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ABSTRACT. In this paper, we develop a population balance model for cell ag-
gregation and adhesion process in a nonuniform shear flow. Some Monte Carlo
simulation results based on the model are presented for the heterotypic cell-cell
collision and adhesion to a substrate under dynamic shear forces. In particular,
we focus on leukocyte (PMN)-melanoma cell emboli formation and subsequent
tethering to the vascular endothelium (EC) as a result of cell-cell aggregation.
The simulation results are compared with the results of experimental measure-
ment. Discussions are made on how we could further improve the accuracy of
the population balance type modelling.

1. Introduction. Neutrophil and tumor cell adhesion in a nonuniform shear flow
is a problem of great interest in the study of tumor extravasation during metastasis.
There have been many computational and experimental studies of cell aggregation
in the flow environment. Detailed investigations of the aggregation and adhesion
process involving individual cells have been done for both uniform and nonuniform
shear flows in [1, 5, 6, 7, 18, 19, 24, 25, 29]. Statistical population studies have
also been done for the constant shear flow case. For example, Laurenzi and Dia-
mond (see [3]) used the Monte Carlo method to simulate platelet and neutrophil
heterotypic aggregation in a cone-plate linear-shear assay. Parallel plate flow cham-
ber experiments have shown that under different flow conditions, melanoma cells
and leukocytes (PMN) adhere to each other with different efficiencies. However,
compared with the case of constant shear rate, the study of aggregation of cells in
nonlinear shear flows poses an even greater challenge.

We have undertaken a study to explore how the interactions between PMNs and
melanoma cells are affected by the fluid dynamics in nonuniform shear flows. A
special focus is on the PMN melanoma, cell emboli formation in a nonuniform shear
flow and subsequent tethering to the vascular endothelium (EC) as a result of cell
cell aggregation. As the first step, we developed some computational tools which can
be used to conduct statistical studies of heterotypic cell cell collision and adhesion to
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a substrate under dynamic shear forces, along with in vitro experiments. The main
objective of this paper is to report our progress in the application of population
balance models and to discuss the need for further analysis and modifications.

In our in vitro experiment [20], the fluid flow in the parallel plate flow chamber
assays can be described as Poiseuille’s flow through a rectangular geometry, which
characteristically has a parabolic velocity profile, as shown in Figure 2, instead of
a linear shear rate. In the case of melanoma cells and PMNs collision/aggregation,
a vessel wall or experimental substrate is always present and therefore changes
the hydrodynamics of the system, and thus the collision probability (see Figure
1, courtesy of the Cellular Biomechanics Laboratory at PSU). We are interested
in developing a mathematical model to simulate cell aggregation in the near wall
region. At the microscopic level where the collision and adhesion of two cells takes
place, the aggregation depends mainly on two parameters, namely, the collision rate
and the adhesion efficiency. The collision rate characterizes the probability that two
given particles will collide, which may depend on the shear rate, the diffusion, the
gravity force and the particle size. Two cells adhere due to receptor ligand bonds.
The adhesion efficiency is the probability that two cells will adhere to one another
when they collide, and it reveals how this probability may be affected by numerous
factors, such as the shear rate, the particle size and the particle surface properties,
etc. Our aim is to use numerical simulations based on population balance models
as a tool to investigate the roles played by the nonuniform shear field, the collision
rate and the adhesion efficiency in the aggregation process, compared with the in
vitro experiments.
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F1GURE 1. Cell aggregation in the near wall region.

The main mathematical model used in this study is the population balance equa-
tions (PBE), or the Smoluchowski equations. The details are presented in Section
2. Numerical simulations based on the PBE provide statistical information on the
cell aggregation and adhesion process. The detailed description of the simulation
methodologies are presented in Section 3, which is the main focus of this paper.
One advantage of numerical simulations based on the population balance type of
models is that the much of our numerical results can be readily compared with the
in vitro experimental observations. This is useful for parameter calibration, model
validation and model prediction. We also derive some interesting scaling invariance
properties of the population balance equation, so that they can be utilized to better
fit the experimental conditions.

