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Abstract. Malaria is the vector-transmitted disease that causes the highest
morbidity and mortality in humans. Motivated by the known influence of
sickle-cell anemia on the morbidity and mortality of malaria-infected humans,
we study the effect of malaria on the genetic composition of a host (human)
population where sickle-cell anemia is prevalent and malaria is endemic. The
host subpopulations are therefore classified according to three genotypes, AA,
AS, and SS. It is known that AA malaria-infected individuals experience
higher malaria-induced mortality than AS or SS individuals. However, indi-
viduals carrying the S gene are known to experience a higher mortality rate in
a malaria-free environment than those who lack such a gene. The tradeoffs be-
tween increased fitness for some types in the presence of disease (a population
level process) and reduced fitness in a disease-free environment are explored
in this manuscript. We start from the published results of an earlier model
and proceed to remove some model restrictions in order to better understand
the impact on the natural hosts’ genetics in an environment where malaria is
endemic.

1. Introduction. Efforts to understand a host’s evolutionary dynamics (often
slow) in the context of disease dynamics in “chemically” treated environments (e.g.,
chemotherapy) or the influence of diseases on the host’s genetic variability or both
have been carried out recently (see, for example, Andreasen [1], Beck [2], Castillo-
Chavez and Feng [3], Feng et al. [5, 6], Galvani et al. [8, 9], Hsu-Schmitz [13],
Kribs et al., May and Anderson [10], McKenzie [11, 12]) in the context of human
diseases such as HIV, tuberculosis, malaria and others. Feng et al. [5] studied the
influence of malaria dynamics (assumed to be fast) on hosts’ fitness in their efforts
to assess the effect of vector-borne diseases on the genetic composition of a host
population. A typical setting was adopted by assuming that the human popula-
tion is characterized by a two-allele single loci system. Here, we remove some of
their model simplifications and show that the qualitative dynamics do not change.
However, we briefly illustrate the potentially significant effect that the incorpora-
tion of additional host characteristics (age) may have on disease dynamics and on
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the genetic structure of the host population. In other words, incorporating the life-
history dynamics of the host can have a dramatic effect on the qualitative dynamics
of the disease and the gene distribution in the host population. Here, we have only
scratched the surface.

It was assumed (see [5]) that the human population could be properly charac-
terized by a two-allele single loci system in the study of a malaria-human system.
It is assumed that only three genotypes are possible: AA, AS, and SS, where the
letters A and S denote the two alleles. Under a simplifying assumption that the
SS individuals do not survive, the following model was introduced and analyzed in
[5]:

u̇i = P̄ib(N)N −miui − βhizui + γivi,

v̇i = βhizui − (mi + γi + αi)vi, i = 1, 2,

ż = (1− z)
2∑

i=1

βvi
vi

N
− δz.

(1)

Here, ui(t) denotes the host population of uninfected i-individuals (i = 1, 2 with
AA = 1, AS = 2), vi(t) denotes the host population of infected i-individuals (i =
1, 2), and N(t) =

∑2
i=1(ui(t) + vi(t)) denotes the total host population at time t.

P̄i(t) (i = 1, 2) denotes the fraction of each genotype born into the host population
and it is assumed that these proportions satisfy the following relationships (Hardy-
Weinberger proportions):

P̄1(t) = p̄2(t), P̄2(t) = 2p̄(t)q̄(t), (2)

where q̄(t) = r̄(t)/2 is the frequency of the S-gene, p̄(t) = 1− q̄(t) is the frequency
of the A-gene, and

r̄(t) =
u2(t) + v2(t)

N(t)
denotes the fraction of AS individuals.

Following the approach of the classical Ross McDonald model for the spread
of malaria, we use the fraction of infected mosquitoes, z(t), instead of the total
number of infected mosquitoes in our model. The rationale behind this assumption
comes from the fact that what typically determines “observed” vector densities
is the number of vector breeding sites where there is fierce competition and an
oversupply of eggs. Susceptible human hosts of type i become infected at the rate
βhizui (i = 1, 2), while the fraction of susceptible mosquitoes becomes infected
(from biting an infected human host of type i) at the rate (1−z)βvivi/N . Here, βhi

and βvi (i = 1, 2) denote the transmission coefficients from humans to mosquitoes
and mosquitoes to humans, respectively. The malaria disease-induced death rate is
αi while the average time before a victim of malaria recovers is denoted by 1/γi.
The documented resistance of AS individuals to malaria infection is modeled by a
reduction in susceptibility to disease invasion. Hence, it is assumed that

βh1 > βh2, γ1 ≤ γ2. (3)

The hosts’ demography is important, so b(N) denotes the human per capita birth
rate, possibly density dependent, and mi = m+νi, where m is the assumed constant
per capita natural mortality of humans and νi (i = 1, 2) the excess per capita death
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Table 1. Definition of variables and parameters

