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ABSTRACT. Two new stochastic epidemic models, a continuous-time Markov
chain model and a stochastic differential equation model, are formulated.
These are based on a deterministic model that includes vaccination and is
applicable to pertussis. For some parameter values, the deterministic model
exhibits a backward bifurcation if the vaccine is imperfect. Thus a region
of bistability exists in a subset of parameter space. The dynamics of the
stochastic epidemic models are investigated in this region of bistability, and
compared with those of the deterministic model. In this region the probability
distribution associated with the infective population exhibits bimodality with
one mode at the disease-free equilibrium and the other at the larger endemic
equilibrium. For population sizes N > 1000, the deterministic and stochastic
models agree, but for small population sizes the stochastic models indicate
that the backward bifurcation may have little effect on the disease dynamics.

1. Introduction. Two stochastic epidemic models are formulated based on an
epidemic model applicable to pertussis. The epidemic model includes vaccination
and is referred to as an SIVRS epidemic model, where the classes (disease states)
contain susceptible, infective, recovered, and vaccinated individuals. The determin-
istic model was analyzed by Arino et al. [1] and was shown to exhibit a backward
bifurcation for some parameter values if the vaccine is imperfect. There exists a
region of bistability in a subset of parameter space with a locally stable endemic
equilibrium and a locally stable disease-free equilibrium. Outside the region of
bistability, either the disease-free equilibrium or a unique endemic equilibrium is
globally stable. Backward bifurcation has also been observed in other epidemic
models, for example, multigroup models analysed by Hadeler and coauthors [2, 3].
Our goal in this investigation is to compare the dynamics of the deterministic and
the stochastic epidemic models in this region of bistability. The stochastic models
are a continuous-time Markov chain model and a stochastic differential equation
model. The stochastic differential equation model is a new formulation that is
derived from the Markov chain model [4, 5].
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Numerous stochastic models based on the well-known SIS and SIR epidemic
models have been used to investigate questions regarding the dynamics of an epi-
demic. For example, the duration of an epidemic, the probability of an outbreak,
the probability that the epidemic ends, the final size distribution, and the qua-
sistationary distribution have been investigated using stochastic models (see, e.g.,
[6, 7, 8,9, 10, 11, 12, 13, 14, 15] and references therein). The stochastic epidemic
models in these studies have been based primarily on continuous-time Markov chain
(CTMC) models and none of these studies have investigated the phenomenon of
a backward bifurcation. Here, a new formulation based on stochastic differential
equations (SDEs) is presented, and the stochastic dynamics in the region of bista-
bility are investigated.

In the next section, the deterministic pertussis model is described. This model
is also applicable for other relatively mild diseases for which an imperfect vaccine
is available (e.g., some strains of influenza). Then the CTMC model and the SDE
model are formulated based on the deterministic model. It is shown for the SDE
model that with large population sizes the variance in the random variables for pro-
portions scales on the order of 1/N, where N is the total population size. Hence,
for large population sizes, there is close agreement between the stochastic and de-
terministic models. In addition, at the disease-free equilibrium, it is shown that the
expected values of the random variables agree with the solution to the deterministic
model. Through extensive numerical simulations, the dynamics of the CTMC and
the SDE models are investigated with the parameter values chosen within or close
to the region of bistability. The probability of disease extinction and the probability
distribution for the number of infective individuals are computed and compared to
the results for the deterministic model.

2. Model formulations. First, we describe the deterministic epidemic model that
was analyzed by Arino et al. [1]. The model consists of four differential equations,
one for each of the four disease states: susceptible, infective, recovered, and vac-
cinated, with the number in each class denoted by S(t), I(t), R(t), and V(¢),
respectively. Second, we develop two stochastic models based on the deterministic
model, a CTMC model and an SDE model. The stochastic variability in these
models is due to the variability in the birth, death, and infection processes and
does not account for environmental variability.

