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Abstract. The control of severe acute respiratory syndrome (SARS), a fatal
contagious viral disease that spread to over 32 countries in 2003, was based
on quarantine of latently infected individuals and isolation of individuals with
clinical symptoms of SARS. Owing to the recent ongoing clinical trials of some
candidate anti-SARS vaccines, this study aims to assess, via mathematical
modelling, the potential impact of a SARS vaccine, assumed to be imper-
fect, in curtailing future outbreaks. A relatively simple deterministic model
is designed for this purpose. It is shown, using Lyapunov function theory
and the theory of compound matrices, that the dynamics of the model are
determined by a certain threshold quantity known as the control reproduction
number (Rv). If Rv ≤ 1, the disease will be eliminated from the community;
whereas an epidemic occurs if Rv > 1. This study further shows that an
imperfect SARS vaccine with infection-blocking efficacy is always beneficial
in reducing disease spread within the community, although its overall impact
increases with increasing efficacy and coverage. In particular, it is shown that
the fraction of individuals vaccinated at steady-state and vaccine efficacy play
equal roles in reducing disease burden, and the vaccine must have efficacy of at
least 75% to lead to effective control of SARS (assuming R0 = 4). Numerical
simulations are used to explore the severity of outbreaks when Rv > 1.

1. Introduction. The World Health Organization (WHO) reported the emergence
of a new respiratory disease known as severe acute respiratory syndrome (SARS)
in March 2003. The disease, caused by a coronavirus [14, 33, 43], spread rapidly
across Asia, Europe and North America, with the highest prevalence in Asia. SARS
resulted in about 900 deaths and 8,000 infections globally [30].

SARS was predominantly transmitted from person-to-person via close contact.
The diagnosis of a probable case was based on clinical symptoms such as fever,
dry cough and dyspnea often accompanied by radiographic features of pneumonia
[27, 41, 46] and exposure to a source of SARS-CoV [50, 51]. The incubation period
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for SARS was three to seventeen days, and most infected individuals recover after
two to four weeks of illness [7, 15]. The disease nevertheless inflicts a high rate of
mortality (≈ 15%), especially among the elderly (≈ 50%) (See [7, 27, 41, 46, 50]).

Owing to the rapid transmissibility of the virus and the fear of a large epidemic,
the WHO spearheaded an international effort to combat the spread of SARS. Ab-
sent a definitive anti-SARS treatment or vaccine, these efforts were based on the
quarantine of suspected cases and isolation of individuals infected with SARS-CoV
to stop them from infecting others. Many advances have been made towards the
design of a vaccine for SARS, and some vaccines are undergoing clinical trials (see
[10, 39, 44, 45, 52, 53]). This is a welcome development since, historically, vaccines
have been and continue to be very useful in preventing illness or death of millions of
individuals (see, for instance, [40]). However, like almost all other human vaccines,
any future SARS vaccine is expected to be imperfect. Such imperfections are de-
fined in terms of numerous characteristics, including a waning immunity or a failure
to completely protect all immunized individuals against infection (i.e., the vaccine
would allow “breakthrough infection”). Further details on vaccine characteristics
can be found in [6, 16, 37].

The aim of this study is to determine, through mathematical modelling, whether
a public health strategy based solely on the use of an imperfect vaccine can lead
to the effective control of SARS in a community. For the purpose of this study,
“imperfect” vaccine means inability to protect all immunized individuals. Since
the observed disease timescale is rather short, it is prudent to assume that a future
SARS vaccine will confer immunity (incomplete) that does not wane over the time
frame of interest (or timescale of disease dynamics). Although numerous mathe-
matical models have been used to assess the impact of anti-SARS control measures
based on quarantine and isolation (see, for instance, [11, 19, 31, 32, 42, 48, 49]), no
mathematical study has yet been conducted to determine the potential impact of
an anti-SARS vaccine.

Over the past few decades, a large number of simple compartmental mathe-
matical models of the general form SVI or SVIR (where S, V, I and R denote
the populations of susceptible, vaccinated, infectious and recovered individuals)
have been used in the literature to assess the impact or potential impact of imper-
fect vaccines for combatting the spread of some human diseases (see, for instance,
[1, 3, 4, 6, 16, 17, 18, 20, 24, 25, 26, 35, 37] and the references therein). While
in some of these studies (e.g., [3, 6, 16, 17, 37]) the vaccine is only given to peo-
ple newly recruited into the population, such as newborns (cohort vaccination),
in many others (e.g., in [1, 20, 26, 35]), a proportion of susceptible individuals is
continuously vaccinated. In other studies, such as Arino et al. [4], both cohort and
continuous vaccination are provided. Gandon et al. [17] provided a nice study on
some of the epidemiological and evolutionary consequences associated with the use
of imperfect vaccines using an SVI model with two infected components (unvacci-
nated infected and vaccinated infected individuals). Their study, which is based on
an imperfect vaccine which may decrease probability of infection and/or may de-
crease the growth rate of parasites within the host, shows that eradication success
depends on the type of vaccine and vaccine coverage used. The model constructed
in the current paper is an extension of the standard SVIR models, including a new
compartment for the latent class (an essential feature of the SARS transmission
dynamics). Our model uses continuous vaccination.
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The paper is organized as follows. The model is formulated in Section 2. Basic
properties of solutions are established in Section 3. The existence and stability of
the disease-free equilibrium are analyzed in Section 4. The existence and stability of
endemic equilibrium is established in Section 5. A detailed analytical investigation
of the final size of the initial outbreak is provided in Section 6.

2. Model formulation. The development of the mathematical model is based on
subdividing a given SARS-affected community into five compartments: suscepti-
ble, S(t), vaccinated, V (t), asymptomatic, E(t), symptomatic, I(t), and recovered,
R(t), individuals. The total population size is N(t) = S(t)+V (t)+E(t)+I(t)+R(t).

The rates of change of the populations in each compartment are represented by
the following equations:

dS

dt
= Π − βSI − ξS − µS, (1)

dV

dt
= ξS − (1 − τ)βV I − µV, (2)

dE

dt
= βSI + (1 − τ)βV I − αE − µE, (3)

dI

dt
= αE − δI − dI − µI, (4)

dR

dt
= δI − µR. (5)

The flow diagram of the model is depicted in Figure 1. The susceptible popu-
lation is increased by the net in-flow (recruitment) of individuals into the region,
either by birth or immigration (at a constant rate Π) and each subpopulation is
decreased by natural death (at a rate µ). Administration of an anti-SARS vaccine
moves individuals from the susceptible population to the vaccinated population (at
a rate ξ).