Name Description Notes:

i = 1 AA individuals
i = 2 AS individuals
i = 3 SS individuals
ui number of uninfected humans of genotype i
vi number of infected humans of genotype i
N total population size
xi fraction of uninfected humans of genotype i ui/N
yi fraction of infected humans of genotype i vi/N
z fraction of inected mosquitoes
r frequency of AS individuals x2 + y2

s frequency of SS individuals x3 + y3

w sum of frequencies of AS and SS individuals r + s
q frequency of S-gene r/2 + s
p frequency of A-gene 1− q
βhi malaria infection rate of humans of type i βh1 > βh2 = βh3

γi rate of recovery from malaria of humans of type i γ1 ≤ γ2 = γ3

βvi infection rate of mosquitoes from biting type i humans
δ mosquito death rate
m natural human death rate
αi malaria-induced death rate of humans of type i α1 ≥ α2 = α3

νi S-gene related death rate of humans of type i ν1 = 0 < ν2 ≤ ν3

b(N) per capita birth rate of humans
P1 fraction of total births of genotype AA (1− r/2 + s)2

P2 fraction of total births of genotype AS (1− r/2 + s)(r + 2s)
P3 fraction of total births of genotype SS (r/2 + s)2

rate ascribed to S-gene carriers. Here, we take ν1 = 0, ν2 > 0. Definitions of all
variables and parameters can be found in Table 1.

Was the omission of SS individuals justified in model (1)? Here, we remove such
a restriction, making our work relevant to vector-transmitted infectious diseases for
which all three genotypes of individuals need to be considered. Although there are
obvious quantitative differences, we show that the qualitative results are equivalent
to those generated by the simpler model. In other words, on the fast time scale
of malarial dynamics, the disease level reaches an equilibrium and, consequently,
the host’s gene frequency distribution is influenced only by the equilibrium level of
malaria. However, the generality of this conclusion comes into question when the
host’s population structure is incorporated. The rest of the manuscript is organized
as follows: Section 2 describes the extended model; Sections 3 and 4 justify the
simplifications that result from the identification of two processes whose dynamics
take place at highly distinct temporal scales; Section 5 looks at the fitness of the
S-gene, and Section 6 provides a critical discussion of the results while suggesting
that a key missing component, the host’s population structure, may indeed make
the robustness of the above results questionable.

2. The generalized model. The model (1) does not include the SS individuals.
To include these individuals we need to introduce new variables, u3 and v3, to denote
the host populations of susceptible and infected SS individuals, respectively. Then
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(2) will be changed to

P1(t) = p2(t), P2(t) = 2p(t)q(t), P3(t) = q2(t),

where

q(t) =
r(t)
2

+ s(t), p(t) = 1− q(t)

and

r(t) = r̄(t) =
u2(t) + v2(t)

N(t)
, s(t) =

u3(t) + v3(t)
N(t)

.

In this case the system (1) can be extended to become the following seven-dimensional
system:

u̇i = Pib(N)N −miui − βhizui + γivi,

v̇i = βhizui − (mi + γi + αi)vi, i = 1, 2, 3,

ż = (1− z)
3∑

i=1

βvi
vi

N
− δz.

(4)

All parameters have the same meaning as in (1), with some additional assumptions
concerning the SS individuals; i.e., ν2 ≤ ν3, and

βh1 > βh2 = βh3, γ1 ≤ γ2 = γ3. (5)

As in [5], we take advantage of the fact that the time scales of evolutionary
processes compared to those of the disease are very different, which allows us to
use a singular perturbation approach to separate the fast and slow dynamics of the
system. For this purpose we introduce new variables, xi = ui/N and yi = vi/N .
These are the fractions of corresponding subpopulations of human hosts. Using
the new notation, we can rewrite the frequencies of the AS and SS individuals
as r = x2 + y2 and s = x3 + y3, respectively. We note for clarification that
x1 + y1 + x2 + y2 + x3 + y3 = 1 and x1 + y1 = 1− r − s. We can replace the set of
variables in the system (4) with the new set of variables: y1, y2, y3, z, r, s, and N ,
which obviously describe important epidemiological, demographic, and population
genetic quantities. System (4) is equivalent to the following system:

ẏ1 = βh1z(1− r − s− y1)− (m1 + γ1 + α1)y1 − y1Ṅ/N,

ẏ2 = βh2z(r − y2)− (m2 + γ2 + α2)y2 − y2Ṅ/N,

ẏ3 = βh3z(s− y3)− (m3 + γ3 + α3)y3 − y3Ṅ/N,

ż = (1− z)
3∑

i=1

βviyi − δz,

ṙ = P2b(N)− α2y2 −m2r − rṄ/N,

ṡ = P3b(N)− α3y3 −m3s− sṄ/N,

Ṅ = N

(
b(N)−m1(1− r − s)−m2r −m3s−

3∑

i=1

αiyi

)
.

(6)

Following the approach in [5] our mathematical analysis is for the specific density
dependent per capita birth function, b(N) = b(1−N/K), where b is a constant (the
maximum birth rate when the host population size is small) and K is approximately
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the density dependent reduction in birth rate. We remark that the full model in [5]
is a five-dimensional system, and the slow system consists of two equations. Here,
the full system (4) is seven-dimensional, and we will show next that the slow system
consists of three equations.

