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Abstract. In this paper we develop a mathematical model for the rapid pro-
duction of large quantities of therapeutic and preventive countermeasures. We
couple equations for biomass production with those for vaccine production in
shrimp that have been infected with a recombinant viral vector expressing a
foreign antigen. The model system entails both size and class-age structure.

1. Introduction. We consider a novel approach for developing a stable operational
platform for the rapid production of large quantities of therapeutic and preventive
countermeasures. The ideas developed here can also serve as the foundation for de-
signing an economical platform for the production of complex protein therapeutics
to replace mammalian cell culture production methods used in the pharmaceuti-
cal industry. This approach involves recruiting the biochemical machinery in an
existing biomass for the production of a vaccine or antibody by infection, using a
virus carrying a passenger gene for the desired countermeasure. While our moti-
vation derives from efforts related to first response to deliberate biotoxic attacks
on populations, the models we develop may also have use in designing prophylactic
production systems against epidemics originating naturally in populations which,
without intervention, might result in pandemics. While our model is specific to
virus growth and vaccine production in shrimp, the implications for other crus-
taceans are obvious. And of course the shrimp models we investigate can serve
as a foundation for understanding viral progression in other species important to
marine agriculture.

Our goal is to model a system wherein one uses shrimp as a scaffold organism to
produce biological countermeasures. In such a system one might first stock shrimp
postlarvae and allow them to grow normally in a controlled environment. Then one
infects them with a recombinant viral vector (e.g., recombinant Taura syndrome
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virus or rTSV) expressing a foreign antigen, resulting in vaccine production in live
infected shrimp.

To demonstrate the feasibility of this approach mathematically, we consider a
hybrid model of the shrimp biomass/countermeasure production system, which
has two components: biomass production and production of countermeasure (an-
tibody/vaccine). We feed the output of the biomass production model as input to
the vaccine production model. For initial investigations the amount of vaccine pro-
duced is assumed equal to the total infected biomass. Thus, the vaccine production
model will essentially follow the course of the viral dynamics in shrimp.

There is considerable literature on shrimp growth dynamics (e.g., [10, 11, 17, 24])
where mathematical descriptions of growth curves are fitted to data obtained for a
specific subspecies of shrimp and no structural information is used. However, there
is little information in the literature on modeling the dynamics of shrimp at the
population level. In [9], the authors incorporate abiotic factors such as tempera-
ture into a logistic-type growth equation to model biomass dynamics in shrimp; in
such models it is assumed that all individuals are identical in characteristics and
behavior. However, disregarding structure in constructing mathematical models
for the dynamics of shrimp is unrealistic, since shrimp have size-dependent charac-
teristics and responses to external environment. The model in this paper is based
on the classic McKendrick-von-Foerster/Sinko-Streifer size-structured population
equations [18, 21, 23] with mass as the structure variable; i.e., we equate the size
variable with the mass in our model.

There also appears to be a dearth of literature on modeling epidemics in shrimp
populations. In [20] the authors develop a nonstructured five-compartment epi-
demic model of TSV that includes a Reed-Frost transmission process in closed
populations of shrimp (Litopenaeus vannamei). However, as in the case of the
biomass model, structure can play an important role in the study of viral epidemi-
ology in shrimp. Moreover, experimental results [14] suggest that the mortality rate
in acutely infected shrimp depends on the length of time that the shrimp remain
acute. Also, individuals in the latent phase have varying residency times before they
progress into the acute phase. To incorporate all of these features, we attempted
to model the progression of TSV in shrimp in a system of delay PDEs. However,
it is difficult to correctly account for the different residency periods of individual
shrimp in this fashion as the size of the shrimp is a function of time. Instead of
tracing back in time to incorporate delays, a different approach involves recording
the variable residency times in the different stages by introducing a new variable
which we call the class age of an individual. The class age of an individual in a
given stage represents the length of time that the individual spends in that stage.
Ours is the first attempt at a mathematical model that incorporates size and class
age to study the progression of TSV infection in shrimp. A similar approach has
been used previously to investigate a linear cell population model. In such models,
cells are assumed capable of simultaneous proliferation and maturation where in
the proliferating phase, cells are committed to undergo cell division some time units
after entering this phase [1]. There are several papers that investigate structured
population models with multiple internal variables (for example, see [15, 22]).

The outline of the paper is as follows: In Section 2 we plot the growth data ob-
served in several different shrimp populations cultured in super-intensively stocked
raceways production systems at the Waddell Mariculture Center in Bluffton, SC.
We use regression analysis to fit linear, cubic and exponential growth rate models
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to this data. In Section 3 we formulate a biomass production model for the normal
growth of shrimp and present results of numerical simulations of this model, while
in Section 4 we construct a three compartment vaccine production model and an-
alyze this model using the method of characteristics. We also construct a discrete
scheme for the vaccine production model. Numerical simulations for the coupled
biomass-vaccine production model are discussed in Section 5.

Successful implementation of this shrimp-based expression system could poten-
tially provide an inexpensive alternative method to mammalian cell culture for
making complex recombinant proteins. In this context, complex recombinant pro-
teins are ones that undergo post-translational modifications such as glycosylation
that cannot easily be duplicated in bacterial and yeast protein expression systems.
The shrimp expression system could dramatically lower the costs of production of
these complex proteins.