Susceptible and vaccinated individuals may acquire infection by contact with
a SARS-infected individual. It is assumed that the number of contacts between
susceptibles and infectives is proportional to the number of susceptibles and to the
number of infectives. A certain fraction of these contacts will result in new infec-
tions, and so the rate at which susceptibles become infected is βSI, giving what is
called mass action. Many researchers argue that the standard incidence formulation
is more appropriate for disease transmission in human populations. However, for
observed SARS outbreaks, the total population has remained effectively constant.
Our simulations, even in the worst case with no disease control measures in effect,
show infection of less than 40% of the population, which even with a 15% mortality
would lead to only a 6% drop in the total population. In this case, we expect mass
action and standard incidence to give similar results.

Since the vaccine is assumed to be imperfect (that is, it does not offer 100% pro-
tection against infection), vaccinated individuals also acquire infection via contact
with symptomatic individuals. Note that, in this case, the effective contact rate, β,
is multiplied by a scaling factor (1− τ), where 0 ≤ τ ≤ 1 is the efficacy of the vac-
cine (τ = 1 represents a vaccine that offers 100% protection against infection, whilst
τ = 0 models a vaccine that offers no protection at all). In the absence of definitive
medical evidence in favour of asymptomatic transmission of SARS, it is assumed
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Figure 1. Progression of infection from susceptible (S) and vac-
cinated (V) individuals through the latent (E), infected (I), and
treated (R) compartments for the model.

Table 1. Parameter values used in the simulations

Parameter Description Value
Π Recruitment rate of susceptible humans 146 per day
µ Natural mortality rate 1/75 per year

(3.65 × 10−5 per day)
No Equilibrium population (without disease) Π/µ = 4, 000, 000
β Effective contact rate 7.2 × 10−8per day
ξ Vaccination coverage rate 1 per week

(0.14 per day)
τ Vaccine efficacy 0.8
α Rate of development of clinical symptoms 0.125 per day
δ Recovery rate 0.04 per day
d Disease-induced mortality rate 0.008 per day

Note: These parameter values giveR0 = 6.0 and Rv = 1.2. The parameters
were based on the 2003 SARS outbreak in the Greater Toronto Area. For
more details on parameter estimates, see [19].

that only symptomatic SARS-infected individuals (individuals in compartment I)
can transmit SARS to susceptible or vaccinated individuals.

Newly-infected individuals (i.e., people in the asymptomatic stage of infection)
develop clinical symptoms of SARS (at a rate α). The population in the symp-
tomatic compartment is diminished by recovery (at a rate δ) and disease-induced
death (at a rate d).

There is no conclusive evidence in favour or against the notion that SARS in-
fection confers immunity against reinfection. Consequently, it is assumed, in this
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study, that recovered individuals do not reacquire SARS infection on the time scale
of the epidemic.

It should be mentioned that although the recovered population continues to
make contacts with other members of the population, it does not contribute to
the transmission dynamics of the disease. Since the recovered population, R(t),
does not feature in the first four equations of the model, the rest of the paper will
consider only Equations (1)-(4).

3. Basic properties. Since the model (1)-(4) monitors populations, it is assumed
that 0 ≤ τ ≤ 1 and all other state variables and parameters of the model are
nonnegative. It follows that the nonnegative cone, R

4
+, is invariant, as is the disease-

free plane (I = E = 0).

It is convenient to define No =
Π

µ
, So =

Π

µ + ξ
and Vo =

ξΠ

µ(µ + ξ)
. Notice that

we can write So = (1 − p)No and Vo = pNo where p = ξ/(µ + ξ) is the fraction of
the population vaccinated at the disease-free equilibrium defined below.

The rate of change of the total population, obtained by adding Equations (1)-(5),
is given by

dN

dt
= Π − µN − dI (6)

with N = S + V + E + I + R. It follows that

0 < lim sup
t→∞

N(t) ≤ No,

with lim sup
t→∞

N(t) = No if and only if lim sup
t→∞

I(t) = 0. From Equation (1), it follows

that

0 ≤ lim sup
t→∞

S(t) ≤ So, (7)

and then from Equation (2),

0 ≤ lim sup
t→∞

V (t) ≤ Vo. (8)

It follows from Equation (6) that if N > No, then
dN

dt
< 0. This establishes the

following lemma.

Lemma 3.1. The set

D =
{

(S, V, E, I) ∈ R
4
+ : S + V + E + I ≤ No, S ≤ So, V ≤ Vo

}

is a positively invariant and attracting region for the disease transmission model
given by Equations (1)-(4) with initial conditions in R

4
+.

Consequently, in the absence of disease (I = 0), the total population, N , ap-
proaches the carrying capacity, No, asymptotically; and in the presence of disease,
the total population is less than or equal to No.

Thus, every solution of Equations (1)-(4) with initial conditions in R
4
+ tends

toward D as t → ∞, and every solution with an initial condition in D remains there
for t > 0. Therefore, the ω-limit sets of (1)-(4) are contained in D. Furthermore,
in D, the usual existence, uniqueness and continuation results hold for the system,
so that the system (1)-(4) is well posed mathematically and epidemiologically.
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4. The disease-free equilibrium.

4.1. Existence and local stability of the disease-free equilibrium. The
model given by Equations (1)-(4) has a unique disease-free equilibrium, obtained
by setting the right-hand sides of Equations (1)-(4) to zero, given by

X0 = (So, Vo, Eo, Io) =

(

Π

ξ + µ
,

ξΠ

µ(ξ + µ)
, 0, 0

)

.

It can be seen that X0 attracts the region

D0 = {(S, V, E, I) ∈ D : E = I = 0} .

To establish the local stability of the disease-free equilibrium, the associated
Jacobian of Equations (1)-(4) is evaluated at the disease-free equilibrium. (The
Jacobian at a general point is given in (18).) It can be shown that all the eigenvalues
of the Jacobian at the disease-free equilibrium have negative real parts if and only
if the zeros of the following quadratic are all positive:

λ2 + (δ + 2µ + d + α)λ + (α + µ)(δ + µ + d) (1 −Rv) , (9)

where Rv is defined as

Rv =
αβΠ [µ + (1 − τ)ξ]

µ(ξ + µ)(α + µ)(δ + µ + d)
.

It follows that all zeros of Equation (9) have negative real parts if and only if
Rv < 1 (recall that it is assumed that 0 ≤ τ ≤ 1 and all other parameters of the
model are nonnegative). Note also that if Rv > 1, then exactly one of the zeros of
Equation (9) has positive real part. Thus, we have established the following result:

Proposition 4.1. The disease-free equilibrium X0 is locally asymptotically stable
if Rv < 1 and unstable if Rv > 1.

The threshold quantity Rv is known as the control reproduction number of infec-
tion. It measures the expected number of new SARS cases generated by an index
case (a single infected individual in a completely susceptible population) in a com-
munity with a vaccination program in place (S = So, V = Vo). A similar threshold
quantity, known as the basic reproduction number, is obtained by setting ξ = 0 in
Rv giving

R0 =
αβΠ

µ(α + µ)(δ + µ + d)
.

