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Abstract. Numerical analysis and computational simulation of partial dif-
ferential equation models in mathematical biology are now an integral part
of the research in this field. Increasingly we are seeing the development of
partial differential equation models in more than one space dimension, and it
is therefore necessary to generate a clear and effective visualisation platform
between the mathematicians and biologists to communicate the results. The
mathematical extension of models to three spatial dimensions from one or two
is often a trivial task, whereas the visualisation of the results is more com-
plicated. The scope of this paper is to apply the established marching cubes
volume rendering technique to the study of solid tumour growth and invasion,
and present an adaptation of the algorithm to speed up the surface rendering
from numerical simulation data. As a specific example, in this paper we ex-
amine the computational solutions arising from numerical simulation results
of a mathematical model of malignant solid tumour growth and invasion in an
irregular heterogeneous three-dimensional domain, i.e., the female breast. Due
to the different variables that interact with each other, more than one data set
may have to be displayed simultaneously, which can be realized through trans-
parency blending. The usefulness of the proposed method for visualisation in
a more general context will also be discussed.

1. Introduction. Mathematical modelling of spatio-temporal biological problems
often results in the generation of coupled multidimensional data sets. Solutions
of one-dimensional models of the form u(x) can simply be visualised using a two-
dimensional ux-plot (i.e., a graph of u against x). Two-dimensional functions of
the form u(x, y) can be represented using either a three-dimensional uxy-plot or
a coloured two-dimensional image, in which different colours represent different
function values (Figure 1). The mapping of a function which is the solution to
a partial differential equation in three spatial dimensions u(x, y, z) is difficult, as
a “fourth dimension” has to be introduced for the function values at each point
in time, and to imagine and visualise structures in four and higher dimensions is
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Figure 1. Different visualisation options for a two-dimensional
function u(x, y). The function values can either be plotted against
a third axis (left) or be represented by a colour map (right). The
figures are adapted from MATLAB.

nontrivial. One way to visualise the structure of those four-dimensional data sets at
different points in time is to present two-dimensional slices through the volume at
discrete spatial intervals. Figure 2 shows an example of 2D slices through a volume
data set in MATLAB. This technique has the major disadvantage that if the data
set is highly spatially heterogeneous, interesting structures might be lost between
these discrete slices or hidden by other slices.

Figure 2. Visualisation of 3D data with MATLAB using 2D slices
through the volume. Because parts of each slide are covered by
other slides, information in spatially heterogeneous data sets may
be hidden (adapted from MATLAB).
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The visualisation of the interaction of coupled equations with each other is even
more difficult but often necessary, especially in mathematical biology. The exten-
sion of mathematical models to a third spatial dimension is important, to provide
an ideal platform on which both biologists and mathematicians can communicate
with each other. For cancer modelling, in particular, three- and four-dimensional
visualisation can be useful for surgeons to localize the estimated tumour position
within the domain for surgery and treatment planning.

In this paper we discuss the marching cubes visualisation algorithm combined
with transparency blending, and present an adaptation and its usefulness in dis-
playing coupled four-dimensional data sets generated from a mathematical model in
three spatial dimensions. The mathematical model discussed here is an established
model that describes solid tumour growth and invasion into surrounding healthy
tissue, but until now it has only been solved in one and two spatial dimensions,
as the visualisation of three-dimensional solutions remained challenging. Here we
present first simulation results in three spatial dimensions and then change the com-
putational domain to represent the female breast. Despite this specific example it
should be emphasised that this non-commercial technique is easy to implement and
adapt and therefore useful for displaying any four-dimensional data set produced
from the numerical/analytical solutions of PDE models in three spatial dimensions.

2. The marching cubes visualisation technique. When solving spatial mod-
els numerically using finite difference schemes, we subdivide space into equal line
segments (1D), squares on a lattice (2D), and cubes (3D). In three-dimensional
space, to generate such equal cubes (referred to as voxels), we use orthogonal sets
of parallel planes that have equal spacing between them [4]. The resulting vertices
Px,y,z at the intersections of the planes are assigned different values as determined
by the model solution at position (x, y, z). Thus the solution of a model in three
space dimensions results in four-dimensional data sets.