2. Data Fitting. We have fitted linear, cubic and exponential solutions x for

individual growth rate models
dx

dt
= g(x, t) (corresponding to g constant, quadratic

and exponential) to the data for the mean weight of the shrimp measured during
a series of grow-out runs in a super-intensively stocked demonstration commercial
scale raceway production system [7] at the Waddell Mariculture Center. Growth
data is based on population sampling from a series of demonstration runs in a
new advanced greenhouse enclosed biosecure system developed for the culture of
marine shrimp Litopenaeus vannamei. The Waddell system provides for the culture
of shrimp at very high densities without water exchange. A dense microbial floc
develops in the water column providing for the recycling of waste material within
the system to maintain water quality and enhance shrimp growth. By applying
filtration, oxygen injection and well designed feeds and feeding regimes, genetically
selected specific pathogen free strains of shrimp can be cultured in this system at
high densities with good survival and excellent growth.

The various raceway runs initially had different stocking densities. The mean
weight x (in gm) of the shrimp were recorded on different days over several weeks.
The results of the regression analysis are presented below.

In raceway runs 6 and 9, the mean stocking weight is 1 gm, and linear fits give
fair approximations to the data obtained from these runs as observed in Figures 1
and 3, respectively. We can also see in these two figures that a cubic fit gives a
much better approximation to the data than the corresponding linear fits. Run 10
was stocked with shrimp that had a mean weight of 4 gm, and a linear fit seems
to be appropriate in this case, as seen in Figure 4 (left). Run 8 was stocked with
shrimp that had a mean weight of 0.01 gm. From Figure 2 we can see that a linear
fit does not do justice to the data. However, a cubic fit works well in this case. In
all these figures, the horizontal axis represents time t in days and the vertical axis
represents the mean weight x of the shrimp. Each figure also records the equation
for the corresponding linear, cubic or exponential fit, as the case may be.

We can conclude that a linear fit is a good approximation to the data in the range
1-20 gm, but a linear fit does not approximate the data in the interval 0-20 gm.
In [12], the authors have observed that growth of early postlarvae was exponential
rather than linear. However, we were unable to use an exponential function to fit
the entire data, i.e., in the range 0-20 gm. For example, Figure 4 (right) depicts
the best exponential fit to the data obtained from run 8. We can see that this fit
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does not give a good approximation to the data. Instead a cubic fit seems to yield
a good approximation, as seen in Figure 2 (right).

Using a linear fit for the mean weight x of the shrimp as a function of time t
implies that the growth function g(x, t) is a constant in the interval 1-20 gm. This is
the approximation that we have used to perform our simulations. Since a cubic fit
(for x as a function of time t) gives a far better approximation to the data, as seen
in Figures 1, 2 and 3, the growth function g(x, t) would then be a quadratic function
of time t. We have as yet not used such an approximation in our simulations, since
we have assumed a mean stocking weight of 1 gm.
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Figure 1. Linear and cubic fitting to the data of raceway run 6,
where the mean stocking weight of the shrimp is 1 gm.
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Figure 2. Linear and cubic fitting to the data of raceway run 8,
where the mean stocking weight of the shrimp is 0.01 gm.

3. Biomass Production Model. We present a classical size-structured popula-
tion model with mass as the structure variable. The factors considered here that
affect the total biomass are the growth and mortality rates of normal shrimp. Since
we have a controlled environment for growth, we may assume that the growth
and mortality rates of normal shrimp are not affected by changes in environmental
factors such as temperature or other factors such as population density.
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Figure 3. Linear and cubic fitting to the data of raceway run 9,
where the mean stocking weight of the shrimp is 1 gm.
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Figure 4. (left) Linear fitting to the data of raceway run 10,
where the mean stocking weight of the shrimp is 4 gm. (right)
Exponential fitting to the data of raceway run 8, where the mean
stocking weight of the shrimp is 0.01 gm.

Growth in shrimp consists of periods involving molting separated by intermolt
periods where no external growth occurs (see [8] for more details). This makes
shrimp growth a discontinuous process. However, over a long period we can ap-
proximate the growth as a continuous process. Hence, we assume the individual
growth rate g(x, t) to be a continuous function of mass x and time t, as depicted in
Section 2. The interval for normal growth that we consider here is too short for the
shrimp postlarve to grow to adult shrimp, and thus we do not consider reproduction
in the biomass and vaccine production models.

Based on the above discussion, our biomass production model is given by

ut + (g(x, t)u)x + m(x, t)u = 0, (x, t) ∈ (0, xmax]× (0, TB ],

u(0, t) = 0, t ∈ (0, TB ],

u(x, 0) = u0(x), x ∈ [0, xmax].

(1)
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Here u(x, t) denotes density of individuals (number/unit mass) having mass x
in gms at time t. The growth rate is denoted by g(x, t) (mass/unit time), and the
function m(x, t) denotes the mortality rate (1/unit time). The initial population
density is given by u0(x) and xmax is the maximum mass of shrimp in the time
interval from 0 to a final time TB .

Many papers consider wellposedness of solutions to models similar to (1). For
example, when the growth rate g and the mortality rate m are functions of the
size x only, wellposedness results are proved in [3] using weak formulations, and in
[4] semigroup theory is used to prove existence and uniqueness of solutions. For
systems with time-dependent coefficients, an analogous approach using the theory of
evolution operators [6, 19] offers a means for establishing the desired wellposedness
results.