3. Fast dynamics of epidemics. The relevant parameters vary across many or-
ders of magnitude. For example, the demographic parameters (b and mi) and the
genetic parameters (αi) are on the order of 1/decades, and the malaria disease
parameters (βhi, γi, βvi, and δ) are on the order of 1/days. Hence, although the
malaria disease dynamics and the changes in genetic composition are two coupled
processes, the former occurs on a much faster time scale than the latter. Let
mi = εm̃i, αi = εα̃i, and b = εb̃ with ε > 0 being small. We can use this fact
to simplify the mathematical analysis of the full model with the use of singular
perturbation techniques, which allows us to separate the time scales of the different
processes. By letting ε = 0 we obtain the following system for the fast dynamics:

ẏ1 = βh1z(1− r − s− y1)− γ1y1,

ẏ2 = βh2z(r − y2)− γ2y2,

ẏ3 = βh3z(s− y3)− γ3y3,

ż = (1− z)
3∑

i=1

βviyi − δz,

(7)

where r and s are considered parameters which represent genotype frequencies of
AS and SS individuals. Thus, the fast system (7) describes the epidemics of malaria
for a given distribution of genotypes determined by r and s. Let w = r + s. Then,
q ≤ w ≤ 2q. Note that q(t) → 0 if and only if w(t) → 0 as t → ∞. Therefore,
the variable w provides a good measure of the S-gene frequency when studying
persistence properties.

The basic reproductive number for the malaria epidemics can be calculated using
the next generation matrix (see [4]). We keep in mind that, on the fast time scale, r
and s are treated as parameters. Let E0 = (0, 0, 0, 0) be the disease-free equilibrium
(DFE) of the fast system (7). Then from the Jacobian matrix at E0 we obtain the
next generation matrix:

G =




0 0 0 βh1(1−r−s)
δ

0 0 0 βh2r
δ

0 0 0 βh3s
δ

βv1
γ1

βv2
γ2

βv3
γ3

0


 ,

whose leading eigenvalue is
√

βv1βh1(1− r − s)
δγ1

+
βv2βh2r

δγ2
+

βv3βh3s

δγ3
.

This quantity gives the basic reproductive number. However, to simplify the nota-
tion we define our R0 to be this number squared:

R0 =
βv1βh1(1− r − s)

δγ1
+

βv2βh2r

δγ2
+

βv3βh3s

δγ3

=: R1(1− r − s) +R2r +R3s,
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where
Ri =

βviβhi

δγi
, i = 1, 2, 3,

which involves parameters associated with malaria transmission between mosquitoes
and humans of genotype i. In fact, Ri (or

√Ri) is the basic reproductive number
when the host population consists of entirely humans of genotype i. When R0 < 1,
all eigenvalues of G are bounded by 1, and at least one eigenvalue of G will exceed
1 when R0 > 1. This implies that the Jacobian at E0 has all eigenvalues with
negative real parts if R0 < 1 and has at least one eigenvalue with positive real part
if if R0 > 1. We have proved the following result.

Theorem 1. The DFE E0 of the fast system (7) is l.a.s. if R0 < 1 and unstable
if R0 > 1.

The following result also holds as in most endemic models:

Theorem 2. The fast system (7) has no endemic equilibrium when R0 < 1. When
R0 > 1, a unique endemic equilibrium exists and is l.a.s.

Proof. To simplify notations we introduce the variable w = r + s, which represents
the frequency of individuals carrying the S-gene. Using (5) we have R3 = R2.
Then we can rewrite R0 as

R0 = R1(1− w) +R2w.

Let E∗ = (y∗1 , y∗2 , y∗3 , z∗) be a nontrivial equilibrium of the fast system (7); i.e., all
components of E∗ are positive. Then

y∗1 =
Th1z

∗(1− r − s)
1 + Th1z∗

, y∗2 =
Th2z

∗r
1 + Th2z∗

, y∗3 =
Th3z

∗s
1 + Th3z∗

, (8)

where
Thi =

βhi

γi
, i = 1, 2, 3,

and z∗ is a positive solution of a quadratic equation

k0z
2 + k1z + k2 = 0, (9)

with
k0 = Th1Th2 +R1Th2(1− w) +R2Th1w,

k1 = Th1 + Th2 +R1(1− Th2)(1− w) +R2(1− Th1)w,

k2 = 1−R1(1− w)−R2w.

(10)

Here we have used the fact that Th3 = Th2 which is due to (5).
Let R0 = R1(1 − w) + R2w < 1. Then k2 = 1 − R0 > 0. To show that

the equation (9) has no positive solution, it suffices to show that k1 > 0. Let
T0 = max{Th1, Th2}. Then Th1 + Th2 − T0R0 ≥ 0, and

k1 = Th1 + Th2 +R0 −R1Th2(1− w)−R2Th1w

≥ Th1 + Th2 +R0 − T0R0

> 0.