The quantity R0 (see, for instance, [2, 8, 9, 12, 23, 47]) measures the expected
number of secondary cases generated by an index case in an unvaccinated, equilib-
rium population (S = No, V = 0). With this definition for R0 and introducing

p =
Vo

No

=
ξ

ξ + µ

as the fraction of the population vaccinated at the disease-free equilibrium we can
express Rv as

Rv = R0

(

µ + (1 − τ)ξ

ξ + µ

)

= R0(1 − pτ). (10)
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Note that Rv ≤ R0 with equality only if ξ = 0 (ie., p = 0) or τ = 0. That
is, despite being imperfect, the vaccine (characterized by ξ > 0 and 0 < τ ≤ 1)
will allways reduce the reproduction number of the disease. Further arguments
and simulations to show that a reduction in Rv generally implies a reduced and
delayed peak caseload, prevalence and disease-induced mortality are summarized
in Section 6.

4.2. Global stability of the disease-free equilibrium. Biologically speaking,
Proposition 4.1 implies that SARS can be eliminated from the SARS-affected region
of interest (when Rv < 1) if the initial sizes of the sub-populations of the model are
in the basin of attraction of X0. To ensure that the virus eradication is independent
of the initial sizes of the sub-populations of the model, it is imperative to show that
the disease-free equilibrium is globally asymptotically stable (GAS). This is done
now.

Theorem 4.1. The disease-free equilibrium is globally asymptotically stable in R
4
+

if Rv ≤ 1.

Proof. Consider the following Lyapunov function:

F = αE + (α + µ)I (11)

with Lyapunov derivative,

F ′ = α
(

β
(

S + (1 − τ)V
)

I − (α + µ)E
)

+ (α + µ)
(

αE − (δ + d + µ)I
)

=
(

αβ
(

S + (1 − τ)V
)

− (α + µ)(δ + d + µ)
)

I

= (α + µ)(δ + d + µ)

(

R0

No

(

S + (1 − τ)V
)

− 1

)

I

≤ (α + µ)(δ + d + µ)(Rv − 1)I for (S, V, E, I) ∈ D

by Equations (7) and (8) with equality only at X0. Since all parameters of the model
are nonnegative, it follows that F ′ ≤ 0 for Rv ≤ 1 with F ′ = 0 only if I = 0. Hence,
F is a Lyapunov function on D. Further, by Lemma 3.1, D is a compact, absorbing
subset of R

4
+, and the largest compact invariant set in {(S, V, E, I) ∈ D : F ′ = 0} is

the singleton {X0}. Therefore, by the Lasalle invariance principle (see, for instance,
[21, Theorem 3.1]), every solution to Equations (1)-(4) with initial conditions in R

4
+

approaches X0 as t → ∞.

If R0 < 1, then the function F is decreasing whenever S +(1− τ)V ≤ No. Since
N ≥ S + V , this implies that F is decreasing if N ≤ No.

4.3. Implications for disease control. Theorem 4.1 has important public health
implications. It shows that if the imperfect vaccine has sufficient efficacy and cov-
erage rate to make Rv ≤ 1, then SARS will be eliminated from the community.

The Lyapunov function (11) shows that the total number of infected individuals
(E + I) is a decreasing function of time for Rv ≤ 1. However, for Rv > 1, numer-
ical simulations using parameter values relevant to SARS (see [19] for a detailed
discussion of parameter values) show that the approach to the endemic equilibrium
is not monotonic. Figure 2 shows a simulation of Equations (1)-(4). Populations
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Oscillatory decay to endemic equilibrium with no vaccination
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Figure 2. Simulation of Equations (1)-(4) showing the oscillatory
approach to the endemic equilibrium with no vaccination (ξ =
0). The parameters used for the simulation are µ = 0.0003, β =
4.0 × 10−7 (R0 = 4) with the remaining parameters as given in
Table 1. These parameters were based on the 2003 SARS outbreak
in the Greater Toronto Area. Note the endemic level of infected
individuals is 3 136, whereas the initial epidemic peaks at 197 269
infected individuals, a difference of nearly two orders of magnitude.
The initial epidemic is shown more clearly in Figure 3.

are shown in a logarithmic scale (base 10). The peak size of the epidemic is several
orders of magnitude higher than the final size of the endemic equilibrium. There
are two factors that suggest the solutions shown are not realistic. First, the ex-
pected number of infected individuals falls well below one during the troughs of the
oscillations. This suggests a high likelihood the disease will not persist through the
next oscillation. Second, the period of oscillation is several years. We do not expect
the assumptions of the model to hold over that timescale: it is reasonable to assume
SARS-CoV is seasonal like influenza and other coronaviruses [13], and many factors
we have neglected must be taken into account on any longer timescale. Nonethe-
less, the existence of the endemic solution for Rv > 1 appears to coincide with
the epidemic-like transient of the solutions, and the global stability of the disease-
free equilibrium for Rv ≤ 1 ensures that such epidemics do not occur. Hence,
Rv is a suitable parameter combination with which to gauge the effectiveness of a
vaccination program.

Figure 3 shows the populations during the first epidemic. This figure shows the
first 250 days of the same simulation run shown in Figure 2. Since the numbers of
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Initial epidemic with no vaccination
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Figure 3. Simulation of Equations (1)-(4) showing the initial epi-
demic with ξ = 0 and remaining parameters as per Figure 2. This
plot depicts the first 300 days of the simulation in Figure 2.

infected individuals fall to very low levels in the first trough of the oscillations shown
in Figure 2, the populations of infected individuals in Figure 3 appear to drop to
zero. In fact, the disease-free equilibrium is unstable: the infected population gets
close to zero and then slowly grows.

Figure 4 depicts the effectiveness of starting the vaccination program during
the initial stages of the epidemic. The simulation is initialized with 10 infectious
individuals and the remaining population consisting of unvaccinated susceptibles.
This figure must be interpreted with caution: the incidence term in the model is
the expected number of new infections per day per infectious individual, and this
(deterministic) model ignores variations about that average. While this may be a
good approximation when the number of infectious individuals is large, ignoring
variations about this average may lead to erroneous results when I is small. In this
latter case, a stochastic model is more appropriate. Nevertheless, the predictions of
the deterministic model suggest that such a vaccination program would be effective
at quickly reducing the control reproduction number and, thereby, bringing the
disease under control.