Most three-dimensional volume rendering and surface construction algorithms
have their origin in medical imaging [10] to find structures with specific properties
within the datasets. These properties are usually grey values in computer tomog-
raphy or magnetic resonance images.

In most mathematical models the information we want to visualise is either den-
sity values for different variables or Boolean information, i.e., whether an object is
present at a certain point in space. From this information we have to construct a
surface which shows us the exact location and structure of the objects of interest.
Similar objects are classified by similar grey values in medical images or similar
density values resulting from our mathematical model. To obtain a graphical rep-
resentation of objects of the same class, so-called isosurfaces are computed [7].
Isosurfaces in medical images are defined by the same grey value, and respectively
in mathematical models areas defined by the same density value v: f(x, y, z) = v
may form a continuous object.

The marching cubes algorithm [10] uses a divide-and-conquer approach to locate
surfaces in a data set. The divide-and-conquer design paradigm is well established
in computing. Large problems are divided into subproblems that are conquered by
solving them recursively. The solutions of all subproblems are combined to obtain
the solution for the original problem. As the numerical grid is subdivided in
cubes, the same subdivision can be used to find surface structures. Instead of ana-
lyzing the entire data set at once, we analyse each cube independently. All surface
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patches that are found in this way are combined to obtain the overall surface. Each
cube has 12 edges that connect 8 vertices which hold information on the calcu-
lated equations. If vertices on one edge have a value inside and a value outside
the structure, i.e., below or above the isovalue threshold, we know that the surface
intersects this edge. The intersection of the surface with the edge is interpolated
using the data values at both vertices. The interpolation is important to obtain a
smooth surface approximation with only a little error, especially when there is a
big difference between the values on both vertices of the edge, as shown in Figure
3. From the intersections of the isosurface with the cube’s edges we can than ap-
proximate the surface that intersects the cube. With eight vertices in a cube and
two possible stages for each vertex, there are 256 different cases of how the surface
intersects the cube. Rotation and inverting vertex values (the two possible stages
for each vertex) reduce all possibilities to 15 basic ways of intersection. These basic
cases as well as the triangulation of the obtained surface patch is shown are Figure 4.

Figure 3. Interpolation of the intersection of an isosurface of
value 0.2 with an edge of a cube. One of the cube’s vertices has the
value 0.1 below the threshold value of 0.2, and the other one has a
value of 0.9 above the threshold (left panel). Instead of assuming
the intersection of the isovlaue 0.2 to be in the centre of the edge
(centre panel), linear interpolation improves the approximation of
the point of intersection (right panel).

The marching cubes algorithm comprises the following steps:
• define threshold for isosurface
• consider each voxel
• reduce problem to one of the basic cases
• approximate intersection with edge
• draw triangular surface patches.

To visualise surfaces in a data set with different structures we have to know the
value ranges of the structure that we want to visualise. For example, to cite a
problem arising in clinical practice, to display and visualise bones in a computer
tomography data set, we have to know the range of grey values that represent
bones in this imaging technique. This information is used as the threshold to filter
relevant information. The mathematical model that we will consider emphasises
that there are different densities of tumour cells within the solid tumour as well as
in the tissue. The density value may also be interpreted as the probability there
are cancer cells at a certain point in space. It is very unlikely that surgeons find all
cancerous cells in the tissue, given that single tumour cells are not detectable. The
computational results from the model can therefore help to predict how far into
the tissue the tumour has invaded and where to make the necessary surgical cuts.
The display of density variations within the tumour is also useful for researchers
to analyze the internal structure and changes due to a heterogeneous environment
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Figure 4. Fifteen basic cases for the surface intersecting a cube
and display of the triangular surface parts. In the simplest case
the cube is either completely outside the object or completely in-
side, and thus the surface does not intersect the cube (case 1).
The other fourteen cases (cases 2− 15) describe the possibilities of
intersection. Adapted from [10].

and proliferation. Different density levels are therefore used as thresholds for the
isosurface calculation.