Since k0 is always positive, it follows that both solutions of (9) are negative. There-
fore, E∗ is not biologically feasible.
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Let R0 > 1. Then k2 = 1−R0 < 0. Since k0 > 0, the equation (9) has a unique
positive solution z∗. Let h(z) denote the function of z given by the left-hand side of
(9). Notice that h(0) = k2 < 0, h(1) = 1 + Th1Th2 + Th1 + Th2 > 0, and h(z∗) = 0.
Hence, 0 < z∗ < 1. From (8) we also have that 0 < y∗i < 1, i = 1, 2, 3. It follows
that E∗ = (y∗1 , y∗2 , y∗3 , z∗) exists and is unique.

The stability of E∗ is determined by the eigenvalues of the following matrix H:

H =




−(βh1z
∗ + γ1) 0 0 βh1(1− r − s− y∗1)

0 −(βh2z
∗ + γ2) 0 βh2(r − y∗2)

0 0 −(βh3z
∗ + γ3) βh3(s− y∗3)

βv1(1− z∗) βv2(1− z∗) βv3(1− z∗) −( 3∑

i=1

βviy
∗
i + δ

)




.

The matrix H can be written in the form H = M −D, where

M =




0 0 0 βh1(1− r − s− y∗1)

0 0 0 βh2(r − y∗2)

0 0 0 βh3(s− y∗3)

βv1(1− z∗) βv2(1− z∗) βv3(1− z∗) 0




,

and

D =




βh1z
∗ + γ1 0 0 0
0 βh2z

∗ + γ2 0 0
0 0 βh3z

∗ + γ3 0

0 0 0
3∑

i=1

βviy
∗
i + δ




.

Notice that M ≥ 0; i.e., all elements of M are nonnegative (recall that 1−r−s−y1 =
x1 > 0, r− y2 = x2 > 0, s− y3 = x3 > 0) and D is a diagonal matrix with positive
diagonal elements. It is known that all eigenvalues of H have negative real parts if
and only if the dominant eigenvalue of the matrix MD−1 is less than one. MD−1

has a double zero eigenvalues and two other eigenvalues given by

λ± = ±
√

A1

(
βv1(1− z∗)
βh1z∗ + γ1

)
+ A2

(
βv2(1− z∗)
βh2z∗ + γ2

)
+ A3

(
βv3(1− z∗)
βh3z∗ + γ3

)
,

where

A1 =
βh1(1− r − s− y∗1)

3∑

i=1

βviy
∗
i + δ

, A2 =
βh2(r − y∗2)
3∑

i=1

βviy
∗
i + δ

, A3 =
βh3(s− y∗3)
3∑

i=1

βviy
∗
i + δ

.

Obviously, λ− < 1. Next we show that λ+ < 1. Using the following equalities
(which are obtained by setting the right-hand side of the y1 and z equations in (7)
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equal to zero),

z∗ =

3∑

i=1

βviy
∗
i

3∑

i=1

βviy
∗
i + δ

=
γ1y

∗
1

βh1(1− r − s− y∗1)
,

or

βh1(1− r − s− y∗1)
3∑

i=1

βviy
∗
i + δ

=
γ1y

∗
1

3∑

i=1

βviy
∗
i

,

and noticing that βhiz
∗ + γi > γi, i = 1, 2, 3, we obtain

A1

(
βv1(1− z∗)
βh1z∗ + γ1

)
=

γ1y
∗
1

3∑

i=1

βviy
∗
i

(
βv1(1− z∗)
βh1z∗ + γ1

)
<

βv1y
∗
1(1− z∗)

3∑

i=1

βviy
∗
i

.

Similarly we can obtain the following inequalities:

A2

(
βv2(1− z∗)
βh2z∗ + γ2

)
<

βv2y
∗
2(1− z∗)

3∑

i=1

βviy
∗
i

,

A3

(
βv3(1− z∗)
βh3z∗ + γ3

)
<

βv3y
∗
3(1− z∗)

3∑

i=1

βviy
∗
i

.

Substitution of these inequalities into the expression of λ+ yields

λ2
+ < 1− z∗.

Since 0 < z∗ < 1, it follows that λ+ < 1 and that E∗ is l.a.s.
This finishes the proof.
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4. Slow dynamics of population genetics. By using the rescaled time τ = εt,
we can rewrite the full system (6) as

ε
dy1

dτ
= βh1z(1− r − s− y1)− γ1y1 − ε y1F1(y1, y2, y3, z, r, s, N),

ε
dy2

dτ
= βh2z(r − y2)− γ2y2 − ε y2F2(y1, y2, y3, z, r, s,N),

ε
dy3

dτ
= βh3z(s− y2)− γ3y3 − ε y3F3(y1, y2, y3, z, r, s, N),

ε
dz

dτ
= (1− z)

3∑

i=1

βviyi − δz,

dr

dτ
= (P2 − r)b̃(N)− α̃2y2 + r

(
m̃1(1− r − s)

−m̃2 + m̃2r + m̃3s +
3∑

i=1

α̃iyi

)
,

ds

dτ
= (P3 − s)b̃(N)− α̃3y3 + s

(
m̃1(1− r − s)

−m̃3 + m̃2r + m̃3s +
3∑

i=1

α̃iyi

)
,

dN

dτ
= N

(
b̃(N)− m̃1(1− r − s)− m̃2r − m̃3s−

3∑

i=1

α̃iyi

)
,

(11)

where

Fi = b̃(N)− m̃1(1− r − s) + m̃i − m̃2r − m̃3s + α̃i −
3∑

j=1

α̃jyj , i = 1, 2, 3.