3.1. Numerical Scheme. The following notation will be used throughout this
section: 4x = xmax/nx and 4t = TB/nt denote the spatial and time mesh size, re-
spectively. The mesh points are given by xj = j4x, j = 0, 1, · · · , nx and tk = k4t,
k = 0, 1, · · · , nt. We denote by uk

j , gk
j and mk

j the finite difference approximations
of u(xj , tk), g(xj , tk) and m(xj , tk), respectively. We adopt the following implicit
difference scheme to solve the model (1):

uk+1
j − uk

j

∆t
+

gk+1
j uk+1

j − gk+1
j−1uk+1

j−1

∆x
+ mk+1

j uk+1
j = 0, 1 ≤ j ≤ nx; 0 ≤ k ≤ nt − 1,

uk+1
0 = 0.

(2)
From the above scheme we note that the solution remains positive for all time.

This is important from the biological point of view.

3.2. Numerical Simulations. For numerical simulations with (2), we assume
that xmax = 10 gms, TB = 21 days, i.e., 3 weeks. The mesh size for ∆x and ∆t
are taken to be 0.02 and 0.01, respectively. The initial function u0(x) is defined as
u0(x) = 167650δ1(x). This implies that the initial population contains only shrimp
that are 1 gm in mass, and the total number of shrimp that are used to stock the
raceway are ∫ 10

0

u0(x)dx = 167, 650 shrimp

that are 1 gm in mass. Hence, the total biomass is 167,650 gm. Note that the
stocking weight of the shrimp is 1 gm. Thus, considering the data fits of Section
2, we can assume that the growth rate is a constant function, and it is chosen as
g(x, t) = 0.214. The mortality rate function is chosen as m(x, t) = 0.0014. Graphs
of typical solutions are given in Figures 5 and 6. In Figure 5 we plot the population
density u at time TB as a function of the size x. From this figure we see that at
time t = TB the weight of most shrimp is around 5.5 gm. In Figure 6 we plot the
population density u as a function of time t and size x, where a cross-section u(x, t)
for a given time t has a shape similar to u(x, TB) in Figure 5 centered at a different
value of the size x.

4. Vaccine Production Model. In the vaccine production stage, the shrimp are
infected by distributing chopped dead shrimp infected with a recombinant virus
evenly throughout the raceway. This transfected biomass is sufficiently large so
that most of the shrimp can be infected in a short period of time, such as one day.
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Figure 5. Plot of u(x, TB) as a function of the size x.

Figure 6. Plot of u(x, t) as a function of size x and time t.

There are other modes of transmission of virus in shrimp, such as cohabitation
with infected shrimp that may be shedding the virus into the surrounding medium
(waterborne infection). However, compared to the probability of shrimp becoming
infected through ingestion, these modes of transmission can be assumed (reasonably
for this investigation) to be negligible. Hence we will only assume infection by
ingestion of dead transfected biomass. It is further assumed that all the shrimp
have an equal chance of becoming infected by eating the infected biomass. The
interval considered here is 7 to 10 days. From [20] and [13] we know that during
this interval almost no shrimp progress into the chronic state. Therefore, in our
model, we consider only the following three compartment states: susceptible (S),
latently infected (L) and acutely infected (A).

In this model, we assume that shrimp will become instantly infected (i.e., progress
into latent state) as soon as they ingest some of the infected biomass. As we
have noted earlier, however, experimental observations suggest that there exists a
temporal delay between the initial latent infection and initial acute infection [14].
Moreover, it is biologically unrealistic to expect all members of the shrimp popula-
tion to progress into the acute phase at a fixed number of days after initial latent
infection. In addition, the shrimp in the acute phase have varying mortality rates
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because of the different times that they progress into the acute phase and also due
to the differences in genetic make-up of the host. As we have already noted, we
found that it is difficult to account for the class age history (i.e., the length of time
that shrimp spend in a state) of shrimp in a particular (latent or acute) state using
a system of delay PDE with only size as the structure variable. This is because it
is not obvious how to correctly represent the integral involving the delay. As an
alternative, to model variable residency times we keep track of the class age and
the size of shrimp by incorporating both size structure and class age structure into
the latent and acute states.

We assume (based on experimental findings) that there is a possibility that
shrimp can stay in the latent state and in the acute state for more than 10 days.
Thus we can assume that the class age interval for both states is the same as the
time interval TV that we consider in our model. Note that all shrimp from the
biomass production raceway are healthy; there are no latently infected or acutely
infected shrimp in the raceway at time t = 0. We also know that shrimp in the
acute state stop growing, which means that the growth rate in this state is g = 0.

Based on the above discussions, our vaccine production model is given by

St(x, t) + (gS(x)S(x, t))x + mS(x)S(x, t) = −λS(x, t),

Lt(x, t, θ) + (gL(x)L(x, t, θ))x + Lθ(x, t, θ) + mL(x)L(x, t, θ) = −γL(θ)L(x, t, θ),