2. Population balance model. Shear induced aggregation is a phenomenon that,
in the case of platelets or PMNs, has been analytically and numerically modelled [12,
15, 16, 17, 22, 26]. Of particular interest to us is the use of statistical type models
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for predicting and simulating cell aggregations, namely, the population balance
models. In such models, the aggregation of two individual cells mainly depends on
two parameters: the collision rate and the adhesion efficiency. The collision rate
characterizes the probability of two given particles colliding, which is a function of
shear rate, particle size and convection. The adhesion efficiency is a measure of the
probability of two cells adhering as a response to the collision, which is a function
of shear rate, receptor /ligand density, and receptor/ligand avidity. The population
balance equations, as introduced by Smoluchowski [2], are also referred to as the
coagulation, or Smoluchowski, equations and have been applied to a wide range of
applications such as aerosol growth, polymerization problems, and the kinetics of
platelet aggregate formation and disaggregation.

In mathematical terms, the population balance model describes a rate of change
of the density of a particle of a particular size as a function of time:

aC(w,t) 1 [
S =5 [ A= CEC -yt .

_ /0Oo B(z,y)C(z, t)C(y, t)dy,

where C(x,t) is the concentration of the particles of size x at time ¢, and §(z,y)
is the coagulation kernel which describes the coagulation probability between two
particles with size x and y. The first term of the right hand side describes the
generation of the particle of size x by the aggregations of smaller particles. For
example, if a particle of size x — y adhere to the particle of size y, it becomes a
particle of size x. The second term describes the loss by aggregation with other
particles.

The coagulation kernel, originally derived for modeling collisions in laminar
shear, contains a constant shear rate v [2]. The basic idea is to consider a moving
particle of radius « sticking to the one of radius y in the linear shear flow. Then
we compute the number of point masses which hit the sphere of radius x + y per
unit time. The computation shows that the collision kernel has the following form:

Bla.y) = L/ 4y (2)

Such a kernel was designed to model systems that did not contain cells; thus mod-
ifications of the original coalescence kernel have been proposed in the literature to
accommodate kinetics properties of receptor ligand type binding in cellular systems.
Generally, a term referred to as the adhesion efficiency e, has been introduced, re-
sulting in a new kernel of the following form (see [12, 15, 16, 17, 22, 26]):

Blay) =L@y ), 3)

where € is the adhesion efficiency and « is the shear rate of the linear shear flow.
The adhesion efficiency term was first estimated by Belvel and Hellums [12] and
later extensively studied by Huang and Hellums [15, 16, 17]. In their model, key
intrinsic biological parameters were estimated by matching the theoretical results
with an experimental volume distribution curve of shear induced platelet aggre-
gates. The experimental data was obtained by shearing platelet suspensions in
a cone plate viscometer and analyzing the size distribution of the aggregates by
Coulter counter. In later works [22, 26, 27], similar methods were also used to
estimate adhesion efficiency by fitting experimental data to equations based on
the Smoluchowski coagulation theory. In such analysis, the estimated adhesion
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efficiency term was theoretically de-convoluted into a receptor component and a
hydrodynamic component. Yet, the existing analyses have focused on the cell col-
lision/aggregation in a linear shear flow far away from a boundary by using cone
plate viscometer assays. However, in our experiments, due to the nonlinear shear
flow condition, the aggregation kernel that they used for linear shear flow is not
appropriate anymore. The adhesion efficiency will be different under different flow
conditions. Thus, such approaches are not appropriate to model the experimental
setups that are considered here, i.e., in characterizing cell cell interactions in the
near wall region, which are more important in understanding the overall behavior of
adhesion mediated melanoma extravasation. Our task is to look for a more suitable
aggregation kernel, measure the adhesion efficency in the near wall region, etc.

Other researchers have derived alternative coalescence kernels to accommodate
different hydrodynamic conditions, for example, in turbulence and gravitational
settling. One particularly applicable form of the kernel was developed to model
particle collisions in a nonlinear shear field [11]. It was derived by considering the
collision frequency of droplets in a turbulent flow field [28] to have the following
form:

Bla,y) = c(a'/ +y"/*)7?, (4)
where the shear rate and the adhesion efficiency are not included in this equation.
However, these and some other constant parameters have been lumped into a single
term, c.