This system has a three-dimensional slow manifold:

M =
{

(y1, y2, y3, z, r, s, N) : yi = y∗i (r, s, N), i = 1, 2, 3, z = z∗(r, s, N)
}

,

which is normally hyperbolically stable, as it consists of a set of such equilibria E∗

of the fast system (7). The functions y∗i , i = 1, 2, 3, and z∗ are given in (8) and (9).
The slow dynamics on M are described by the equations

dr

dτ
= (P2 − r)b̃(N)− α̃2y

∗
2 + r

(
m̃1(1− r − s)

−m̃2 + m̃2r + m̃3s +
3∑

i=1

α̃iy
∗
i

)
,

ds

dτ
= (P3 − s)b̃(N)− α̃3y

∗
3 + s

(
m̃1(1− r − s)

−m̃3 + m̃2r + m̃3s +
3∑

i=1

α̃iy
∗
i

)
,

dN

dτ
= N

(
b̃(N)− m̃1(1− r − s)− m̃2r − m̃3s−

3∑

i=1

α̃iy
∗
i

)
,

(12)



476 ZHILAN FENG, CARLOS CASTILLO-CHAVEZ

0.1 0.2 0.3
q

0.5

1
N
´
1
0
4

HaL

æ

0.1 0.2 0.3
q

0.5

1

N
´
1
0
4

HbL

æ

Figure 1. Phase portraits of system (12) in the (q,N) plane (q =
r/2 + s). For (a) and (b) all parameters are equal except ν2 and
ν3. In (a) ν2 = ν3 = 5 × 10−5 for which F > 0. It shows that
there is a stable interior equilibria (represented by a “•”). In (b)
ν2 = ν3 = 6 × 10−5 for which F < 0. It shows that there is no
interior equilibrium and that the only stable equilibrium is on the
N -axis. Other parameter values are given in the text.

where

P2 =
(

1− r

2
− s

)(
r + 2s

)
, P3 =

(
r

2
+ s

)2

,

and again y∗1 , y∗2 , y∗3 and z∗ are given in (8) and (9).
Since M is normally hyperbolically stable, geometric theory of singular perturba-

tions due to Fenichel [7] allows us to study the system (11) by studying the reduced
slow system (12) (see [6] for more details). In other words, if the dynamics of system
(12) can be characterized with bifurcations, then the bifurcating dynamics on the
slow manifold M are structurally stable and hence robust, subject to perturbations.
Therefore, results from the slow system will provide bifurcation properties of the
system (11) as well as the full system (6).

Some interesting scenarios are illustrated in Figure 1, which shows numerical
solutions of the slow system for two sets of parameter values. The frequency of
the S-gene is q = r/2 + s. The two sets of parameters used for the figures are
chosen to give positive (Figure 1(a)) and negative (Figure 1(b)) values, respec-
tively, of the S-gene fitness F (whose definition is given in the next section). Fig-
ure 1(b) shows that the boundary equilibrium on the N -axis of the slow system
is a global attractor for negative fitness. When the fitness is positive, Figure 1(a)
shows that it is possible for the S-gene to be maintained provided that the initial
density of the S-gene is not too low. One of the important features of this cou-
pled system is the possibility of multiple interior equilibria (see Figure 1(a)) and
the bistability of two nontrivial equilibria (represented by the solid circle). The
parameter values used are βh1 = 0.04, βh2 = βh3 = 0.03, βv1 = βv2 = βv3 = 0.03,
δ = 0.1, γ1 = γ2 = γ3 = 0.01, α1 = 2.3× 10−4, α2 = α3 = 2× 10−4, m = 4× 10−5,
b = 3.4× 10−4, and K = 10000. These outcomes are usually absent in population
genetic models without a dynamic disease process.
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5. Fitness of the S-gene. Recall that q = r/2 + s is the S-gene frequency. The
invasion ability of the S-gene can be described by

1
q

dq

dτ

∣∣∣∣
q=0

.

We will use this quantity to define the fitness of the S-gene, F . Consider the case
when ν3 = ν2 > 0; i.e., the extra death rate due to the S-gene in AS and SS
individuals is equal. Then m3 = m2, and using the r and s equations in (12) we
get

dq

dτ
=

(
1
2
P2 + P3 − q

)
b̃(N)− 1

2
α̃2y

∗
2 − α̃3y

∗
3 + q

(
m̃1(1− r − s)

−m̃2 + m̃2r + m̃3s +
3∑

i=1

α̃iy
∗
i

)
.