At(x, t, θ) + Aθ(x, t, θ) + mA(θ)A(x, t, θ) = 0,

L(x, t, 0) = λS(x, t),

A(x, t, 0) =
∫ t

0

γL(ξ)L(x, t, ξ)dξ,

S(0, t) = 0, L(0, t, θ) = 0, A(0, t, θ) = 0,

S(x, 0) = S0(x), L(x, 0, θ) = 0, A(x, 0, θ) = 0,
(3)

where (x, t, θ) ∈ [xmin, xmax] × [0, TV ] × [0, TV ]. In the above, S(x, t) denotes the
density of individuals (number/unit mass) having mass x at time t. The function
L(x, t, θ) denotes the density of individuals (number/unit mass unit time) having
mass x at time t that have spent θ days in the latent state, whereas the function
A(x, t, θ) denotes the density of individuals (number/unit mass unit time) having
mass x at time t that have spent θ days in the acute state. The quantity gS(x)
denotes the growth rate of individuals (mass/unit time) in the susceptible state, and
gL(x) denotes the growth rate of individuals (mass/unit time) in the latent state.
The function mS(x) denotes the mortality rate of individuals (1/unit time) in the
susceptible state, and the function mL(x) denotes the mortality rate (1/unit time)
of individuals in the latent state, and mA(θ) denotes the mortality rate (1/unit
time) of the shrimp that spend θ days in the acute state. The latent to acute rate
function γL(θ) denotes the rate (1/unit time) at which the shrimp in the latent
state that have spent θ days in the latent state become acutely infected, while the
quantity λ denotes the infection rate (1/unit time) due to ingestion of chopped
infected shrimp. Finally S0(x) denotes the initial population density of susceptible
shrimp produced from the biomass production model.
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4.1. Relation to a Size-Structured Epidemic Model. In this section we show
that the vaccine production model (3) can be reduced to a size-structured three-
compartment epidemic model.

Let L(x, t) denote the density of individuals in the latent state having mass x at
time t. Noting that L(x, 0, θ) = 0, we have

L(x, t) =
∫ t

0

L(x, t, θ)dθ. (4)

Integrating the second equation of (3) from 0 to t with respect to θ, we have
∫ t

0

Lt(x, t, θ)dθ +
∫ t

0

(gL(x)L(x, t, θ))xdθ +
∫ t

0

Lθ(x, t, θ)dθ +
∫ t

0

mL(x)L(x, t, θ)dθ

= −
∫ t

0

γL(θ)L(x, t, θ)dθ.

Simplifying, we find
∫ t

0

Lt(x, t, θ)dθ + (gL(x)L(x, t))x + L(x, t, t)− L(x, t, 0) + mL(x)L(x, t)

= −
∫ t

0

γL(θ)L(x, t, θ)dθ.

Since

Lt(x, t) =
d

∫ t

0
L(x, t, θ)dθ

dt
= L(x, t, t) +

∫ t

0

Lt(x, t, θ)dθ,

and L(x, t, 0) = λS(x, t), we obtain

Lt(x, t) + (gL(x)L(x, t))x + mL(x)L(x, t) = λS(x, t)−
∫ t

0

γL(θ)L(x, t, θ)dθ. (5)

If we define the average

ΓL(x, t) =

∫ t

0
γL(θ)L(x, t, θ)dθ∫ t

0
L(x, t, θ)dθ

, (6)

then on substituting (6) in (5) we obtain the equation

Lt(x, t) + (gL(x)L(x, t))x + mL(x)L(x, t) = λS(x, t)− ΓL(x, t)L(x, t). (7)

Next we let A(x, t) denote the density of individuals in the acute state having
size x at time t. Noting that A(x, 0, θ) = 0, we have

A(x, t) =
∫ t

0

A(x, t, θ)dθ. (8)

Integrating the third equation of (3) from 0 to t with respect to θ, we have
∫ t

0

At(x, t, θ)dθ +
∫ t

0

Aθ(x, t, θ)dθ +
∫ t

0

mA(θ)A(x, t, θ)dθ = 0.

Simplifying, we have
∫ t

0

At(x, t, θ)dθ + A(x, t, t)−A(x, t, 0) +
∫ t

0

mA(θ)A(x, t, θ)dθ = 0.
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Since

At(x, t) =
d

∫ t

0
A(x, t, θ)dθ

dt
= A(x, t, t) +

∫ t

0

At(x, t, θ)dθ,

and

A(x, t, 0) =
∫ t

0

γL(θ)L(x, t, θ)dθ,

we obtain

At(x, t) +
∫ t

0

mA(θ)A(x, t, θ)dθ =
∫ t

0

γL(θ)L(x, t, θ)dθ. (9)

As in the case for the latent state, we define the average

MA(x, t) =

∫ t

0
mA(θ)A(x, t, θ)dθ∫ t

0
A(x, t, θ)dθ

. (10)

Then, on substituting (10) in (9), we obtain the equation

At(x, t) + MA(x, t)A(x, t) = ΓL(x, t)L(x, t). (11)

Thus, by summing over the class age the vaccine production model (3) reduces to

St(x, t) + (gS(x)S(x, t))x + mS(x)S(x, t) = −λS(x, t),

Lt(x, t) + (gL(x)L(x, t))x + mL(x)L(x, t) = λS(x, t)− ΓL(x, t)L(x, t),

At(x, t) + MA(x, t)A(x, t) = ΓL(x, t)L(x, t),

S(0, t) = 0, L(0, t) = 0, A(0, t) = 0,

S(x, 0) = S0(x), L(x, 0) = 0, A(x, 0) = 0,

(12)

with ΓL and MA as defined in equations (6) and (10) respectively. The model (12)
is a three-compartment size-structured model which involves only one structure
variable, namely, the mass x.