Some existing studies have suggested PMN mediated melanoma cell extravasa-
tion is influenced by cell populations in a shear flow. In order to understand how
heterotypic cell ratios affect melanoma PMN collisions and subsequent aggregation
in the near wall region (hence affecting PMN facilitated melanoma extravasation)
under flow conditions, we have begun to work with a special variation of the pop-
ulation balance (PB) model, as introduced by Smoluchowski.

By comparing the simulations to experimental results, the model can be vali-
dated. Through both ad hoc and systematic modifications to existing models, the
PB equation can accommodate changes in collision rate and adhesion efficiency due
to changes in hydrodynamic parameters. The variation of the PB model studied
here allows the simulation of the heterotypic cell cell aggregation in a nonuniform
shear field, especially the aggregation in the near wall region. This provides a poten-
tially useful method to model the PMN melanoma collision and aggregation under
a wider range of more physical conditions than those that can be reasonably tested
experimentally. A more physiologically relevant case will be when the number of
PMNs is significantly greater than melanoma cells (normal physiological levels are
2 x 10 — 7.5 x 10 PMNs per liter of human blood). We will revisit this issue later
in the discussion section.

3. Simulations of the PB model, methods and parameters.

3.1. Heterotypic aggregation near the wall. As discussed previously, most
existing experimental and mathematical applications of PB models for analyzing
cell cell collision/aggregation have been based on spatially homogeneous coagula-
tion in a linear shear flow. Other researchers have derived alternate forms of the
coagulation kernel to accommodate particle collisions in a nonlinear shear field [11],
as shown in equation (4). An earlier study published by Laurenzi and Diamond
[3] provided an example of modeling heterotypic cell cell collisions. In this model,
shear induced PMN platelet aggregation was predicted by the PB equation, which
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was solved by a Monte Carlo (MC) driven algorithm. Similar to the Laurenzi
and Diamond study, the input parameters for the melonoma PMN collision model
were chosen to be cell density, cell size, wall shear rate and approximate adhesion
efficiency. The output was the percentage of aggregate formation at a given time.

There are two main problems that need to be solved in developing our PB model
in order to match our experiments. First, due to the nonlinear shear flow, the con-
centration in the near wall region will be different from the inlet cell concentration
in the chamber. However, we can only use the inlet cell concentration as our model
initial data since it is very difficult to measure the concentration in the near wall
region in the experiments. Fortunately, we can solve this problem through scaling
invariance.

The second problem is to modify the existing coagulation kernels such that it
can describe the collision in nonlinear shear field, especially in the near wall region.
These two problems will be discussed in the following subsections.

3.2. Scaling invariance. As we indicated, we will use the cell concentration in
the inlet of the chamber as our initial concentration in our numerical simulation
algorithm, since it is very difficult to measure the concentration in the near wall
region in the experiments. It is evident that the local concentration in the near
wall region will not be the same as the inlet concentration due to the flow action;
thus, we need to scale it such that these two are consistent. Here we make a simple
assumption, that is, that the ratio of the concentration in the near wall region to
the concentration in the inlet of the chamber is a constant. Then, taking this into
account, we may normalize our initial data mathematically by using the scaling
invariance of the population equations.

The scaling invariance refers to the following mathematical properties. Let
C(z,t) be the solution corresponding to the initial concentration Cy(x) and A be
any positive parameter; then we define a new function

C(z,t) = AC(z, \t). (5)
One can easily see that C(z,0) = ACy(z). Moreover, direct calculation gives

aC (x,t)
ot

e / " B y)C e, M)Cy, M)dy

2 T
- A? /O Bz —y,y)C(x —y, A\t)C(y, At)dy

0
= %/U Bla —y,y)C(x —y,0)Cy, t)dy — /O Ba,y)C(z,t)C(y, t)dy .

This shows that C(z,t) = AC(z, Mt) is a solution of the same population balance
equation with a scaled initial condition. This is an interesting scaling invariance
property of the population balance model.

An alternative way to represent the scaling invariance without rescaling time is
to explore the normalization of the coagulation kernel. We can also verify that if
the coagulation kernel ((z,y) is multiplied by a positive constant A, denoted by

B(x,y), then the function
Clx,t) = A"1C0(x, t). (6)

gives a solution of the population balance model corresponding to the kernel ﬁ (z,9)
with a scaled initial condition A~1Cq(z).
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Of course, based on the above discussion, one can also obtain the scaling invari-
ance by rescaling both the kernel § and the time while keeping the same initial
condition.