2.1. Deterministic model. The system of differential equations for the deter-
ministic model [1] is

% - d(N—S)fﬁ%f¢S+9V+uR,
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% = ~yI—(d+ V)R, (1)
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where N is the constant total population size; thus S(¢) + I(t) + R(¢t) + V(t) = N.
Parameter (3 is the transmission rate, d is the natural death rate (=birth rate), v
is the recovery rate, v is the rate of loss of immunity, ¢ is the vaccination rate, and
0 is the rate of vaccine waning. For pertussis, realistic parameter values for v, d,
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¢, and 6 are given in [1, Table 1]; see Table 1 below. Parameters S and v were
chosen to heighten the backward bifurcation effect [1]. For the parameter set chosen,
vaccine induced immunity wanes on the order of five years (parameter 6), whereas
natural immunity (parameter v) lasts only a month. This latter assumption may
be biologically unrealistic. Natural immunity from pertussis infection may last on
the order of years. However, our goal in parameter selection was to emphasize the
region of bistability.

TABLE 1. Basic parameter values.

Parameter Value
i) 1/(2.5 days)
1/(21 days)
1/(75 years)
(
(
(

1/(31 days)
1/(20 days)
1/(5 years)

O R a2

The vaccine is assumed to be useful but imperfect. Thus the vaccine efficacy,
denoted by 1—o0, lies in the interval (0,1). When o = 1, the vaccine is totally useless
and when o = 0 the vaccine is perfect (vaccination is 100% effective). A similar
model that includes input (immigration) of infectives is considered by Alexander
et al. [16].

Because the total population size is constant, the number of susceptible individ-
uals can be expressed in terms of the other variables, S(t) = N —I(t) — R(t) — V (¢).
In addition, the three state variables, I, R, and V, can be expressed as proportions
i=I/N,r=R/N,v=V/N,and s = 1—4—r —v. Then model (1) can be
simplified as follows:

% = fsi+ofvi— (d+ )i

dr ,

o = - (d+v)r (2)
dv .

il ¢s — (d+ 0)v — opuvi.

For some parameter values with 0 < o < 1, model (1) exhibits a backward
bifurcation, which is a result of the vaccine being imperfect [1]. The vaccination
reproduction number for model (1) is

d+ 60+ o¢
d+0+¢’

where Ry = (/(d + 7), the well-known basic reproduction number for an SIR
epidemic model without vaccination. If ¢ = 1, then R,,. = Ry, and for 0 < ¢ < 1,
Ryac < Ry. For o € [0.08866,0.10884] and the parameter values in Table 1, model
(1) exhibits bistability. The bifurcation diagram is illustrated in Figure 1 for the
parameter values in Table 1 and N = 200. For other population sizes N, the
bifurcation diagram has exactly the same shape; the only change is the range on
the vertical axis which is approximately [0, N/4] (e.g., for N = 1000, the range
on the vertical axis is approximately [0,250]). The basic reproduction number
Ry = 8.3936 > 1, but the vaccination reproduction number satisfies R4, < 1 for

Rvac = RO
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0 < 0.10884 and R, > 1 for o > 0.10884. The region of bistability extends from

the saddle node bifurcation at o = 0.08866 (corresponding to R,.. = 0.8326) to
the transcritial bifurcation at o = 0.10884 (corresponding to Ryq. = 1).
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FIGURE 1. Bifurcation diagram for model (1) illustrating the sta-
ble (solid curve) and unstable equilibrium values (dashed curve) for
the infective state I in terms of the bifurcation parameter o. The
basic parameter values are given in Table 1. The total population
size is N = 200.

2.2. Continuous-time Markov chain model. Let S(t), Z(t), R(¢), and V(t)
denote discrete random variables for the susceptible, infective, recovered, and vac-
cinated individuals, respectively, at time t. (Random variables are denoted with
calligraphic letters.) Because the random variable S(¢) can be expressed in terms
of the other random variables, S(t) = N —Z(t) — R(t) — V(t), the CTMC model is
described in terms of the dynamics of the three random variables Z(t), R(¢), and
V(t). Then
Z(t), R(t), V() €{0,1,2,...,N}

and Z(t) + R(¢t) + V(t) < N. Let the change in these random variables during the
period t to t + At be denoted as AZ, AR and AV; e.g., AT = Z(t + At) — Z(¢t).