(13)

Since 0 ≤ r, s ≤ q, we have r = s = 0 if q = 0. Using (8) and (9), and noticing
that α̃3 = α̃2 and Th3 = Th2, we have

1
q

(
1
2
α̃2y

∗
2 + α̃3y

∗
3

)∣∣∣∣
q=0

=
α̃2Th2z

∗

1 + Th2z∗

∣∣∣∣
r=s=0

=
α̃2Th2(R1 − 1)

(1 + Th2)R1 + Th1 − Th2
.

(14)

Here, we have used the fact that z∗|r=s=0 = (R1− 1)/(R1 +Th1) and the following
relation between ki, i=0, 1, 2 (see (10)):

k2
1 − 4k0k2

∣∣
r=s=0

=
(

Th1 − Th2 +R1(1 + Th2)
)2

.

We can also show that

y∗1
∣∣
q=0

=
Th1z

∗

1 + Th1z∗

∣∣∣∣
r=s=0

=
Th1(R1 − 1)
(1 + Th1)R1

, (15)

and
1
q

(
1
2
P2 + P3 − q

)∣∣∣∣
q=0

= 0. (16)

It follows from (13)-(16) that the fitness of the S-gene is given by

F =
1
q

dq

dτ

∣∣∣∣
q=0

= m̃1 + W1α̃1 −
(
m̃2 + W2α̃2

)
, (17)

where

W1 =
Th1(R1 − 1)
(1 + Th1)R1

, W2 =
Th2(R1 − 1)

(1 + Th2)R1 + Th1 − Th2
. (18)

Clearly, F is determined by the difference of weighted death rates between the non-
sickled (AA) and sickled (AS and SS) individuals, and the weights, W1 and W2,
depend only on epidemiological parameters. This allows us to explore the effect of
malaria epidemics on the distribution of genotypes.

The following result confirms that the fitness F defined above indeed determines
the invasion ability of the S-gene.

Theorem 3. The slow system (12) has a trivial equilibrium U0 = (0, 0, N0), where

N0 = K
(
1− (m̃1 + α̃1y

∗
1)/b̃

)
. U0 is l.a.s. if F < 0 and unstable if F > 0.
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Proof. We first notice that (see (14), (15), and (18))

Th1z
∗

1 + Th1z∗

∣∣∣∣
r=s=0

= W1,

Th3z
∗

1 + Th3z∗

∣∣∣∣
r=s=0

=
Th2z

∗

1 + Th2z∗

∣∣∣∣
r=s=0

= W2.

Then the Jacobian matrix at U0 can be written

J =




m̃1 + W1α̃1 −
(
m̃2 + W2α̃2

)
b̃(N0) 0

0 m̃1 + W1α̃1 −
(
m̃3 + W2α̃3

)
0

∗ ∗ − b̃N0

K


 ,

where a “∗” denotes a number that does not affect the eigenvalues of J . Since
α̃3 = α̃2 and m̃3 = m̃2 we know that the three eigenvalues of J are

λ1 = λ2 = F , λ3 = − b̃N0

K
.

Therefore, J has three negative eigenvalues if F < 0 and has a positive eigenvalue
if F > 0. This completes the proof.

Theorem 3 implies that the S-gene cannot invade if the fitness is negative and
that the invasion is possible if the fitness is positive. This result is confirmed
by numerical computations of the slow system (see Figure 1). Figure 1(a) is for
the case F > 0, which shows that there is a locally asymptotically stable interior
equilibrium, and Figure 1(b) is for the case F < 0, which shows that there is no
interior equilibrium and that the boundary equilibrium on the N -axis is a global
attractor. These numerical results also suggest that the fitness measure given by F
provides a criterion not only for invasion but also for the possible maintenance of the
S-gene. Figure 1(a) shows that the S-gene can establish itself if its initial frequency
is not too low. Notice from (17) and (18) that the fitness F is influenced by several
of the parameters associated with malaria epidemiology. Figure 2(a) illustrates the
joint effect of βh1 (malaria infection rate of type 1 humans) and γ1 (recovery rate
from malaria of type 1 humans) on the fitness. A contour plot of Figure 2(a) is
shown in Figure 2(b), which can also be viewed as a bifurcation diagram in the
parameter plane (γ1, βh1) indicating the region in which U0 is stable (F < 0) or
unstable (F > 0). This bifurcation is confirmed by our numerical simulations of
the system (see Figures 1 and 3).

The slow system (12) can also have multiple interior equilibria and bistable non-
trivial equilibria when the fitness is positive. Figure 3(a) is a phase portrait showing
that there are two interior equilibria with one of them locally asymptotically stable
(represented by a solid circle) while the other one unstable (a saddle, represented
by a solid triangle). There is another stable equilibrium on the the N -axis. Figure
3(b) is a time plot showing the two locally stable equilibria. Parameter values for
this figure are the same as those used for Figure 1 except that βv2 = βv3 = 0.12.