An important conclusion based on the above observation is that we can modify
the kernel function by a constant factor in order to renormalize the total initial
concentration. It should be pointed out that the non uniform flow conditions not
only alter the total concentration of the cells near the wall, but also have different
effects on different types of cells. The simple renormalization of the coagulation ker-
nel cannot account for this further complication, which leads to an issue discussed
later.

3.3. Determining the coagulation kernel function. The coagulation kernel
presented in equation (3) takes the presence of cells into account through the intro-
duction of the adhesion efficiency e. Still, this formulation assumes a uniform shear
field and a spatially homogeneous distribution of cells considered as rigid particles.
Here we will use the kernel which has the form similar to the one given by equation
(4). But we will combine the shear rate and adhesion efficiency into this kernel.
To estimate the shear rate that melanoma cells and PMNs likely experience in a
near wall region, an average shear rate was calculated. This average shear rate was
determined to be the average shear rate from one cell radius (the closest a cell can
be to the wall without penetrating the wall) to four cell radii from the wall (two
cell diameters) (Fig. 2).

average of G —
from a - 4a Ié—4a

FIGURE 2. The average shear rate in the near wall region.

Note that nonlinear shear flow has a quadratic velocity distribution in the flow
chamber [29]:

_ 3
43w
where y is the y-axis coordinate, @ is volumetric flow rate, b is half the chamber
height and w is flow chamber width. Thus, the shear rate along the y-axis has a
linear distribution:

3Q

= b—1y).
7= g0 Y)
Then we get the average shear rate in the near wall region:

_ . 3Q

7T 2p2
where a is cell radius. Then, utilizing this local shear in the coagulation kernel, we
have:

(2by — y°),

v

(1 — 5a/2b), (7)
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B(x.y) = #(Chs : Carn, Re Ca, 8/ Decar)e 2 (a7 + 427/, (®)
where we have introduced a renormalization function ¢, which is a function of the
local melonoma and PMN concentrations, Cy; and Cppsn, local cell Reynolds R,
and Capillary numbers (deformation)C, and wall proximity, 6. The renormalization

constant will be discussed in sections 3.5.

3.4. Determining the adhesion efficiency. An important parameter used in
equation (8) is the adhesion efficiency, e. Heterotypic collision models require three
separate values. In the case of melanoma cells and PMN collisions, the relevant ¢
are epyp, epyp and epyp. The most general definition for adhesion efficiency is
the number of formed aggregates divided by the number of collisions that occur. In
the model developed here, the values for PMN PMN (P + P) homotypic adhesion
efficiency, epy p, were taken from the same published source as Laurenzi and Dia-
mond [3] (Table 3.4), and the value for ep,r was approximated to be zero based
on our own experimental observation [21].

To determine melanoma PMN (7" + P) adhesion efficiency, ep4p, aggregation
data from a parallel plate flow assay was used (see Table 3.4). Adhesion efficiency
was calculated by dividing the number of melanoma PMN aggregates formed by
the number of melanoma PMN collisions that were counted within the same field
of view. The adhesion efficiencies were determined for three cases: untreated, anti-
CDl11a and anti-CD11b. CD11a and CD11b are two different « chains, involved in
B2 integrin expressed on PMNs. CD11b/CD18 is called LFA-1 and CD11b/CD18
is called MAC-1. Table (3.4) shows the ep;p and eryp derived from experiments.

TABLE 1. Adhesion efficiency values for P+ P and T+ P collisions
for three shear rates. T+ T was approximately zero.