Since Rv ≤ 1 is a necessary and sufficient condition for disease elimination
(Proposition 4.1 and Theorem 4.1), it follows that the following condition on p is
also necessary and sufficient for control:

p ≥
1

τ

(

1 −
1

R0

)

= pc. (12)
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Delayed start of vaccination program
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Figure 4. Simulation of Equations (1)-(4) showing the initial epi-
demic with vaccination (ξ = 1/7, τ = 0.80, β = 4.8×10−8, R0 = 4,
Rv = 0.80, remaining parameters as per Table 1). The susceptible
and vaccinated populations are shown in hundred thousands, while
the infected population is not scaled.

Proposition 4.1 and Theorem 4.1 can be combined to give the following result:

Corollary 4.1. SARS can be eliminated from the community if p ≥ pc.

Our expression for the threshold vaccinated fraction at equilibrium, pc, is the
same as obtained by Hethcote [22, p. 137]. However, we have shown that this result
is still obtained in the case of continuous vaccination and that herd immunity is
achieved if the vaccination rate is sufficiently large such that p, the fraction of
vaccinated individuals at the disease-free equilibrium, exceeds the critical value pc.

The critical value, pc, is plotted as a function of τ for several values of Ro in
Figure 5. It is apparent from (10) that both the vaccinated fraction, p, and the
vaccine efficacy, τ , play equal roles in reducing Rv and that both must be high to
reduce Rv below one and thereby control the disease. The inequality (10) can be
rewritten as

pτ ≥ 1 −
1

R0
;

it follows that with R0 = 4, disease control requires the product pτ exceed 3/4.
This region is shown in the upper right of Figure 5. Clearly, for the product to
exceed this threshold, both p and τ must be greater than 3/4. In other words, this
study shows that if R0 = 4, then a future SARS vaccine would have to have an
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Vaccination Threshold for Disease Elimination
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Figure 5. Contours obtained from the relation Rv = R0(1 −
pτ) = 1 for several values of R0. For each curve, the region to the
above right of the curve consists of the values of p and τ for which
the disease-free equilibrium is stable.

efficacy of at least 75% and would have to be administered to at least 75% of the
population to eliminate SARS from the community.

The inequality (12) can be expressed in terms of the vaccination rate ξ. This
is done by noting, first of all, that the middle expression of Equation (10) is a
decreasing function of ξ, and so it is minimized by letting ξ go to infinity. Taking
the limit as ξ approaches infinity, we see that this expression is always greater than
(1 − τ)R0. Thus, if (1 − τ)R0 ≥ 1, then no amount of vaccination can make Rv



496 A. B. GUMEL, C. C. MCCLUSKEY AND J. WATMOUGH

smaller than unity. Alternatively, if (1 − τ)R0 < 1, then the condition

ξ ≥
µ(R0 − 1)

1 − (1 − τ)R0
= ξc (13)

gives Rv ≤ 1. Of course, this condition assumes R0 > 1, since disease elimination
follows without vaccination if R0 ≤ 1 (by Proposition 4.1, Theorem 4.1 and the
fact that Rv ≤ R0). It is easy to show, from (13), that Rv ≤ 1 if ξ ≥ ξc, and
Rv > 1 if ξ < ξc. Thus, we have established the following result:

Proposition 4.2. If (1− τ)R0 < 1 and ξ ≥ ξc, then SARS will be eliminated from
the community. If (1 − τ)R0 ≥ 1, then no amount of vaccination will prevent a
SARS outbreak in the community.

5. Endemic equilibrium.

5.1. Existence of endemic equilibrium. To find condition(s) for the existence
of an equilibrium X∗ = (S∗, V ∗, E∗, I∗) for which the disease is endemic in the
population (i.e. at least one of E∗ and I∗ is nonzero), Equations (1), (2) and (4)
are rearranged to get S∗, V ∗ and E∗ in terms of I∗. This gives

S∗ =
Π

βI∗ + ξ + µ
, V ∗ =

ξS∗

(1 − τ)βI∗ + µ
, E∗ =

µ + δ + d

α
I∗. (14)

Equation (3) yields

E∗ =
βS∗I∗ + (1 − τ)βI∗V ∗

α + µ
. (15)

Substituting the expressions in Equation (14) into Equation (15), and simplifying,
gives the following quadratic in terms of I:

P (I) = a0I
2 + a1I + a2 = 0 (16)

where

a0 = β2(1 − τ),

a1 = βµ
(

1 + (1−τ)R0

Rv

(

1 −Rv + (1 − τ) ξ
µ

))

,

a2 = µ(ξ + µ)(1 −Rv).

(17)

The endemic equilibria of the model are given by Equation (14) with I∗ a positive
root of Equation (16). Noting that negative endemic equilibria are biologically
meaningless, the conditions for P (I) to have positive real roots are determined
below.

Suppose 0 ≤ τ < 1. Then, clearly a0 > 0 and so the quadratic P (I) is concave
up. We now do a case analysis to determine the number of positive real zeros of P .

Case 1. Suppose Rv > 1. Then a2 < 0 and so the vertical intercept of P (I) is neg-
ative. Combining this with the fact that P is a quadratic which is concave
up, it follows that P has two real roots of opposite signs. Thus, the model
has a unique positive equilibrium when Rv > 1.
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Case 2. Suppose Rv = 1. Then a2 = 0. Here, the quadratic reduces to P (I) =
I(a0I + a1), with roots I∗ = 0 (corresponding to the disease-free equi-
librium) and I∗ = −a1/a0. However, it is clear from Equation (17) that
a1 ≥ 0 for Rv = 1. Thus there is no positive endemic equilibrium for
Rv = 1.

Case 3. Suppose Rv < 1. Then a0, a1, a2 > 0. Thus, it is clear that there is no
positive real root for Rv < 1.

The last case also follows from Theorem 4.1, since global stability of the disease-
free equilibrium implies that there are no other equilibria.

The case where τ = 1 is simpler to handle, since P (I) is then linear with a0 = 0
and a1 = βµ. The existence of a positive root of Equation (16) is then reduced to
the sign of a2 being negative, which happens exactly when Rv is greater than one.
We summarize in the following result.

Proposition 5.1. The model (1)-(4) has a unique positive endemic equilibrium
whenever Rv > 1 and no positive endemic equilibrium when Rv ≤ 1.

5.2. Global stability of the endemic equilibrium. Proposition 5.1 shows the
existence of a unique endemic equilibrium if Rv > 1. We now claim the following
(a local stability result for this equilibrium will be given in Section 5.3):

Theorem 5.1. For Rv > 1, the unique endemic equilibrium of the model (1)-(4)
is globally asymptotically stable in D \ D0 if α ≤ µ.