6. Discussion. We extended the model in [5] by including all three genotypes of
individuals. More complexity is introduced by adding the additional subpopulation
of SS individuals, which increased the dimension of the full system from 5 to 7 and
the dimension of the slow system from 2 to 3. However, the qualitative behaviors
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Figure 2. (a) Fitness F vs γ1 and βh1. (b) A contour plot showing
the region in the (γ1, βh1) plane in which the fitness is positive
(F > 0) or negative (F < 0).
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Figure 3. The slow system (12) can have multiple interior equi-
libria and bistable nontrivial equilibria when the fitness is positive.
Figure 3(a) is a phase portrait showing that there are two interior
equilibria, with one of them locally asymptotically stable It shows
that (represented by a solid circle) and the other one unstable (rep-
resented by a solid triangle). There is another stable equilibrium
on the the N -axis. Figure 3(b) is a time plot showing the two
locally stable equilibria. Parameter values for this figure are the
same as those used for Figure 1 except that βv2 = βv3 = 0.12.

of the two models seem to be the same. By coupling the malaria epidemiology and
the sickle-cell genetics we investigate how the epidemiological and demographic
parameters may affect the fitness of the sickle-cell gene. We derived threshold
conditions which allow us to explore the impact of malaria disease dynamics on the
genetic composition of the human population. From these threshold conditions,
we can draw conclusions similar to those obtained in [5]. For example, whether
the rare gene will go to extinction or persist in a population (on the slow time
scale) is determined by the fitness coefficient of the gene, and this fitness coefficient
depends not only on parameters related to the genetics of the S-gene but also on
the parameters associated with malaria epidemiology which determine the disease
prevalence. Our analytic results consider the ability of a rare gene to invade a
host population composed of mainly wild-type individuals. This invasion ability
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provides a measure for the fitness of the S-gene F . Our numerical studies indicate
that when F > 0 the S-gene not only can invade but also will be maintained in the
host population. Moreover, the slow system (host population genetics) can have
multiple interior equilibria and multiple stable nontrivial equilibria. This occurs
when F is negative but close to zero. In this case, although the S-gene cannot
invade when its initial frequency is low, it may be able to establish itself if its value
becomes large due to some stochastic perturbations (e.g., environmental changes).
The main findings from this model are 1) the S-gene may be selected for if the
selection force from malaria is strong; and 2) multiple stable equilibria are possible.
These types of population dynamics are not observed in most models of population
genetics models without coupling malaria epidemiology.

One would expect this malaria-sickle cell system to exhibit oscillatory behaviors
under certain conditions for coexistence. Intuitively, the frequency of the sickle-cell
gene will decrease in the absence of malaria due to a higher S-gene-related death
rate in the SS and AS individuals than in the homozygote wild-type individuals
(AA). On the other hand, the S-gene may be selected for if the endemic level of
malaria is sufficiently high, and consequently polymorphism in the host population
may be maintained in an oscillatory manner. However, as is seen in [5], the ODE
system (12) or (4) does not produce periodic solutions. To observe such oscillatory
dynamics we looked at a further extension of the model to include a time delay in
the density dependence of the birth function. For example, if we choose the birth
function in system (12) to be of the form b̃[1 − N(t − T )/K], where T denotes a
constant time delay, then the modified system is capable of producing oscillations
(see Figure 4). From (13) and (16) we see that the introduction of delay will not
affect the formula for the fitness F given in (17). Notice that m2 −m1 = ν, where
ν is the extra death rate of individuals with the S-gene. Rewrite this formula (17)
as

F = W1α̃1 −W2α̃2 − ν.

The first two terms involve only malaria-associated parameters with the property
W1α̃1−W2α̃2 > 0. Therefore, the sign of F is determined by the genetic parameter
ν if all the malaria related parameters are fixed.

Our numerical simulations of the slow system (12) show that there exists a critical
value νc such that solutions converge to a positive equilibrium for ν > νc (top panel
of Figure 4) and that oscillations occur for ν < νc (middle panel of Figure 4) for
a given value of the delay T = 0.25. We can also fix the value of ν and vary
T to observe the switching from a stable equilibrium to periodic oscillations. For
example, the top and bottom figures in Figure 4 have the same ν value but different
T values. Other parameter values used are βh1 = 0.4, βh2 = βh3 = 0.1, βv1 = 0.3,
βv2 = βv3 = 0.1, δ = 0.05, γ1 = 0.05, γ2 = γ3 = 0.06, α̃1 = 3, α̃2 = α̃3 = 1,
m̃1 = 0.1, m̃2 = m̃1 + ν1, m̃3 = m̃2 + 0.25, b̃ = 7.8, and K = 10000. Figure 5
shows that the full system (4) also exhibits similar dynamics as that of the slow
system (12). From the oscillatory solutions (see Figure 6) we observe that for most
of the time the change in the gene frequency q (= r/2+s) follows the change in the
endemic level of malaria (i.e., the fraction of total infected people y =: y1 +y2 +y3).
For example, q increases with increasing y until y reaches its maximum. Soon after
y starts decreasing, q also starts decreasing, until y reaches its minimum.