Shear | epip ET4+P

rate Untreated | Anti-CD11b | Anti-CD11a
62.50/s | 0.10 0.19 0.10 0.18
100.0/s | 0.10 0.11 0.07 0.15
200.0/s | 0.05 0.07 0.03 0.12

3.5. Determining the normalization factor. The normalization factor was de-
termined by first solving the population balance equation (1), assuming a spatially
homogenous 1 : 1 ratio of Cr¢ : Cpasn, using the new kernel (8), and running the
simulation without normalizing the initial population. The predicted percentage of
melanoma PMN aggregation near the substrate was then compared to the exper-
imental percentage of aggregation determined from the parallel plate assays. The
normalization factor ¢, necessary to correct the initial concentration in the near
wall region to match the experimental results, was then calculated. Its value was
derived using the untreated melanoma and PMN cases as a control data set. The
parallel plate experimental percent of aggregation was determined by the number
of melanoma cells that adhered to the substrate due to a melanoma PMN collision
divided by the flux of melanoma cells near the surface [21]. This normalization
by the flux of melanoma cells near the surface was necessary to account for the
differences in cell flux with varied shear rate [23].
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3.6. The numerical algorithm: a Monte Carlo method. Some numerical
methods have been developed to solve the population balance equation, we refer to
[14] for additional references. Here we use the Monte Carlo method introduced by
Gillespie [8, 9, 10].

Since we consider the heterotypic cell aggregation, the kinetics of multi com-
ponent aggregation process will be described by the discrete population balance
equation as follows:

OC(i,5,1) 1 om o= ot at
at :57720]72205(171’]7‘7717])0(7’77’7]7j7t)C(7’7]7t)

=Y 8G,4:1,5)CG 5O 5 ).

i'=0 j'=0

9)

Note that all the properties of the continuous PBEs we discussed previously are
all true for the discrete PBEs.

In our case, C(4, j; t) denotes the concentration of particles with ¢ melanoma cells
and j PMNs. ((i,7;%,4') is the coagulation kernel corresponding to the adhesion
event A;B; + Ay By — Ay Bji;, where A and B represent the melanoma cell
and PMN, respectively.

We will denote the composition of particle A;B; by [i, j] later on.

Gillespie’s algorithm (see [8]) reveals that the coagulation frequency (3, j; ', j')
in the population balance equation has the property that

~(4, 454, j' )6t = probability that a given pair of particles with
compositions [¢, j] and [/, j'] will aggregate
in the next time interval Jt.

The relationship between the coagulation frequency and the coagulation kernel
is established in [8]:
v, 334, 5') = B, 337, 5V, (10)
where V' is the total volume of the aggregation system.
Consider the aggregation between two particles with compositions [¢, j] and [/, j]

in an aggregation system. If the aggregation event is the unlike interaction, then
the aggregation probability in the next time interval 8t is a([¢, j]; [/, j'])dt, where

a([laj]v [i/7j/]) = 6(7'7.% Z‘/7]./)‘Xr[i,j]‘Xp[i/,j’]/vp' (11)

If the aggregation is the like interaction between the two particles of one species
[i, 7], then
B, 754, 7) X151 (X — 1)

2V ’

where X|; ;; and X ;1 are the populations of species [4, j] and [i’, j], respectively.

For the Monte Carlo stochastic approach, the key point is the transition from
one state of the aggregation system to the next one. The aggregation probability
density function, P([¢, j]; [i, 4]; ), is defined as the probability that two particles of
species [i, 7] and [i’, j'] will aggregate in the next time interval 0t after an interval
of quiescence (0,1).

Let Py = Py(t) be the density function for the imminent quiescence time t. By
definition, P([i,j];[i’,j'];t)dt is the probability density function that there is no
aggregation in the interval [0,¢], with the aggregation event only taking place in
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[t,t + 6t]. Since a([i, j]; [i,4])dt is the aggregation probability in [t,t + dt], thus we
have
P([i, j]; [i', 5] )t = Po(t)a([i, j]; i, 4])dt ,
that is,
P([i, 5} [", 5'); t) = Po(t)a([i, j]; [3, 5]) -
Also note that for a small time interval [t, ¢ + §t], the probability Py(t + dt) that
the aggregation system remains in the state will be

Po(t+6t) = Pot) | 1= > a(i.gl:[.5D)ot |
,9,1",5"
where
(1= Y alli,f) [, 4')st)
,5,1",7"
is the probability that there is no aggregation event in [t,t + &t].
Therefore we get an equation for Py(t) as follows.