3. Transparency blending. To study the internal structure of different objects
and to visualise the interaction of structures with each other, different isosurfaces
or different data sets have to displayed at the same time. This is only possible in
three spatial dimensions with an implementation of transparency blending. Each
structure has a degree of opacity which enables the observation of objects hidden
by other structures. Figure 5 shows the importance of transparency blending to
observe different densities and structures in the interior of a displayed object. The
cubes in the left and right panel look similar from outside, but through transparency
blending we can visualise not only the outer surface, but also structures that are
hidden inside the object. While the left cube is homogeneous, the right cube features
density variations inside. With the opportunity to look inside different objects, we
can again use a colour map to describe different density or concentration values
inside the structures that are shown.

4. Marching cubes adaptation to reduce calculation time. The marching
cubes algorithm is a powerful technique to visualise three-dimensional spatial data
sets. However, there are various adaptations that focus on speeding up the com-
putation time [3, 5, 8]. In this paper we present a straightforward extension of
the marching cubes algorithm to speed up the calculation and visualisation time
of mathematical models, as the computation time is especially important for the
interaction with large data sets. For the visualisation of isosurfaces, we assume
that only subregions of the data set have to be rendered. Hence, the extraction of
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Figure 5. Visualisation of an object in three spatial dimensions.
Through transparency blending we can observe not only the outer
surface of one isocontour (left) but also the interior of a body
(right). The visualisation of only the outer surface of the cube hides
internal structures, whereas with the introduction of transparency
we can observe difference isocontours inside the cube. Different
pink colours represent different isovalues, with less intense pink
meaning lower isovalues than intense pink isocontours.

an isocontour does not require searching all the voxels if we pre-analyse the data
and store it in an efficient data structure [3]. We introduce a “search list” in which
we store all cubes that contain relevant information on certain structures with all
other cubes being neglected. To ensure fast access to voxels with the same isovalue,
we sort the list with respect to the minimum vertex value. With established search
algorithms we can ensure efficient access to voxels containing relevant information
which need to be displayed.

Figure 6 shows a scene in which only a small spherical object is located in the
center of the domain. In this case we consider a 25 × 25 × 25 domain (number of
voxels n, n = 253 = 15625), with the object intersecting only nine voxels. The
object is assumed to be heterogeneous with a gradual density fall-off towards the
boundary (right). When reading the data set, every voxel has to be touched once.

With the standard marching cubes algorithm, the calculation of 10 different
isocontours as seen in Figure 6 (right) would then cost another 10×n voxel consid-
erations. In contrast with the adaptive marching cubes, if we store the 9 voxels in a
separate list, we reduce the costs to 10× 9 considerations, and therefore reduce the
number of considerations by 99.94%. If the object has a heterogeneous structure,
not all cubes in the “search list” have to be considered for each isovalue. If we sort
the cubes in the list with respect to their minimum vertex value, we can then using
search algorithms to faster find the cubes of interest for each isosurface.

5. Mathematical model of cancer growth and invasion. In this section we
apply the adaptive marching cubes rendering technique with transparency blending
to computational results of mathematical models for cancer growth and invasion.
The specific model we consider in this paper is a development of the invasion model
by Anderson et al. [1, 2] and Enderling et al. [6]. Consisting of a system of three
coupled PDEs, it describes the invasion of host tissues extra-cellular matrix (ECM)
by a solid tumour. Cancer cells are known to secrete matrix-degrading enzymes
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Figure 6. The visualisation of a small object emphasizes the ben-
efit of an adaptive algorithm. Instead of going through the whole
domain every time to look for certain isocontours (right), only a
restricted search area would speed up the visualisation greatly. Dif-
ferent isocontours are shown by different colours with bright pink
representing a high isovalue and a darker pink a lower isovalue.