Other modifications of the model may also lead to periodic solutions. We have
only presented a simple example. In any case, by explicitly coupling the malaria
disease dynamics with changes in the frequency of the S-gene, our model allows
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Figure 4. Numerical solutions of system (12). For the top and
middle panels the time delay is T = 0.25. The top panel is for
ν > 0.85 (ν = 1), in which case solutions converge to the interior
equilibrium. The middle panel is for ν < 0.85 (ν = 0.2), in which
case a stable periodic solution exists. The bottom panel is for the
same ν value as that in the top panel (ν = 1) but a different value
for the delay (T = 0.3). A stable periodic solution also exists in
this case. In fact, stable periodic solutions exist for all T > 0.27.
The three plots on the right are phase portraits in the (s, r,N)
space for corresponding sets of parameter values.

us to explore how human population genetics respond to the prevalence of malaria
which provides a dynamic environment. These results cannot be obtained with
genetic models that assume a static environment.

Acknowledgments. The research of Feng was supported in part by NSF grant
DMS-0314575 and by James S. McDonnell Foundation 21st-Century Science Ini-
tiative. We thank the anonymous referees for valuable suggestions that improved
this paper.



482 ZHILAN FENG, CARLOS CASTILLO-CHAVEZ

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

t

r

0 10 20 30 40 50
0.25

0.3

0.35

0.4

0.45

t

s

0.4
0.6

0.8

0

0.5
0

1

2

x 10
4

rs

N

0.2
0.4

0.6
0.8

0

0.5
0.4

0.6

0.8

1

rs

z

Figure 5. Numerical solutions of the full system (4). Behaviors
of the solutions of the full system (e.g., the lower-right, is a phase
portrait in the (s, r, z) space) are similar to those given by the slow
system (12).

47 47.5 48 48.5 49 49.5 50
0.66

0.68

0.7

0.72

0.74

0.76

0.78

t

Figure 6. Plots of malaria endemicity (y1 + y2 + y3 multiplied by
6, the thinner line) and S-gene frequency (q = r/2 + s, the thicker
line) versus time t. The parameters have the same values as those
used in the middle panel of Figure 3 except that ν = 0.45.



INFLUENCE OF INFECTIOUS DISEASES ON POPULATION GENETICS 483

REFERENCES

[1] Andreasen, V. 1993. Disease-induced natural selection in a diploid host. Theo. Population
Biol., 44 (3), 261-298.

[2] Beck, K., J.P. Keener, and P. Ricciardi. 1984. The effect of epidemics on genetic evolution.
J. Math. Bio., 19, 79-94.

[3] Castillo-Chavez, C. and Z. Feng. 1997. To treat or not to treat: the case of tuberculosis.
Journal of Mathematical Biology, 35, 629-659.

[4] Diekmann, O., J.A.P. Heesterbeek and J.A.J Metz. 1990. On the definition and the com-
putation of the basic reproduction ratio in models for infectious diseases in heterogeneous
population. Journal of Math. Bio., 28, 365-382.

[5] Feng, Z., D.L. Smith, F.E. McKenzie and S.A. Levin. 2004a. Coupling ecology and evolution:
malaria and the S-gene across time scales. Mathematical Biosciences, 189(1), 1-19.

[6] Feng, Z., Y. Yi and H. Zhu. 2004b. Malaria epidemics and the sickle-cell genetic dynamics.
Journal of Dynamics and Differential Equations, 16(4), 869-896.

[7] Fenichel, N. 1979. Geometric singular perturbation theory for ordinary differential equations.
J. Diff. Eqn., 31, 53-98.

[8] Galvani, A.P. and M.W. Slatkin. 2003. Evaluating plague and smallpox as historical selective
pressures for the CCR5−∆32 HIV-resistance allele. PNAS 100(25), 15276-15279.

[9] Galvani, A.P. and M.W. Slatkin. 2004. Intense selection in an age-structured population.
Proceedings of the Royal Society London Series B 271(1535), 171-176.

[10] May, R.M. and R.M. Anderson. 1983. Epidemiology and genetics in the coevolution of
parasites and hosts. Proc. Roy. Soc. London. B, 219 (1216), 281-313.

[11] McKenzie, F.E. et al. 1998. Discrete-event simulation models of Plasmodium falciparum
malaria. Simulation, 71, 250-261.

[12] McKenzie, F.E. and W. H. Bossert. 1997. The dynamics of Plasmodium falciparum blood-
stage infection. J. Theo. Bio., 188 (1), 127-140.

[13] Hsu-Schmitz, S. 2002. Effects of genetic heterogeneity on HIV transmission in homosexual
populations. in: Mathematical approaches for emerging and reemerging infectious diseases:
Models, methods, and theory, C. Castillo-Chavez et al. (eds.), IMA, 126, 245-260.

Received on May 20, 2005. Accepted on January 17, 2006.

E-mail address: zfeng@math.purdue.edu

E-mail address: chavez@math.la.asu.edu