4.2. Method of Characteristics for the Vaccine Production Model. In this
section we use the method of characteristics to obtain the solution of model (3).
Consider the first equation of (3). The characteristic equations in this case are as
follows:

dt̃(s)
ds

= 1,

t̃(0) = t,

which implies t̃(s) = t + s, and

dx̃(s)
ds

= gS(x̃(s)),

x̃(0) = x,

which implies that
∫ s

0

1
gS(x̃(τ))

dx̃(τ) = s. Let y = x̃(τ), so that we have

exp

(∫ x̃(s)

x

1
gS(y)

dy

)
= exp(s),
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which implies that

exp

(∫ xmax

x̃(s)

1
gS(y)

dy −
∫ xmax

x

1
gS(y)

dy

)
= exp(−s). (13)

Let hS(r) = exp
(∫ xmax

r

1
gS(y)

dy

)
; then hS(r) is a decreasing function. Hence its

inverse function which we denote by (hS)−1 exists. By equation (13), we have that

hS(x̃(s)) = hS(x) exp(−s),

which implies that
x̃(s) = (hS)−1(hS(x) exp(−s)). (14)

We now consider the solution of S(x, t) along the characteristic curve. We then
have

dS(x̃(s), t̃(s))
ds

= − (
gS

x (x̃(s)) + mS(x̃(s)) + λ
)
S(x̃(s), t̃(s)),

S(x̃(0), t̃(0)) = S(x, t),
which implies that

S(x, t) = S(x̃(s), t̃(s)) exp
(∫ s

0

(gS
x (x̃(τ)) + mS(x̃(τ)) + λ)dτ

)
. (15)

Let y = x̃(τ) so that y = (hS)−1(hS(x) exp(−τ)). We then find that τ = ln
(

hS(x)
hS(y)

)
,

which implies that

dτ = − (hS)′(y)
hS(y)

dy. (16)

Noting that hS(y) = exp
(∫ xmax

y

1
gS(τ)

dτ

)
, we find that

(hS)′(y) = −hS(y)
gS(y)

. (17)

By equations (16) and (17), we have dτ =
1

gS(y)
dy. Thus simple calculations yield

that

exp
(∫ s

0

(gS
x (x̃(τ)) + mS(x̃(τ))dτ

)
= exp

(∫ x̃(s)

x

gS
y (y) + mS(y)

gS(y)
dy

)

=
gS(x̃(s))
gS(x)

exp

(∫ x̃(s)

x

mS(y)
gS(y)

dy

)
.

Hence, from equation (15), we obtain

S(x, t) =
gS(x̃(s))
gS(x)

S(x̃(s), t̃(s)) exp

(
−

∫ x

x̃(s)

mS(y)
gS(y)

dy

)
exp(λs).

Thus, if t ≤
∫ x

xmin

1
gS(y)

dy, we have

S(x, t) =
gS(x̃(−t))

gS(x)
S0(x̃(−t)) exp

(
−

∫ x

x̃(−t)

mS(y)
gS(y)

dy

)
exp(−λt), (18)
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and if t >

∫ x

xmin

1
gS(y)

dy, we have

S(x, t) = 0. (19)

We then consider the second equation of (3). As above we consider the charac-
teristic equations

t̃(s) = t + s, θ̃(s) = θ + s

x̃(s) = (hL)−1(hL(x) exp(−s)), where hL(r) = exp
(∫ xmax

r

1
gL(y)

dy

)
.

(20)

We now consider the solution L(x, t, θ) along the characteristic curve,

dL(x̃(s), t̃(s), θ̃(s))
ds

= −{gL
x (x̃(s)) + mL(x̃(s)) + γL(θ̃(s))}L(x̃(s), t̃(s), θ̃(s))

L(x̃(s), t̃(s), θ̃(s)) = L(x, t, θ),

which implies that

L(x, t, θ) =
gL(x̃(s))
gL(x)

L(x̃(s), t̃(s), θ̃(s)) exp

(
−

∫ x

x̃(s)

mL(y)
gL(y)

dy

)

× exp

(
−

∫ θ

θ̃(s)

γL(y)dy

)
.

Note that θ̃(s) ≤ t̃(s) for every s ∈ R, and we have that if θ ≤
∫ x

xmin

1
gL(y)

dy, then

L(x, t, θ) = λS(x̃(−θ), t− θ)
gL(x̃(−θ))

gL(x)
exp

(
−

∫ x

x̃(−θ)

mL(y)
gL(y)

dy

)

× exp

(
−

∫ θ

0

γL(y)dy

)
,

(21)

and if θ >

∫ x

xmin

1
gL(y)

dy, then we have

L(x, t, θ) = 0. (22)

Finally, we consider the third equation of (3). The characteristic equations in
this case are

t̃(s) = t + s, θ̃(s) = θ + s, x̃(s) = x. (23)

We now consider the solution A(x, t, θ) along the characteristic curve and find

dA(x̃(s), t̃(s), θ̃(s))
ds

= −mA(θ̃(s))A(x̃(s), t̃(s), θ̃(s))

A(x̃(s), t̃(s), θ̃(s)) = A(x, t, θ),

which implies that

A(x, t, θ) = A(x̃(s), t̃(s), θ̃(s)) exp

(
−

∫ θ

θ̃(s)

mA(y)dy

)
.
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Note that θ̃(s) ≤ t̃(s) for every s ∈ R, and we have that if x > xmin

A(x, t, θ) = exp

(
−

∫ θ

0

mA(y)dy

)∫ t−θ

0

γL(y)L(x, t− θ, y)dy, (24)

and if x = xmin, we have

A(x, t, θ) = 0. (25)