The infinitesimal transition probabilities that describe this multivariate Markov
process are given by

Prob{(AZ, AR, AV) = (i, 5, k)|(Z,R,V)}

(BST/N)At + o(At),  (i,4,k) = (1,0,0)
dTAt + o(At), (i,5,k) = (—1,0,0)
YIAL + o(At), (4,5, k) = (=1,1,0)

=< (d+v)RAt+o(At),  (i,j, k)= (0,—1,0) (3)
(cBVI/N)At + o(At), (i,4,k) = (1,0,-1)
(d+0)VAt+o(At),  (i,j,k) = (0,0,—1)
GSAt + o( At), (i,7,k) = (0,0,1),

where Z =Z(t), R = R(t) and V = V(¢t). The probability of no change,
Prob{AZ,AR,AV) = (0,0,0)|(Z,R,V)},
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equals
1-B(S+V)I/N+dZ+R+V)+~I+vR+ 60V + ¢S] At + o(At).

The probabilities of all other changes in state during the time interval At are o(At),
and the process is time-homogeneous.

Let lower case letters s, i, , and v denote the values of the random variables,
S, Z, R and V. The joint probability function p;.,(t) = Prob{Z(t) = i, R(t) =
r,V(t) = v} is the solution of the forward Kolmogorov differential equations,

dpire s+1)(i—1 ) )
I()it = ﬂ%pi—l,r,v +d(i + Dpig1rw + 70+ D)pigir—1,0
v+1)(z—1
+ (d + V)(T + 1)pi,r+1,v + Uﬁ%pi—l,r,v—i—l
+ ¢(8 + 1)pi,r,v71 + (d + 9)(7} + 1)pi,r,v+1
—[B(s+0v)i/N +d(i+7r+v)+vi+vr+ 0v+ ¢s] piry.
For large N, this system of nonlinear differential equations for ¢,r,v € {0,1,..., N}

and ¢ +r + v < N becomes very complex.

One alternate method for analyzing the stochastic model behavior is through
the expectation and higher moments. Differential equations for the expectation
and higher-order moments can be derived for each random variable [17, 18]. How-
ever, as in the case for the forward Kolmogorov differential equations, each moment
equation depends on higher-order moments that together form an infinite system of
differential equations. Isham [17] and Lloyd [18] applied moment closure techniques
to SIS, SIR, and SEIR stochastic epidemic models to approximate the higher-order
moments in these equations. Their methods reduce the number of differential equa-
tions so that approximate solutions can be obtained for the first few moments.
There are special cases for which these approximation techniques are not required,
since the system simplifies to a linear one.

In the special case Z = 0, the joint probability function p,,(t) = Prob{R(t) =
r,V(t) = v} is linear. Then it easily follows that the differential equations for the
expectations of R and V do not depend on higher-order moments and are also
linear; i.e.,

w = —(d+v)E(R(),
w = GE(S() - (d+O)EV()), (4)

where E(S(t)) = N — E(R(t)) — E(V(t)). Note that the preceding system of dif-
ferential equations agrees with (1) when I(¢t) = 0. That is, the solutions for the
expectations of the random variables R and V in (4) are equal to those for R and V'
in (1) when I(¢) = 0 and the initial conditions are equal, namely, R(0) = E(R(0))
and V(0) = E(V(0)). Since our goal is to study the behavior when Z # 0, we
use numerical simulations based on the transition probabilities (instead of apply-
ing the forward Kolmogorov equations or moment closure techniques) to study the
stochastic model behavior.