d
L Py(t) = —aPy(0) (13)
t
where
a= Y i gkl (14)
i7j7i/,j/
Solving this equation, we have Py(t) = e~%'. Then we get the probability density
function, as derived already in [4, 8, 9, 10],

P(li, g [, 5')it) = alli, ) [, 5'))e ™" (15)
We may rewrite the aggregation probability density function as:
P(i, g 7', 5 t) = ae™* Po([i, j1; [, 5']) - (16)

where « is the total aggregation probability frequency defined by equation (14).
Thus we can get the probability of a particular type of aggregation in the time
interval t.
Po([i, 51 [, 5'11t) = al[d, 3]s [, 5] /ex - (17)
By the Monte Carlo method, we generate two random numbers, 71 and 7o uni-
formly in the interval [0,1], to calculate ¢, the aggregation period, and the aggre-
gation event between species u and v. Here t is generated by equation (18),

1 1
t= aln(rl ). (18)
The aggregation event between species [i,j] and [¢/,j'] is generated in the fol-
lowing way. Assume the aggregation system has m species at a certain time. Let
us label the species by the number from 1 to m. Thus for any two species [i, j]
and [i',']), they correspond to a pair of numbers, (p’,q’), respectively. Here the
aggregation event between two species, (p, q), is determined by inequality (19),

pz—i

p/:1 ’—

q—

1 P q
a(p',q') <ra <Y alp,q). (19)
1 p'=1q¢'=1

Therefore the aggregation event will be determined.
These calculations lead to the following simulation steps.
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Algorithm:

1. Given N initial species and their populations, P;, calculate their aggregation
probabilities by the aggregation kernel 3(i, j). Compute the total aggregation
probability, «

2. Generate two random numbers, r; and ry, determine the aggregation time
step, t, by equation (18), and calculate the aggregation event by (19).

3. After the aggregation takes place, update the number of species and the pop-
ulations.

4. Go back to step 1 until the aggregation stops.

The consistency of the Monte Carlo algorithm with the PBE models can be
easily established. In the population balance equation, the term (3, j;4’, j')ot/V
represents the coagulation probability between two given particles with components
of [#,j] and [¢/, j'], respectively, in the next time interval (¢,t+4t). This is consistent
with equations (11) and (12), which represent the coagulation probability between
two species. We will show that the population balance equation can be derived
from the stochastic aggregation model contained in this Monte Carlo method.

For an arbitrary given particle, we assume its composition at time ¢ is [i, j].
Thus according to equation (10), the probability that this particle will adhere to
any particle with component [¢’,j/] in the next time interval (¢,¢ 4 §t) should be
B(i, 51, 7)X (@, 5';t)0t/V, where X (i, j';t) is the population of the particles with
component [i, j'] at time ¢. The probability that it will not adhere to any particle
is thus 1— Y207 0 Y200 B, 4, /) X (&, §; )5V

Assume the density distribution function of the particle with component [i, j] at
time t is f(4,j;t), which is defined as

where v; and vy are the volume of tumor and PMN. Then it satisfies

G, jit +6t) = 1——ZZﬂwm X(i', 55 t)6t | f(i,5;1)

=035'=0
1 i J
D D Bl =5 )X ) (=i = 5t
i'=0 j'=0
Thus we have

fl,git+0t) — f(i, j; 1) Z Zﬂ (i, 5;1',5") X (@', "5 0) f (i, 53 1)

ot
=04'=0

1 : J . . N ) . . ./
D ID IV R S SR ADV (RS S EFEDR (21)

=0 j/=0

Take the limit of the left hand side when ¢ goes to 0, and we have

M__fz S B, )X 5 (L Gst)

i/=03'=0

+5 Z Zﬁ =751 )XW =75 =55t . (22)

=04'=0
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Note that for any two constants vy and vz, we change the index i — i’ =7 and
j —j' = 7; then we have

Z*'L'U‘f’]*] .
ZZ 140 =g 28— j— 5N X 350X 6= =5t

= 101 + Jug
—ZZ ORI g e )X OX G g ).
1wy + Jva
=035'=0
So we get
ZZ o+ G =502 g0 o i it VX DX G — 1 — 38)
= 101 + Jug

1 L
=3 SN BG—i G — g5 XA )X - — )

i'=0 /=0
Note that the concentration C(i,j;t) is defined as
X(i,5;t
CGijity = XD, (23)

Then, dividing equation (22) by iv; + jvs on both sides and replacing f (4, j;t)
by (iv1 + jva)C(i, j;t), we get the discrete population balance equation (9) after
simplification. This shows that our Monte Carlo method is consistent with the
population balance equation.