Proof. The proof of Theorem 5.1 is based on the method of Li and Muldowney
[28, 29]. Let f = (f1, f2, f3, f4)

T , where f1, f2, f3 and f4 represent the right-hand
sides of Equations (1)-(4), respectively. Furthermore, let x = (S, V, E, I)T . Then,
the Jacobian matrix for system (1)-(4) is

∂f

∂x
=









−(βI + µ + ξ) 0 0 −βS
ξ −

(

(1 − τ)βI + µ
)

0 −(1 − τ)βV
βI (1 − τ)βI −(α + µ) βS + (1 − τ)βV
0 0 α −(δ + d + µ)









. (18)

Thus, the second additive compound matrix [38] of the Jacobian matrix is

∂f

∂x

[2]

= −diag

















(2 − τ)βI + 2µ + ξ
βI + 2µ + ξ + α

βI + 2µ + ξ + δ + d
(1 − τ)βI + 2µ + α

(1 − τ)βI + 2µ + δ + d
2µ + α + δ + d

















+

















0 0 −(1 − τ)βV 0 βS 0
(1 − τ)βI 0 βS + (1 − τ)βV 0 0 βS

0 α 0 0 0 0
−βI ξ 0 0 βS + (1 − τ)βV (1 − τ)βV

0 0 ξ α 0 0
0 0 βI 0 (1 − τ)βI 0

















.

(19)
Let
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Q =

















1
E

0 0 0 0 0
0 1

E
0 0 0 0

0 0 0 1
E

0 0
0 0 1

I
0 0 0

0 0 0 0 1
I

0
0 0 0 0 0 1

I

















.

Letting M = QfQ−1 +Q∂f
∂x

[2]
Q−1, where Qf is the derivative of Q in the direction

of the vector field f , we see that

M = −





































(2 − τ)βI + β SI
E

+ (1 − τ)β V I
E

+ µ + ξ − α

βI + β SI
E

+ (1 − τ)β V I
E

+ µ + ξ

(1 − τ)βI + β SI
E

+ (1 − τ)β V I
E

+ µ

βI + αE
I

+ µ + ξ

(1 − τ)βI + αE
I

+ µ

αE
I

+ µ + α





































+





































0 0 0 −(1 − τ)β V I
E

β SI
E

0

(1 − τ)βI 0 0 β(S+(1−τ)V )I
E

0 β SI
E

−βI ξ 0 0 β(S+(1−τ)V )I
E

(1 − τ)β V I
E

0 αE
I

0 0 0 0

0 0 αE
I

ξ 0 0

0 0 0 βI (1 − τ)βI 0





































.

We now give a theorem of Li and Muldowney [28], which we will use here to
give a condition on the parameters, which when satisfied, implies that the endemic
equilibrium is globally asymptotically stable. We reword the theorem for the specific
context in which it is being used here. Note that the original theorem [28, Theorem
2.5] involves additional conditions such as ‖Q−1‖ being bounded, which are satisfied
here.

Theorem 5.2. If D1 is a compact absorbing subset of int (D), and there exist γ > 0
and a Lozinskii measure µ̃ such that µ̃(M) ≤ −γ for all x ∈ D1 then every omega
limit point of system (1)-(4) in int (D) is an equilibrium in D1.

For Rv > 1, the disease-free equilibrium is repelling towards the interior. In fact,
for Rv > 1 there is a compact absorbing set in the interior of D which attracts all
orbits that intersect the interior of D. This gives the following result.
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Corollary 5.1. If Rv > 1 and there exists a Lozinskii measure µ̃ such that
µ̃(M) < 0 for all x ∈ intD, then each orbit of system (1-4) which intersects int (D)
limits to the endemic equilibrium.

For a norm ‖ · ‖ on R
n, the Lozinskii measure µ̃ associated with ‖ · ‖ can be

evaluated for an n × n matrix A as

µ̃(A) = inf{c : D+‖z‖ ≤ c‖z‖ for all solutions of z′ = Az}, (20)

where D+ is the right-hand derivative [34]. Thus, if we can find a norm on R
6 for

which the associated Lozinskii measure satisfies µ̃(M) < 0 for all x ∈ int (D) then
the endemic equilibrium is globally asymptotically stable for Rv > 1. This has
been achieved for a certain subset of the parameter space.

We now define a norm on R
6 for which the definition varies from one orthant to

another. Let

U1(z1, z2, z3) =

8

>

>

<

>

>

:

max{|z1|, |z2| + |z3|} if sgn (z1) = sgn (z2) = sgn (z3)
max{|z2|, |z1| + |z3|} if sgn (z1) = sgn (z2) = −sgn (z3)
max{|z1|, |z2|, |z3|} if sgn (z1) = −sgn (z2) = sgn (z3)

max{|z1| + |z3|, |z2| + |z3|} if − sgn (z1) = sgn (z2) = sgn (z3)

and let

U2(z4, z5, z6) =

8

>

>

<

>

>

:

|z4| + |z5| + |z6| if sgn (z4) = sgn (z5) = sgn (z6)
max{|z4| + |z5|, |z4| + |z6|} if sgn (z4) = sgn (z5) = −sgn (z6)

max{|z5|, |z4| + |z6|} if sgn (z4) = −sgn (z5) = sgn (z6)
max{|z4| + |z6|, |z5| + |z6|} if − sgn (z4) = sgn (z5) = sgn (z6).

For z = (z1, z2, z3, z4, z5, z6)
T , let

‖z‖ = max{U1, U2}.

This defines ‖ ·‖ on the interior of each orthant. We extend ‖ ·‖ continuously to the
boundaries of the orthants. One can show that ‖ · ‖ is a nonnegative homogeneous
function for which the unit ball {z : ‖z‖ ≤ 1} is convex and bounded, and so, by
Proposition 2.1 of [36], ‖ · ‖ is in fact a norm.

We now study solutions to

z′(t) = M(t)z(t).

Note that the time dependence of M(t) follows from the fact that M depends on
S, V , E and I, which in turn depend on t. We now demonstrate that

D+‖z‖ < (α − µ)‖z‖. (21)

In a region where ‖z‖ is a smooth function of z, D+ is the same as the standard
derivative with respect to time. On the other hand, at points for which ‖z‖ is
not smooth (on the coordinate axes, for example), D+ is still well defined. The
full calculation to demonstrate Equation (21) involves sixteen separate cases and
subcases, based on the different orthants and the definition of ‖ · ‖ within each
orthant. We present four representative cases here, including one which gives the
most restrictive condition on the parameters. To facilitate the calculations, we note
that

|z2|, |z3|, |z2 + z3| ≤ U1(z)
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and

|z4|, |z5|, |z5 + z6|, |z4 + z5 + z6| ≤ U2(z)

for all z = (z1, z2, z3, z4, z5, z6)
T ∈ R

6.

Case 1. U1(z) > U2(z) and 0 < z1, z2, z3.
Then ‖z‖ = max{|z1|, |z2|+|z3|}. (While the absolute value bars are unnecessary

since z1, z2, z3 are positive, they will be important in the later cases. For consistency
and to give a clear blueprint for the interested reader to check the omitted cases,
we keep the absolute value bars here.)