2.3. Stochastic differential equation model. To derive an SDE model, let Z(t),
R(t), and V(¢) denote continuous random variables for the number of infective,
recovered, and vaccinated individuals, respectively, at time ¢. Let X (¢) denote the
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random vector, X (t) = (Z(t), R(t),V(t))T. Then
Z(t), R(t),V(t) € [0, N]

and Z(t) + R(t) + V(t) < N. A system of SDEs can be derived by applying the
transition probabilities (3) for a fixed time step At. The method of derivation is
described briefly (for more details see [4, 5]).

Let AX(t) = X(t + At) — X(t) = (AZ(t),AR(t),AV(t))T denote the random
vector for the change in the random variables during the time interval At. Assume
AX(t) is normally distributed. The expectation vector E(AX(¢)) and the covari-
ance matrix L(AX(¢)) associated with AX(t) are now computed. Based on the
infinitesimal transition probabilities (3), the expected change to order At is

ST VI
HW + Uﬁﬁ - ([d+7)7I
I —(d+v)R At + o(At)
VI
¢S — (d+0)V — aﬁﬁ
—  u(X(0)At + o(AD),
whereZ=7Z(t), R=R(t),V=V(t) and S = S(t) = N -Z(t) —R(t) — V(t). Notice
that the expectation vector has the same form as the system of ordinary differential
equations (1).
The covariance matrix to order At is a positive definite symmetric matrix of the
form

E(AX (1))

€11 C12 (13

Y(AX(t)) = |c2 c2 0 ) At+o(At)
ciz 0 cs3
= C(X(t)At + o(At),
where the entries of the matrix C'(X(t)) are
ST Vi
1 = ﬁﬁ-f—aﬂw—i—(d—i—'y)l',
c22 = I+ (d+v)R,
VI

C33 = ¢S+(d+9)V+aﬁF
cr2 = 71

VI
C13 = 7Uﬁﬁ

By assumption for small At,
AX(t) ~ N(u(X(t)At, C(X(t))At).

Because C(X(t)) is positive definite, it has a unique square root denoted as A(X (t))
= /C(X(t)) [19]. The random vector AX(t) can be expressed in a simpler form
using the standard normal vector n = (91, 72,13)7 ~ N(0,I), where I is the 3 x 3
identity matrix,

AX(t) = p(X (1)) At + A(X (1) VAL 7.

Therefore,

X(t+ At) = X(t) + AX (1) ~ X(t) + (X ()AL + A(X(8)VALy (5)
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has an approximate normal distribution,
X(t+ At) ~ N(X(t) + u(X(t))At, C(X(t))Atl).

Equation (5) is an Euler approximation of an It6 SDE for X'(t) with time step At
[20, 21]. If u and A satisfy certain smoothness and growth conditions in the time
and the state variables, then X(¢) converges in the mean square sense as At — 0
to the solution of the Ité6 SDE

dX(t) dW(t) 7 (6)
dt dt

where W(t) = (W (t), Wa(t), Ws(t))T is a 3-dimensional Wiener process [21]. The
terms pu(X(t)) and A(X(¢)) are known as the drift and diffusion terms, respectively.
If the diffusion term is set to zero, then (6) has the same form as the ordinary
differential equations in (1).

The SDEs can be simplified further by considering proportions. Let the random
variables for proportions be scaled by the population size (denoted by bold face
letters): i=Z/N,r =R/N,v=V/N,ands =1— (i+r+ v), where N is the
constant population size. Dividing X = (Z,R, V)T given in (6) by N leads to

AX(@)/N) _ (X)) | AX(E)) dV(E)

it N TN dt (7)

— u(X() + AX(2))

where

AX(t) _ JOERD)N _ OXW)

N VN VN
Matrix C(X(t))/N = C(X(t)) = (&;) is a symmetric matrix with entries ¢; the
same as c;j, except S, I, R, V, and N are replaced by s, i, 7, v, and 1, respectively.
In this case, the diffusion term is proportional to 1/\/N, as in Kurtz [22], and the
variance for the change in proportions is proportional to 1/N. When i = 0 the
expectations of the random variables r and v satisfy the same system of differential
equations as the deterministic model in (2).