4.3. Numerical Scheme for the Vaccine Production Model. We partition
the x interval [xmin, xmax] with nx + 1 discrete points xj = j∆x with ∆x =
xmax − xmin

nx
and j = 0, 1, . . . , nx. We divide the t interval [0, TV ] into nt + 1 dis-

crete points tk = k∆t with ∆t = TV /nt and k = 0, 1, . . . , nt. Finally we also divide
the θ interval [0, TV ] into nθ +1 discrete points θl = l∆θ with ∆θ = TV /nθ and l =
0, 1, . . . , nθ. We denote the finite difference approximations of S(xj , tk), L(xj , tk, θl)
and A(xj , tk, θl) by Sk

j ≈ S(xj , tk), Lk,l
j ≈ L(xj , tk, θl), Ak,l

j ≈ A(xj , tk, θl), and we
let gS

j = gS(xj), gL
j = gL(xj), mS

j = mS(xj), mL
j = mL(xj), γL,l = γL(θl),

mA,l = mA(θl).
We discretize the vaccine production model (3) using an implicit scheme as

follows. For j = 1, 2, . . . nx, k = 0, 1, . . . nt, and l = 0, 1, . . . , nθ we have

(i)
Sk+1

j − Sk
j

∆t
+

gS
j Sk+1

j − gS
j−1S

k+1
j−1

∆x
+ mS

j Sk+1
j = −λSk+1

j ,

(ii)
Lk+1,l+1

j − Lk,l+1
j

∆t
+

gL
j Lk+1,l+1

j − gL
j−1L

k+1,l+1
j−1

∆x
+

Lk+1,l+1
j − Lk+1,l

j

∆θ

+ mL
j Lk+1,l+1

j = −γL,l+1Lk+1,l+1
j ,

(iii)
Ak+1,l+1

j −Ak,l+1
j

∆t
+

Ak+1,l+1
j −Ak+1,l

j

∆θ
+ mA,l+1Ak+1,l+1

j = 0,

(iv) Sk+1
0 = 0,

(v) Lk+1,l+1
0 = 0, L0,l+1

j = 0, Lk+1,0
j = λSk+1

j ,

(vi) Ak+1,l+1
0 = 0, A0,l+1

j = 0, Ak+1,0
j =

ñθ,k+1∑

l=1

γL,lLk+1,l
j ∆θ,

(26)

where ñθ,k = [tk/∆θ],with [z] being the usual greatest integer part of z.
From the above scheme, we note that the solution remains positive for all time.

This is important from the biological point of view.

Since L(x, t) =
∫ t

0

L(x, t, θ)dθ and A(x, t) =
∫ t

0

A(x, t, θ)dθ, from the solution

of (26) we have Lk
j =

ñθ,k∑

l=1

Lk,l
j ∆θ and Ak

j =
ñθ,k∑

l=1

Ak,l
j ∆θ.
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Let BS , BL and BA denote the biomass of the susceptible, latent and acute
populations, respectively. Then

BS(t) =
∫ xmax

xmin

xS(x, t)dx, BL(t) =
∫ xmax

xmin

xL(x, t)dx, and BA(t) =
∫ xmax

xmin

xA(x, t)dx.

The corresponding ratios of the biomass in each state to the total biomass are
denoted by

BRatioS(t) =
BS(t)

BS(t) + BL(t) + BA(t)
,

BRatioL(t) =
BL(t)

BS(t) + BL(t) + BA(t)
,

BRatioA(t) =
BA(t)

BS(t) + BL(t) + BA(t)
.

We also let NS , NL and NA denote the total number in the susceptible, latent
and acute populations. Then

NS(t) =
∫ xmax

xmin

S(x, t)dx, NL(t) =
∫ xmax

xmin

L(x, t)dx, and NA(t) =
∫ xmax

xmin

A(x, t)dx.

The corresponding ratios of the total number in each state to the total population
are defined as

NRatioS(t) =
NS(t)

NS(t) + NL(t) + NA(t)
,

NRatioL(t) =
NL(t)

NS(t) + NL(t) + NA(t)
,

NRatioA(t) =
NA(t)

NS(t) + NL(t) + NA(t)
.

5. Numerical Simulations for the Coupled Biomass and Vaccine Model.
We simulate the biomass production model over 3 weeks. The results of this model
are used as initial conditions to the vaccine production model. In the following
examples, we assume that xmin = 0 gm, xmax = 10 gm, TV = 7 days. The mesh
sizes for ∆x, ∆t and ∆θ are given by 0.02, 0.01 and 0.001, respectively. Some of
the parameters in model (3) are defined by λ = 1.5, gS(x) = 0.214, gL(x) = 0.107,
mS(x) = 0.0014, mL(x) = 0.0028, mA(θ) = 1.21/[1.21 + (θ − 3)2]. The forms and
corresponding parameter values we chose for growth and mortality functions are
based primarily on knowledge from the seminal work of Hasson et al. [14] and to a
lesser extent on Lotz et al. [20]. Hasson divided the disease progression into phases
or states. Hasson’s work describes the histological progression of the disease state
from uninfected (susceptible) through the latent (which Lotz terms prepatent [20])
period and on to the acute and chronic states. Each shrimp progresses through the
phases at its own rate, depending on the exact stage of the molt cycle it is in (see
[13]). The actual mortality in the production system is the sum of the individual
infections progressing through the phases over time.

The mortality function mA(θ) is plotted along with the cumulative mortality in
Figure 7. The cumulative mortality captures the effect of progression of TSV infec-
tion on the mortality rate for acutely infected shrimp. With this mortality function,
we perform four different numerical simulations, each with different choices of the
latent-to-acute rate function. We present the resulting plots of population ratios
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Figure 7. (left) The mortality function mA(θ). (right) Cumula-

tive mortality 1− exp

(
−

∫ θ

0

mA(τ)dτ

)
.

corresponding to these choices of latent-to-acute rate functions to illustrate how
this quantity affects the population ratios and hence the dynamics of the epidemic.