4. Results and discussion.

4.1. PB model validation. To validate the preliminary model developed in this
paper, with both ¢ and ¢ values derived from untreated melanoma and PMN cases,
we analyzed both the PMN melanoma aggregation results from parallel plate ex-
periments and results from the model simulations in which the PMNs were treated
with blocking antibodies. The average of the ¢ values calculated from the controlled
(untreated cell cases) experiments was used in the coagulation kernel (equation 8),
and the percentage of aggregates was recalculated for antibody blocked cases (Table
2). The results (Table 2) show that the simulations predict the percent aggregation
within the experimental range in nearly all the cases. The experimental range was
calculated as the mean minus standard deviation (SD) to the mean plus SD from
three separate experiments. In one case (Anti-CD11la with shear rate 200/s), the
range is not reported because the experimental data was the same for the three
different experiments; therefore, no standard deviation could be calculated. If we
take a range using comparable standard deviation as in the other cases, the sim-
ulation result in this case would be consistent to such a range. Thus, the overall
consistency of the simulation results with experimental data shows the feasibility
of using population balance models to simulate PMN melanoma aggregation in the
near wall region of the parallel plate chamber.

While the numerical results are encouraging, it also demonstrates that to im-
prove the accuracy of the model, a simple normalization of the initial population
is not enough. For example, for the case of Anti-CD11a with shear rate 100/s, the
simulation result is slightly out of the experimental range, in addition to the mis-
match for the case with 200/s shear rate if we do not borrow a similar range of data
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TABLE 2. Comparison of simulated tumor PMN aggregation re-
sults to experimental results that used PMNs treated with anti-
CD11a or anti-CD11b.

Treatment Shear Percentage Aggregation
Rate | Simulation | Experimental Range
62.50/s 2.26 1.50-3.79

Anti-CD11a | 100.0/s 2.51 0.50-2.40
200.0/s 2.15 1.26-1.26
62.50/s 3.78 2.17-6.83

Anti-CD11b | 100.0/s 5.26 2.76-5.70
200.0/s 8.02 6.04-9.90

from other comparable runs. One possibility is that more realistic PMN melanoma
ratios near the EC substrate are needed, in addition to taking into account the
change of total population near the substrate.

4.2. Discussions and future work. In the current population balance model, we
used the scaling invariance to introduce a normalization factor to suitably adjust the
local concentration in the near wall region since it can not be measured accurately
experimentally. However, the limitation of this technique is that we are not able
to change the ratio of PMN and tumor cell concentrations. For example, suppose
the ratio of PMN and melanoma cell concentration is 1 : 1 in the inlet; it may be
changed to totally different ratio in the near wall region.

In order to estimate the cell concentrations in the near wall region directly, care-
ful CFD simulations of cell transport within the chamber are under development
[13]. Such simulations can provide more precise quantification of the local cell
number densities. Therefore our future approach is to perform direct numerical
simulation of a statistically significant number of cells transported from a uniform
reservoir concentration. Some preliminary study provides feasibility of employing
CFD to perform a detailed parametric study across a range of melanoma and PMN
reservoir concentrations, Reynolds numbers and Capillary numbers to obtain sta-
tistically relevant local concentration predictions for integrating with PB modeling.
In our future works, such CFD simulations will be combined with the population
balance modeling to provide more accurate determination of the local cell concen-
tration. Such studies will also help our understanding of the more physiologically
relevant case where the number of PMNs is significantly greater than melanoma
cells (normal physiological levels are 2210° — 7.5210° PMNs per liter of human
blood). In particular, it would be important to develop a PB model in the case
where the ratio of PMNs to melanoma cells is high in the free stream. It is then
necessary to take into account changes in spatial ratios of PMNs and melanoma
cells populations from the free stream ratios to final surface ratios near the EC
substrate, by using computational fluid dynamics simulations.
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