(MDE) which destroy the tissue upon contact to make space for the tumour to grow
into. The three equations model the interactions between tumour cells (n), host
tissue (f) and matrix-degrading enzymes (m) produced by the tumour cells. We
recently extended the original model by a proliferation term to model breast cancer
specific tumour dynamics [6]. Previous analysis of the models has only been done
in one and two spatial dimensions as the 3D interpretation of the results remained
challenging. In this paper we present the extension to a third spatial dimension
and an irregular domain to model the female breast shape.

Tumour cell migration is assumed to consist of two components: unbiased migra-
tion through random motility and biased migration through haptotaxis. Haptotaxis
is migration up a fixed or bound gradient of ECM molecules, such as fibronectin. In
our model, we include a term to simulate the effect of proliferation of tumour cells.
For simplicity we neglect cell death and consider proliferation to be modulated only
by available space. To create space, cancerous cells are known to produce matrix-
degradative enzymes that diffuse into the surrounding ECM and degrade it upon
contact [11]. Hence the system of equations in non-dimensionalised form is

∂n

∂t
=

proliferation︷ ︸︸ ︷
λn(1− f − n) +

random motility︷ ︸︸ ︷
dn∇2n −

haptotaxis︷ ︸︸ ︷
γ∇ · (n∇f)

∂f

∂t
= −

degradation︷ ︸︸ ︷
η mf (1)

∂m

∂t
=

diffusion︷ ︸︸ ︷
dm∇2m +

production︷ ︸︸ ︷
αn(1−m) −

decay︷︸︸︷
βm ,

where dn, dm are diffusion coefficients of the cells and MDEs, respectively, and
λ, γ, η, α, β are positive constants. The estimation of these parameters is dis-
cussed in detail in [1] and [6].
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The proposed model (1) is now solved in three spatial dimensions. Initially a
spherical tumour is placed in the center of the domain. For the visualisation of
the domain boundaries, we use a box. (All simulation videos are available online:
http://www.maths.dundee.ac.uk/%7Eheikman/visualisation) Figure 7 shows the
growth of a three-dimensional tumour in homogeneous and in heterogeneous tissue
(top and bottom row, respectively). To emphasize the effect of haptotaxis, the
ECM is modelled as a heterogeneous tissue. The heterogeneity is obtained by a
combination of sine functions with frequency variations in x, y and z directions.
Figure 8 shows the initial setup of the spherical tumour in the center of the domain
as well as different densities in the surrounding tissue. More intense blue means
areas of high tissue density, whereas less intense blue represents areas in the tissue
of lower density.

homogeneous tissue

heterogeneous tissue

Figure 7. Solid tumour growth and invasion into a homogeneous
(top) and a heterogeneous (bottom) tissue. The tumour (n in
model (1)) grows smoothly and uniformly in homogeneous tissue
(f in (1)), but with spatial variations in ECM density, the tumour
shapes) becomes irregular. In these simulation results only the
outer tumour surface is visualised; i.e., tumour density threshold
n is n > 0.

We used the aforementioned rendering and transparency blending techniques to
visualise the tissue and tumour data sets at the same time. This is important
when we want to study the interaction between different variables in mathematical
models. Due to haptotaxis, as time evolves the tumour cells migrate directed
towards areas with high tissue density (Figure 8).

The effects of proliferation upon the internal structure of the tumour is perhaps
one of the more interesting questions we can examine with our model. With the
aid of transparency blending, we can observe the density variations within the tu-
mour. Figure 9 shows the results of the tumour evolution both with and without
proliferation. The observable shape of the tumour is in both cases similar. The size
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Figure 8. Solid tumour growth and invasion into a heterogeneous
tissue. As time evolves (left to right, top to bottom), the initially
spherical tumour (red, n in (1)) evolves to a heterogeneous shape
due to haptotaxis towards areas of high tissue density (intense blue,
f in (1)).

of the tumour when proliferation is included is slightly larger. However, differences
become clearer when examining the different isosurfaces. Without proliferation, the
highest tumour cell densities are found close to the boundaries of the tumour close
to the tissue. The location of the tissue is shown in Figure 8. In the current model,
proliferation is modulated by available space. When the ECM is degraded, there
is more space for tumour cells to proliferate. Thus the internal structure of the
tumour changes rapidly. High densities of tumour cells are found not only nearby
the tumour boundary but inside as well.