5.1. Example 1. In this section, the latent-to-acute rate function is taken as

γL(θ) = γL
1 (θ) =

1
1 + exp(−4(θ − 3))

.

In Figure 8 we plot γL
1 (θ) (left) and the cumulative latent-to-acute function (right),
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Figure 8. (left) γL(θ); (right) 1− exp

(
−

∫ θ

0

γL(τ)dτ

)
.

which is given to be 1− exp

(
−

∫ θ

0

γL
1 (τ)dτ

)
. In this figure we observe that after

2 days a non-negligible portion of latently infected shrimp start becoming acute.
About 2% of the shrimp stay latently infected for more than 7 days. In Figure
9 we plot the total number, NS , NL and NA of the susceptible, latent and acute
populations, respectively, in the top left hand corner. We plot the total biomass,
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BS , BL and BA in the top right hand corner. In the bottom left hand corner we
plot the NRatios for all three populations, and in the bottom right hand corner we
plot the respective BRatios. All of the quantities plotted are defined in Section 4.3.
From this figure we see that almost all susceptible shrimp become latently infected
after 2 days. The maximum number of latently infected shrimp is seen at about 2.5
days. We observe that the acute phase starts after 2 days. At day 7, about 89% of
shrimp in the raceway are acutely infected.
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Figure 9. Results for the susceptible, latent and acute popula-
tions, with γL(θ) = γL

1 (θ).

5.2. Example 2. In this section the latent-to-acute rate function is taken as

γL(θ) = γL
2 (θ) =

10
1 + exp(−4(θ − 3))

.

In Figure 10 we plot γL
2 (θ) (left) and the cumulative latent-to-acute function

(right), which in this case is given to be 1 − exp

(
−

∫ θ

0

γL
2 (τ)dτ

)
. In this fig-

ure we observe that around 2 days some portion of latently infected shrimp start
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Figure 10. (left) γL(θ); (right) 1− exp

(
−

∫ θ

0

γL(τ)dτ

)
.

becoming acute. A negligible number of shrimp stay latently infected for more
than 4 days. As done in example 1, in Figure 11 we plot the total number, total
biomass, NRatios and BRatios of the susceptible, latent and acute populations. We
observe that almost all susceptible shrimp become latently infected after 2 days.
The maximum number of latently infected shrimp occurs at about 2 days. We
observe that the acute phase starts around 2 days. At day 7, about 99% of shrimp
in the raceway are acutely infected.

5.3. Example 3. In this section the latent-to-acute rate function is taken as

γL(θ) = γL
3 (θ) =

1
1 + exp(−5(θ − 4))

.

In Figure 12 we plot γL
3 (θ) (left) and the cumulative latent-to-acute rate function

(right) given as 1− exp

(
−

∫ θ

0

γL
3 (τ)dτ

)
. We observe that after 3 days, some por-

tion of latently infected shrimp start becoming acute. About 5% of the shrimp stay
latently infected for more than 7 days. In Figure 13 we plot the total number, total
biomass, NRatios and BRatios for the susceptible, latent and acute populations.
We see that almost all susceptible shrimp become latently infected after 2 days.
The maximum number of latently infected shrimp occurs at about 3.5 days. We
observe that the acute phase starts after 3 days. At day 7, about 82% of shrimp in
the raceway are acutely infected.

5.4. Example 4. In this section the latent-to-acute rate function is taken as

γL(θ) = γL
4 (θ) =

10
1 + exp(−5(θ − 4))

.

In Figure 14 we plot γL
4 (θ) (left) and the cumulative latent-to-acute function

(right), given to be 1 − exp

(
−

∫ θ

0

γL
4 (τ)dτ

)
. In this figure we observe that after

about 3 days some portion of latently infected shrimp starts becoming acute. A
negligible number of shrimp stay latently infected for more than 5 days. In Figure
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Figure 11. Results for the susceptible, latent and acute popula-
tions, with γL(θ) = γL

2 (θ).

15 we plot the total number, total biomass, NRatios and BRatios for the suscep-
tible, latent and acute populations, as in the previous examples. Here we see that
almost all susceptible shrimp become latently infected after 2 days. The maximum
number of latently infected shrimp occurs at about 3 days. We observe that the
acute phase starts around 3 days. At day 7, about 98% of shrimp in the raceway
are acutely infected.

5.5. Example Summary. In this section we compare the results presented in ex-
amples 1, 2, 3 and 4 to determine the effect that the latent-to-acute rate function,
γL(θ), has on the dynamics of the epidemic. In Figure 16, we plot the four differ-
ent cumulative latent-to-acute functions that were used in the different examples
presented earlier. In Figures 17 and 18, we plot the total number, total biomass,
NRatios and BRatios for the simulations performed with γL

1 , γL
2 , γL

3 and γL
4 for the

latent population and acute population, respectively.
In Figure 17 we note that the time of occurence of the peak of each curve

corresponding to total number or total biomass, and the maximum amplitude of
each curve are determined by the shape of the corresponding function γL. In
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Figure 12. (left) γL(θ); (right) 1− exp

(
−

∫ θ

0

γL(τ)dτ

)
.

particular, the determining factors are the time when a non-negligible number of
latently infected shrimp start becoming acute, and the rate at which the latent
population becomes acute, as seen in Figure 16.