Case 1A. |z1| > |z2| + |z3|.
Then ‖z‖ = |z1| = z1 and U2(z) < |z1|. Taking the right-hand derivative of ‖z‖,

we get

D+‖z‖ = z
′

1

=
“

α − (2 − τ )βI −
β(S + (1 − τ )V )I

E
− µ − ξ

”

z1 − (1 − τ )β
V I

E
z4 + β

SI

E
z5

≤
“

α − (2 − τ )βI −
β(S + (1 − τ )V )I

E
− µ − ξ

”

|z1| + (1 − τ )β
V I

E
|z4| + β

SI

E
|z5|.

Since |z4|, |z5| ≤ U2(z) < |z1| and |z1| = ‖z‖, we have

D+‖z‖ ≤
(

α − (2 − τ)βI − µ − ξ
)

‖z‖. (22)

By linearity, Equation (22) also holds for U1 > U2 and z1, z2, z3 < 0 when
|z1| > |z2| + |z3|.

Case 1B. |z1| < |z2| + |z3|.
Then ‖z‖ = |z2| + |z3| = z2 + z3 and U2(z) < |z2| + |z3|. Taking the right-hand

derivative of ‖z‖, we get

D+‖z‖ = z′2 + z′3

= −τβIz1 −
(

βI + β
SI

E
+ (1 − τ)β

V I

E
+ µ

)

z2

−
(

(1 − τ)βI + β
SI

E
+ (1 − τ)β

V I

E
+ µ

)

z3

+
(

β
SI

E
+ (1 − τ)β

V I

E

)

(

z4 + z5 + z6

)

≤ −τβI|z1| −
(

βI + β
SI

E
+ (1 − τ)β

V I

E
+ µ

)

|z2|

−
(

(1 − τ)βI + β
SI

E
+ (1 − τ)β

V I

E
+ µ

)

|z3|

+
(

β
SI

E
+ (1 − τ)β

V I

E

)

|z4 + z5 + z6|.

Since |z4 + z5 + z6| ≤ U2(z) < |z2| + |z3| and −τβI|z1| ≤ 0, we have

D+‖z‖ ≤ −
(

βI + µ
)

|z2| −
(

(1 − τ)βI + µ
)

|z3|

≤ −
(

(1 − τ)βI + µ
)

(|z2| + |z3|).

Thus,
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D+‖z‖ ≤ −
(

(1 − τ)βI + µ
)

‖z‖. (23)

By linearity, Equation (23) also holds for U1 > U2 and z1, z2, z3 < 0 when
|z1| < |z2| + |z3|.

Case 2. U1(z) > U2(z) and z1 < 0 < z2, z3.
Then ‖z‖ = max{|z1| + |z3|, |z2| + |z3|}.

Case 2A. |z1| > |z2|.
Then ‖z‖ = |z1|+ |z3| = −z1 + z3 and U2(z) < |z1|+ |z3|. Taking the right-hand

derivative of ‖z‖, we get

D+‖z‖ = −z′1 + z′3

=
(

(1 − τ)βI + β
SI

E
+ (1 − τ)β

V I

E
+ µ + ξ − α

)

z1 + ξz2

−
(

(1 − τ)βI + β
SI

E
+ (1 − τ)β

V I

E
+ µ

)

z3

+ (1 − τ)β
V I

E

(

z4 + z5 + z6

)

≤
(

α − (1 − τ)βI − β
SI

E
− (1 − τ)β

V I

E
− µ − ξ

)

|z1| + ξ|z2|

−
(

(1 − τ)βI + β
SI

E
+ (1 − τ)β

V I

E
+ µ

)

|z3|

+ (1 − τ)β
V I

E
|z4 + z5 + z6|.

Since |z4 + z5 + z6| ≤ U2(z) < |z1| + |z3| and |z2| ≤ |z1|, we have

D+‖z‖ ≤
(

α − (1 − τ)βI − β
SI

E
− µ

)

|z1|

−
(

(1 − τ)βI + β
SI

E
+ µ

)

|z3|.

Recalling that |z1| + |z3| = ‖z‖, yields

D+‖z‖ ≤
(

α − (1 − τ)βI − β
SI

E
− µ

)

‖z‖. (24)

By linearity, Equation (24) also holds for U1 > U2 and z2, z3 < 0 < z1 when
|z1| > |z2|.

Case 2B. |z1| < |z2|.
Then ‖z‖ = |z2| + |z3| = z2 + z3 and U2(z) < |z2| + |z3|. Taking the right-hand

derivative of ‖z‖, we get
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D+‖z‖ = z′2 + z′3

= −τβIz1 −
(

βI + β
SI

E
+ (1 − τ)β

V I

E
+ µ

)

z2

−
(

(1 − τ)βI + β
SI

E
+ (1 − τ)β

V I

E
+ µ

)

z3

+
(

β
SI

E
+ (1 − τ)β

V I

E

)

(

z4 + z5 + z6

)

≤ τβI|z1| −
(

βI + β
SI

E
+ (1 − τ)β

V I

E
+ µ

)

|z2|

−
(

(1 − τ)βI + β
SI

E
+ (1 − τ)β

V I

E
+ µ

)

|z3|

+
(

β
SI

E
+ (1 − τ)β

V I

E

)

|z4 + z5 + z6|.

Since |z4 + z5 + z6| ≤ U2(z) < |z2| + |z3| and |z1| ≤ |z2|, we have

D+‖z‖ ≤ −
(

(1 − τ)βI + µ
)

|z2| −
(

(1 − τ)βI + µ
)

|z3|.

Thus,

D+‖z‖ ≤ −
(

(1 − τ)βI + µ
)

‖z‖. (25)

By linearity, Equation (25) also holds for U1 > U2 and z2, z3 < 0 < z1 when
|z1| < |z2|.

Summary of Cases

Combining the results of the four cases presented here in Equations (22)-(25),
as well as the remaining twelve cases, we obtain the result

D+‖z‖ ≤ max{−µ, α − µ − (1 − τ)βI}‖z‖.

Thus, by Equation (20),

µ̃(M) ≤ max{−µ, α − µ − (1 − τ)βI}.

Therefore, if α ≤ µ then µ̃(M) < 0 on intD. Thus, Corollary 5.1 implies that for
Rv > 1, α ≤ µ, the endemic equilibrium is globally asymptotically stable amongst
all solutions which intersect the interior of D, completing the proof of Theorem
5.1.

Theorem 5.1 gives a sufficient condition for the endemic equilibrium to be GAS.
In this case, there can be no periodic solutions, homoclinic orbits or heteroclinic
cycles. Additionally, extensive numerical simulations suggest that the condition
α ≤ µ is not necessary for GAS, but is an artifact of the method. For instance,
Figure 2 suggests that the endemic equilibrium is GAS even though α is much
larger than µ.