6. Irregularly shaped domains. The behaviour of the solution of mathematical
models and biological structures in different shaped domains is an important topic
of research. Natural domains are unlikely to be cubic, so we applied our tumour
growth model to breast cancer. The shape of the breast dictates that modelling
should be undertaken using an irregularly shaped domain. In particular we examine
how tumour invasion is modulated by the domain shape especially near the domain
boundaries.

The breast shape was modelled using a modified Gaussian distribution function
in three dimensions. The heterogeneous ECM density is modelled using sine func-
tions with frequency variations in x, y and z directions. The tumour is placed close
to the upper outer boundary where most early breast cancer tumours are located
[9].

With aid of transparency blending, we can observe the interaction of the tumour
with the surrounding tissue as well as the impact of the domain boundaries. Figure
10 shows the initial location of the tumour and its development. The heterogeneity
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shading transparency high density / shaded
without proliferation

with proliferation

Figure 9. Three-dimensional tumour (n in (1)) growing in het-
erogeneous tissue (f in (1)), both without proliferation (first row)
and with proliferation (second row) included in the model. In both
simulations the outer surface is similar, but the visualisation of iso-
surfaces with transparency blending shows huge variations in the
internal structure. Shaded isosurfaces enable the exact study of ar-
eas of equal density. In the right column, tumour densities above
a 0.8 threshold are visualised.

of the ECM results in asymmetric growth of the tumour with areas of high den-
sity near areas of high tissue density. Figure 11 shows different time steps of the
simulation and different view points to observe the scene. The exact location of
the tumour is important for both before surgery and after surgery during therapy
planning.

7. Discussion. The visualisation of the solution of system of couples PDEs in
three spatial dimensions is a challenging task for mathematical modelling. The
scope of this paper was to apply the established marching cubes volume render-
ing technique combined with transparency blending in OpenGL to mathematical
models of solid tumour growth and invasion. We have introduced a third spatial
dimension into a previously discussed mathematical model and changed the com-
putational domain to model a breast-like shape. In this model, tissue heterogeneity
and domain shape have a big influence on the growing tumour, especially on its
geometry. Numerical analysis and computational simulation of equations describ-
ing tumour invasion in three space dimensions can be carried out using well-known
numerical techniques, whereas the presentation of the results, especially the visual-
isation, offers considerable scope for creativity. We have presented an extension to
the marching cubes technique to decrease the algorithm computing time for large
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shading

transparency

t = 0 t = 2.5 t = 5

Figure 10. Tumour growth in a heterogeneous, irregularly shaped
domain. The tumour shown in red in the top row is initially located
close to the nearby domain surface, which is shown in dark yellow.
Different tissue densities are shown in less intense blue, which de-
notes lower density, and intense blue, which denotes higher density,
respectively. Different tumour densities are shown in the bottom
row. High densities are represented by an intense pink colour and
lower densities in a less intense pink, respectively.

Figure 11. Different time steps visualised from different view-
points to enable an exact location of the tumour in the domain.
The tumour is again shown in red, ECM densities with different
blue colours, and the domain boundaries in yellow.

coupled data sets as produced by mathematical models. The resulting algorithm
implemented in Java and OpenGL is a useful and flexible method of visualisa-
tion which will work just as well on a PC as it does on a Mac or other Unix/Linux
based systems. The shaded outer surface of the tumour can be visualised within the
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domain and offers the possibility of finding its exact location in the domain. The in-
troduction of transparency blending also allows an observation of density variations
within both the tissue and the tumour simultaneously. The proposed method
of simulating and visualising three-dimensional mathematical models of biological
problems may create an ideal communication platform in the dialogue between sur-
geons and mathematicians. An exact study of different objects is possible given
by various options in interacting with the output. Masking of different structures,
zooming options and transparency blending are the major features amongst stan-
dard options like rotation. In addition, the proposed technique can be used for the
visualisation of any four-dimensional data set, including the numerical solution of
three-dimensional mathematical models.
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