-
tion value b∗ varies by varying the conversion rate ηc.

These values, which will be taken throughout the numerical investigations, have
no real biological basis but are chosen simply to numerically illustrate the results
contained in propositions 4.2 and 4.3.
From (17) we get

30ϕ3 + 41ϕ2 − 9ϕ− 1 = 0,

which, through simple algebra, leads to

ϕ1 = 2 γ1 cos γ − 41
90

,

ϕ2 = −γ1 (cos γ +
√

3 sin γ)− 41
90

,

ϕ3 = −γ1 (cos γ −
√

3 sin γ)− 41
90

,

where γ = −1/3 arctan( 45
106586

√
2022855) + 1/3 π and γ1 = 1

90

√
2491.

More explicitly, ϕ1 = ϕ = 0.2622, ϕ2 = −1.5466 and ϕ3 = −0.0821. Therefore
b∗ = 0.17901(1−ηc)−1. In correspondence to the value ηc = 0.8 we get b∗ = 0.8950.
This value is in agreement with our numerical investigations, as we will show in the
next section.

5. Numerical investigations. In this section, we will show how the stability
properties of the coexistence equilibrium E change by varying the positive parame-
ter b, which we take as bifurcation parameter. We verify by numerical investigations
that for fixed values of the parameters a, c, d and ηc a critical value of the param-
eter b exists, b = b∗, such that for b > b∗ the equilibrium E is a sink (a stable
focus), whereas for b < b∗, it becomes a source (unstable focus), because a couple
of complex conjugate eigenvalues of the Jacobian matrix M(E), α±iβ, have crossed
the immaginary axis. Moreover, as a consequence of the change of stability of E, a
stable closed orbit OE appears around this unstable fixed point. Numerical inves-
tigations fully agree with Propositions 4.2 and 4.3 and further clarify the nature of
the Hopf bifurcation occurring at b = b∗, which is in fact of supercritical type.

According to (15), it is also possible to show that b∗ depends on ηc: for decreasing
values of ηc, the critical value b∗ decreases. This means that higher values of ηc
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Figure 2. Case b > b∗, b = 1. System trajectories in the 3D phase
space xyz for initial conditions near the stable focus E.
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Figure 3. b ≈ b∗. Variables versus time for initial conditions near the
unstable focus E: the closed orbit OE appears with period P = 6.5614.

allow a larger range of b, b < b∗, for which the system exhibits sustained oscillations;
see Fig.1.

Here we provide numerical investigations by assuming the theoretical values (18).
In this case, the critical value of b at which the Hopf bifurcation occurs is found to be
b = b∗ ≈ 0.8950. In the following, we describe and discuss system’s phenomenology
for values of b, which are representative of the cases b > b∗ and b < b∗, respectively.
The simulations are performed by working in a MATLAB environment [17].

Case b > b∗. Set b = 1, which is representative of the case b > b∗. The equilibria E0

and E1 are both saddle points, whereas the coexistence equilibrium E is a stable
focus. More precisely, taking initial conditions in the neighbourhood of E, system
trajectories will tend to this stable fixed point in a way described by Fig. 2. The
equilibria and the related stability properties are summarized in Table 1.
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Table 1. Equilibria, eigenvalues and local stability for b = 1.

Equilibrium Eigenvalues Local Stability
E0 ≡ (0, 0, 0) −1,−1, 2 saddle
E1 ≡ (0, 0, 2) −2,−1±√10 saddle
E ≡ (1.73, 1.73, 0.27) −2.5980,−0.0086± i0.9657 stable focus
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Figure 4. Case b < b∗, b = 0.1. Time-dependent behaviour of system
trajectories for initial conditions near the unstable focus E: the closed
orbit OE .

Case b ≈ b∗. By decreasing the value of the bifurcation parameter, and precisely at
b ≈ b∗, a supercritical Hopf bifurcation occurs: E looses its stability and a stable
closed orbit OE appears around E.
As is well known from the Hopf Theorem [11], if ±iβ denotes the complex conjugate
eigenvalues of the Jacobian matrix that cross the imaginary axis, the period of the
oscillation is given by P = 2π/β. Simulations shows that such an orbit arises with
a period P = 6.5614, which is in agreement with the Hopf Theorem; see Fig. 3.