5.3. Local stability of the endemic equilibrium. The endemic equilibrium is
given by X∗ = (S∗, V ∗, E∗, I∗). Proposition 5.1 shows the existence of a unique
endemic equilibrium if Rv > 1. In Section 5.2, it is demonstrated that if Rv > 1
and α ≤ µ, then X∗ is globally asymptotically stable (Theorem 5.1), which implies
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it is also locally asymptotically stable for α ≤ µ. We now show that X∗ is locally
asymptotically stable whenever it exists (regardless of the values of α and µ).

Theorem 5.3. The endemic equilibrium, X∗, is locally asymptotically stable when-
ever it exists.

Proof. We first note that the region of parameter space for which Rv is greater
than one is path connected. Thus, any set of parameters for which Rv > 1, can
be connected by a path to another set of parameters satisfying α ≤ µ, where the
entire path satisfies Rv > 1. Thus, X∗ is present at each point on the path and is
locally asymptotically stable at the endpoint for which α ≤ µ. We will now show
that while moving along this path there is no loss of stability at X∗.

For the stability of X∗ to change when parameters are varied, it is necessary for
either a real eigenvalue of ∂f

∂x
(X∗) to pass through zero, or for the real parts of a

conjugate pair of complex eigenvalues to pass through zero. In the first case, the
determinant of ∂f

∂x
(X∗) is zero at the bifurcation point. In the second case, the

sum of the conjugate pair passes through zero. Since the eigenvalues of the second
compound of a matrix are the sums of pairs of eigenvalues of the original matrix,
the determinant of the second compound of ∂f

∂x
(X∗) must be zero when this second

type of bifurcation happens.

Thus, if the determinants of ∂f
∂x

(X∗) and ∂f
∂x

[2]
(X∗) are never equal to zero,

then X∗ never changes stability as parameters are varied. Since the region of
the parameter space for which X∗ exists is path connected, and X∗ is locally
asymptotically stable for part of this region (i.e., for α ≤ µ), it would follow that
X∗ is in fact locally asymptotically stable whenever it exists.

Adding the first two rows of ∂f
∂x

as it is given in Equation (18) to the third gives









−(βI + µ + ξ) 0 0 −βS
ξ −

(

(1 − τ)βI + µ
)

0 −(1 − τ)βV
−µ −µ −(α + µ) 0
0 0 α −(δ + d + µ)









,

which has the same determinant as ∂f
∂x

. Expanding along the top row in order to
take the determinant gives

det
(∂f

∂x

)

=
(

βI + µ + ξ
)(

(1 − τ)βI + µ
)

(α + µ)(δ + d + µ)

−
(

βI + µ + ξ
)

(1 − τ)βV µ α

− βS ξ µ α

− βS
(

(1 − τ)βI + µ
)

µ α.

(26)

At X∗, Equation (3) implies (α + µ)E
I

= βS + (1 − τ)βV . Using (4) to replace
E
I

and multiplying through by α gives

(α + µ)(δ + d + µ) =
(

βS + (1 − τ)βV
)

α.

Filling this into the first term on the right-hand side of Equation (26) yields
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det
(∂f

∂x
(X∗)

)

=
(

βI + µ + ξ
)(

(1 − τ)βI + µ
)(

βS + (1 − τ)βV
)

α

−
(

βI + µ + ξ
)

(1 − τ)βV µ α

− βS ξ µ α

− βS
(

(1 − τ)βI + µ
)

µ α

> 0.

Thus, none of the eigenvalues of ∂f
∂x

(X∗) are ever equal to zero.
Similarly by considering Equation (19) at the endemic equilibrium, it is possible

to show

det
(∂f

∂x

[2]

(X∗)
)

> 0.

Thus, ∂f
∂x

(X∗) never has a conjugate pair of complex eigenvalues which have real
part equal to zero, giving the required result.

6. The final size of the initial outbreak. The size and timing of the peak of the
initial epidemic are very sensitive to the vaccination coverage rate and the efficacy
of the vaccine. For the parameter values used in Figures 2 and 3, with ξ = 0,
the epidemic peaks at approximately 115 days and a level near 243,100 infected
individuals. When ξ is increased to one per week, the epidemic does not peak until
after 3 years and at a level of 7,670 infected individuals (Figure 6). In practice, this
would be sufficient to control the disease, since the peak of the outbreak has been
delayed beyond the length of a typical disease season.

Figure 7 summarizes the results of 300 simulations of the model. The top two
plots show the number of infectious individuals at the peak of the epidemic as a
fraction of the initial population (I/No) and the lower two plots show the time this
peak is reached, in multiples of the mean duration of infection 1/(µ + d + δ). We
see that even if p and τ are insufficient to decrease Rv below one, the effect of
increasing either is to both lower and delay the peak size of the epidemic.

To generate the plots of Figure 7, a rescaled version of the model was used,
which had only five independent parameters: R = βΠ/µ/(µ + d + δ), ǫ = µ/(µ +
d + δ), γ = α/(µ + d + δ), τ and p. Fifteen sets of the first three parameters were
chosen at random (using a Latin hypercube sampling technique [5]) from a uniform
distribution: 3 < R < 6, 2 < γ < 7 and 0.00026 < ǫ < 0.0077. For the plots on the
left, p was fixed at 80% and τ was varied between 0 and 1. For the two plots to the
right, τ was fixed at 0.8 and p was varied from 0 to 1. The lines in the top figures
connect results with identical values for R, c and a.
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Initial epidemic with vaccination (τ = 0.80)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  500  1000  1500  2000  2500  3000

po
pu

la
tio

n

time (days)

Vaccinated (x100)

Recovered (x100)

Infected

Figure 6. Simulation of Equations (1)-(4) showing the initial epi-
demic with vaccination (ξ = 0.14, τ = 0.80, remaining parameters
as for Table 1). The vaccinated and recovered populations have
been rescaled to fit all curves on the same plot.

To study the initial outbreak in more detail, we rescale the model to match the
disease time scale, 1/(d + δ + µ), and introduce the following rescaled parameters:

No =
Π

µ
,

ǫ =
µ

(d + δ + µ)
,

p =
ξ

(ξ + µ)
,

γ =
α

(d + δ + µ)
,

βo =
β

(d + δ + µ)
.