In Figure 18 we note that the time of occurence of the peak of each curve
corresponding to total number or total biomass is determined by the time when a
non-negligible number of latently infected shrimp start becoming acute and the rate
at which the latent population becomes acute (see Figure 16). The rate at which
the population becomes acute and the mortality rate (see Figure 7) also determine
the maximum amplitude of each curve. For the acute population the mortality
rate, mA, depends on how long the shrimp stay in the acute phase and thus plays
an important role in the dynamics of this population.

In conclusion, the latent-to-acute rate function γL plays a very important role in
determining the particular shape of the curves corresponding to the total number,
total biomass, and NRatio and BRatio, i.e., the progression of the viral epidemic.

6. Conclusions and Future Work. In this paper we have reported on our initial
efforts to develop quantitative models along with numerical techniques for simula-
tion of a coupled biomass/vaccine production system. While the overall approach
is valid for general viruses in crustaceans, we focus here on Taura syndrome virus
in controlled shrimp populations. After developing the models with detailed and
explicitly stated assumptions, we demonstrate their utility in understanding pos-
sible outcomes in terms of biomass ratios for several latent-to-acute rate functions
γL. Our numerical simulations in Section 5 indicate that the distribution of the
infected population in the latent and acute stages is very sensitive to the shape
and magnitude of the function γL. Hence γL plays an important role in the con-
struction and operation of a production system such as the raceways mentioned in
our introduction. One should also understand sensitivity of the model with respect
to other functions such as the mortality rate mA since understanding these will
assist in determining the optimal harvest time of infected shrimp in order to obtain
maximal production of vaccine/antibody. Once these parameters are known, one
can use control theoretic methods to design efficient production systems. We note
that, in general, parameters such as γL and mA will be species dependent as well
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Figure 13. Results for the susceptible, latent and acute popula-
tions with γL(θ) = γL

3 (θ).

as virus specific. A more formal mathematical sensitivity analysis methodology
for the models we have investigated can be developed using ideas from [2, 5] in a
Prohorov metric framework.

To estimate these critical parameters, we will need to develop an inverse prob-
lem methodology, which will also help in ascertaining feasibility and the practical
implications of various operating conditions in the production system. We will also
need data obtained on a small scale from a population of shrimp infected with a
specific virus so that an inverse problem can be performed to estimate γL, mA

and other important parameters of the production system. We can then use the
estimated parameters to carry out forward simulations using the coupled biomass
and vaccine production model developed in this paper to determine efficient ways
to operate the raceway.

There are other parameters in our coupled biomass and vaccine production model
that also significantly affect the outcome of the production system. In this paper
we have fixed the growth rates and the mortality rates in the biomass model as
well as in all three compartments in our vaccine model. This was done on the
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assumption that the shrimp populations grow and are infected in a controlled en-
vironment. Indeed parameters such as nutrient levels, temperature and the density
of the population, which can significantly affect the growth and mortality rates,
can all be controlled to some degree. To ascertain how these quantities affect the
dynamics of the production system, it will be necessary to obtain data for mortality
in shrimp affected by a particular virus as well as growth and mortality of normal
shrimp in controlled environments. The infection rate λ may also be controlled in
the production system since one can introduce chopped infected biomass into the
raceway to allow all the shrimp to become infected in a certain number of days.
In this paper we fixed the infection rate λ to be a constant, and it is thus only
determined by a factor of ingestion. This was done on the assumption that all the
shrimp have an equal chance to become infected and all other modes of transmis-
sion of virus are negligible compared to infection by ingestion. To determine the
optimal amount of chopped infected biomass required to infect the entire shrimp
population in a certain period of time, we can use inverse problem techniques along
with data obtained from experiments.

In the section on data fitting, we have shown that data for normal growth of
shrimp obtained from the Waddell Mariculture center could be fairly approximated
with linear functions in the range 1-20 gm. As mentioned in Section 2, exponential
growth of early postlarvae has been observed by authors in [12]. Thus, it may
be that production of vaccine could be significantly higher from a given biomass
of postlarvae versus the same biomass of juvenile or adult shrimp. Hence, an
important task involves developing a second separate model for the nursery phase
of shrimp growth from zero to one gram to explore use of very small animals as
production systems for vaccine or protein. This could be compared to the existing
model. We would have to know the differences in dynamics of infection of small
shrimp versus juveniles and possible differences in viral load per gram of body
mass as shrimp become larger. This would be an interesting application of the
models for comparison, assuming we can answer some of the basic questions with
a reporter gene or endogenous viral protein in bioassay studies. Clearly, one would
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Figure 17. Results for the latent population L.

need additional data in order to investigate the importance of exponential growth
in our model.

Our model and associated computational methodology are sufficiently general to
permit future investigation of both underlying crustacean growth/death hypotheses
and marine raceway operating conditions as well as characteristics of viral progres-
sion in specific species, all of which are important to the marine aquaculture indus-
try. For the study of viral epidemiology of marine species, the calculation of the
basic reproduction ratio, usually denoted by R0 in the literature [20], is important
to determine whether the viral disease persists or dies out. Our interest in this
paper is vaccine production, and calculation of R0 is not important in this context.
Computation of R0 could in principle, of course, be done for models such as ours
(e.g., see [16]), but we do not pursue that here.

Investigation of commercial aspects of the overall countermeasure production
system can also be pursued using this class of models with theoretic control meth-
ods.
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Figure 18. Results for the acute population A.
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