Table 2. Equilibria, eigenvalues and local stability for b ≈ b∗.

Equilibrium Eigenvalues Local Stability
E0 ≡ (0, 0, 0) −1,−1, 2 saddle
E1 ≡ (0, 0, 2) −2,−1±√10 saddle
E ≡ (1.74, 1.74, 0.26) −2.5732,±i0.9576 non iperbolic

Case b < b∗. Set b = 0.1, which is representative of the case b < b∗. In this case
we observe that E0 and E1 keep the same stability properties of the previous case,
whereas the equilibrium E is now an unstable focus. Taking initial conditions in
the neighbourhood of this point (i.e., the same initial conditions of the previous
case), system trajectories will achieve the stable closed orbit OE ; see Figures 4 and
5. In Table 3, the equilibria for this case and the related stability properties are
summarized.
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Figure 5. Case b < b∗, b = 0.1. System trajectories for initial condi-
tions near the unstable focus E: the closed orbit OE in the 3D phase
space xyz.

Table 3. Equilibria, eigenvalues and local stability for b = 0.1.

Equilibrium Eigenvalues Local Stability
O ≡ (0, 0, 0) −1,−1, 2 saddle
E0 ≡ (0, 0, 2) −2,−1±√10 saddle
E∗ ≡ (1.79, 1.79, 0.21) −2.3799, 0.0684± i0.8825 unstable focus

Remark 2. We stress that in absence of cannibalism (i.e., for the case b = 0), the
equilibrium E∗ is an unstable focus, since the eigenvalues of the Jacobian matrix
turn out to be λ1 = −2.3547 and λ2,3 = 0.0773 ± i0.87087. Moreover, for initial
conditions in the neighbourhood of E∗, trajectories of the system again approach a
periodic closed orbit.

6. Conclusions. Cannibalism is an interesting and important mechanism in pop-
ulation dynamics, as the large literature on the subject demonstrates [4]. In partic-
ular, its role in stabilizing or destabilizing population cycles has been deeply studied
in the last years. The result is far to be unanimously accepted. The cases stressed
in [22] are very persuasive: for example, Dieckmann et al. [9] found that popula-
tion oscillations may be promoted by egg cannibalism and Hastings [13] found that
cannibalism is destabilizing in his Tribolium model, whereas Desharnais and Liu in
the same year showed in a Tribolium model that cannibalism is destabilizing [8].
Cushing first found both a stabilizing and a destabilizing effect of cannibalism in a
discrete model [6] and then, for a size-structured model including cannibalism, he
concluded that population oscillations are due mainly to age or size structure than
cannibalism [7].

Therefore, the stabilizing-destabilizing effect of cannibalism appears to be strongly
model dependent: it is not easy to draw general conclusions and a need of deeper
investigation of cannibalism in various biological systems arises.

This paper is a contribution to the systematic investigation of cannibalism in
predator-prey models. Our model is different from the ones recently proposed in
[14] and [16], where a destabilizing effect of cannibalism has been detected, because
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the variables are expressed in terms of number of individuals, and the adult-prey
and adult-juvenile interactions consist in source uptake and conversion (through
suitable yields) in new births. As a consequence, the number of adults varies
only in cause of mortality and maturation from the juvenile class. This modelling
approach avoids some shortcomings as the existence of a predator nonzero steady
state in absence of prey.

The main result is that, in contrast to [14] and [16], we arrive essentially at
the same conclusion of [15] and [22]: by using Hopf bifurcation analysis we prove
that cycles are possible and that cannibalism suppresses these cycles; i.e., when
cannibalism attack rate increases and passes a critical value, the coexistence steady
state changes from unstable to stable.

Our model, as well as the earlier ones, is mainly a theoretical model which should
be tested with specific real biological data rather than with qualitative population
behaviour; however, we wish to state that the results obtained in this paper are
not only of theoretical interest. The balance argument used in building model
(1) is the same used in the context of microbial population models (see, e.g, [19]);
therefore, the model seems particularly suitable to describe the growth of very small
organisms, for example, cannibalistic copepods. As a matter of fact, some of the
features detected in our model, such as the stabilizing role of cannibalism as well as
decrease of the predator steady state with increasing a cannibalism attack rate, are
observed phenomena in the simulation of the cyclopoid copepod Cyclops abyssorum
(see, e.g., [23]).
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