Equations (1) through (4) then become
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Epidemic peak and timing
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Figure 7. These plots summarize 300 simulations of Equations
(1)-(4). The upper plots show the fraction of the initial population
infectious at the peak of the initial epidemic, and the lower plots
show the time taken to reach the peak. The times are given as
multiples of the infectious period 1/(µ + d + δ).

dS

dt
= −βoSI + ǫ

(

No −
S

1 − p

)

,

dV

dt
= −(1 − τ)βoV I + ǫ

(

pS

1 − p
− V

)

,

dE

dt
= βo

(

S + (1 − τ)V
)

I − (γ + ǫ)E,

dI

dt
= γE − (1 + ǫ)I,

where, for simplicity, t now denotes the rescaled time variable.
For a SARS outbreak in a large community such as the Greater Toronto Area,

in Canada, we estimate ǫ = 0.00076, βo = 0.3 and γ = 2.6 [19]. Approximations
for the initial peak of solutions to the full model can be obtained by setting ǫ = 0.
These approximations are valid until such time as one of the products SI and V I
in the first two equations becomes small (comparable in magnitude to the terms
involving ǫ). Setting ǫ = 0 gives what we will call the epidemic outbreak model.
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dS

dt
= −βoSI, (27)

dV

dt
= −(1 − τ)βoV I, (28)

dE

dt
= βo

(

S + (1 − τ)V
)

I − γE, (29)

dI

dt
= γE − I. (30)

Note that as Π and µ approach zero, with Π/µ = No, R0 and Rv defined
previously become

R0 = βoNo =
βNo

d + δ
,

and

Rv = R(So) = R0(1 − pτ).

For the epidemic outbreak model, S and V are nonincreasing functions of time
and are decreasing whenever I > 0. We also see that the equilibria of the system are
all points with E = I = 0. Consider a solution with initial conditions corresponding
to the disease-free solution of the original model, S(0) = So = (1 − p)No and
V (0) = Vo = pNo, and I(0) and E(0) small. From (27) and (28), we see that the
solution satisfies

dV

dS
=

(1 − τ)V

S
, V (So) = Vo,

which can be integrated to obtain V as a function of S:

V = Vo

(

S

So

)1−τ

. (31)

Defining

R(S) = βo

(

S + (1 − τ)Vo

(

S

So

)1−τ
)

as the reproduction number during the epidemic, (29) and (30) give

d

dt
(E + I) =

(

R(S) − 1

)

I. (32)

Thus the total infected population, (E+I), is increasing if R(S) > 1 and decreasing
if R(S) < 1.

In the previous sections, we examined the stability of the steady state solutions
of model (1)-(4). In this section, however, we are interested in the sensitivity of the
size of the epidemic to the parameters of the model.

Dividing (32) by (27) yields the relation

d(E + I)

dS
=

R(S) − 1

−βoS
, (33)

which can be integrated to give
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E(t) + I(t) = No − S(t) − Vo

(

S(t)

So

)1−τ

+
1

βo

ln

(

S(t)

So

)

. (34)

Since S and V are decreasing, with S(0) = So and V (0) = Vo, (34) defines
the total infected population, E + I, as a function of S with a single maximum
when R(S) = 1 and two roots S1 and S∞ with 0 < S∞ < S1. Thus, if R(So) <
1, (E + I) decreases monotonically to zero and S limits to S∞. Alternately, if
R(So) > 1, (E + I) initially increases and then decreases monotonically to zero
with S decreasing monotonically from So to S∞. In either case, S∞ is the final size
of the susceptible population.

The fraction of individuals infected over the course of the epidemic is given by

1 −
S∞ + V∞

No

=
1

R0
ln

(

So

S∞

)

, (35)

where S∞ satisfies (34) with E(t) + I(t) = 0, So = (1 − p)No, Vo = pNo and
Eo = Io = 0. That is

No − S∞ − p

(

S∞

So

)1−τ

+
1

R0
ln

(

S∞

So

)

= 0.

Figure 8 shows how this fraction depends on p, τ and R0. Vaccines with τ < 0.5
have very little effect on the number of individuals infected, and that the infected
fraction is very sensitive to τ . The contour plot is shown for R0 = 4. The difference
in sensitivity for large and small values of τ is even more striking for larger R0.

7. Conclusions. A deterministic model, which incorporates many of the essential
epidemiological aspects of SARS-CoV, is designed and used to assess the poten-
tial impact of an imperfect SARS vaccine. Some of the main mathematical and
biological findings of this study include the following.

(i) The dynamics of the model are almost completely determined by the control
reproduction number, Rv. The model has a globally-stable disease-free equi-
librium whenever Rv ≤ 1, and a unique globally-stable endemic equilibrium
whenever Rv > 1 and α ≤ µ. This shows that SARS can be eliminated from
the community if the imperfect vaccine has sufficient infection-blocking effi-
cacy and coverage rate to bring (and maintain) Rv to a value less than unity.
This result has important public health implications since a vaccination pro-
gram is presumably more cost-effective than the use of mass quarantine and
isolation (which, despite the huge socio-economic burden it inflicts in the
community, only results in the detection of a very tiny percentage of infected
individuals amongst the large number of quarantined individuals).

(ii) For the SVEIR model considered, an imperfect vaccine is always beneficial to
the community, although its overall impact increases with increasing efficacy
and coverage rate. This is quite a positive point, since it is known that the
use of an imperfect vaccine can sometimes result in detrimental consequences
to the community [16, 17]. Many vaccination models [1, 4, 16, 26] possess
multiple stable equilibria and exhibit phenomena such as backward and fold
bifurcations, where the disease can still persist in the population even when
the classical epidemiological requirement of Rv < 1 is satisfied. The features
that are thought to lead to these phenomena, in particular waning vaccine
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Figure 8. Top left: fraction infected, as given by (35), versus p
for R0 = 4 and τ equal to 0.95, 0.80 and 0.65; top right, fraction
infected versus τ for R0 = 4 and p equal to .95, 0.90, 0.80, and 0.60;
bottom left: fraction infected versus p for τ = 0.95 and R0 equal
to 2, 4, 6, and 8; bottom right: contour plot of infected fraction
versus p and τ , level curves are shown for infected fractions of
0.05, 0.10, . . .0.95.

and recovery without imunity, are assumed to be absent in SARS, or at least
not evident at the disease time scale.

(iii) A threshold fraction of individuals to be vaccinated at steady-state (pc) to
attain herd immunity is determined.

(iv) The vaccine efficacy and vaccinated fraction play equal roles in reducing the
control reproduction number (and, therefore, disease control), and both must
be reasonably high to eliminate the disease.

(v) The vaccine efficacy needs to be at least 75% for effective control of SARS
outbreaks if R0 = 4.

Overall, this study shows that a future SARS vaccine (assumed to be imperfect)
that can make the control reproduction number less than unity will effectively
control future SARS outbreaks in the community. This vaccine will, however,
fail to prevent outbreaks if it cannot make (and keep) the control reproduction
number below unity. It should be mentioned that this study is based on a relatively
simple model. The model needs to be refined as more further data (and knowledge)
becomes available.
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