Kurtz [22] was the first to state that for sufficiently large population sizes N
solutions to the CTMC and the SDE models are close but he did not provide a
derivation for this relationship. In our derivation, convergence from the Markov
chain model to the SDE model depends on the discrete time step At — 0 and
the assumption of normality on the change of the population size. Our derivation
provides a straightforward method for formulating the SDE model based on the
CTMC model. In addition, our formulation of the SDE model in (7) shows that
the variance for the change in proportions d(X/N)/dt is inversely proportional to
the population size. These relationships among the ODE and the stochastic models
are very useful but are not well known in mathematical epidemiology.

3. Numerical examples. Stochastic epidemic models often have expected values
that are close to the solution of their analogous deterministic model when a unique
endemic equilibrium exists, provided the population size N and the initial condi-
tions are not too small. For small population sizes or small initial conditions, the
stochastic effects may cause population or disease extinction. In the case of bista-
bility, other factors may be significant, such as the size of the basin of attraction
for the equilibria. Stochastic sample paths may enter different basins of attraction
and tend toward either equilibrium [23, 24].
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In the next two subsections, the probability that the epidemic ends (proba-
bility of disease extinction) and the probability distribution associated with the
infective population are investigated for different population sizes and initial con-
ditions. First, the probability of disease extinction is numerically approximated in
the CTMC model for a range of population sizes. Then the probability distribution
(quasistationary distribution) associated with the random variable Z(t) is approxi-
mated for large IV after a period of five years for parameter values within the region
of bistability. The CTMC model is used for most of the numerical computations.
The SDE model is used to compute the probability distribution for infectives for
large N and is compared to the distribution of the CTMC model.

3.1. Probability of disease extinction. Three different population sizes, N =
50, 200, and 1000, are considered. For ¢ = 0.08, 0.10, and 0.12, the probability
that the epidemic ends (disease extinction) is computed as a function of time; that
is,
Prob{Z(t) =0}

for ¢ over a five-year period. When the epidemic ends, the stochastic model ap-
proaches the disease-free equilibrium (an absorbing state). This asymptotic be-
havior always occurs in the stochastic model but the time until absorption can be
extremely long, especially for large population sizes. Therefore, we compare the
dynamics of the deterministic and the stochastic models for a period of time up to
five years. The asymptotic dynamics for the deterministic model at the three values
of o are quite different from the stochastic model. For the deterministic model, at
o = 0.08, the disease-free equilibrium is globally stable. At ¢ = 0.10, there are two
endemic equilibria and the disease-free equilibrium, the endemic equilibrium with
the larger number of infectives is locally stable as well as the disease-free equilibrium
(region of bistability). At o = 0.12, there is a globally stable endemic equilibrium
(the disease-free equilibrium is unstable). The endemic equilibrium values for the
infective state I in the deteministic model are given in Table 2.

TABLE 2. Stable (unstable) endemic equilibrium values for the
infective state 1.

g
N [0.08 0.10 0.12
50 | 0 9.662 (1.1556) 11.925
0
0

200 38.65 (4.622)  47.70
1000 193.25 (23.11) 2385

Based on 5000 sample paths, estimates for the probability of disease extinction
are graphed in Figure 2. For N = 200 and 1000, the curves for large o are almost
coincident with the time axes. For some values of o, the probability that the
epidemic ends depends on the choice of the initial conditions. Here we chose initial
values (I(0) = 5, R(0) = 0, and V(0) = 0) so that the deterministic solution
for o > 0.08866 approaches the stable endemic equilibrium. For I(0) = 5, the
infective population size does not immediately hit zero (extinction with probability
one). This can be seen in the slight lags in Figure 2, prior to the increase in the
probabilities of disease extinction. For N = 50, the rapid rise in the probabilities
for all three values of o also illustrates the large impact that stochastic variability
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has on small infective population sizes (rapid absorption). After five years (1825
days) the probability of disease extinction for N = 50 is greater than 0.79 for all
values of ¢. This is not the case for N = 200 or 1000. The probability of disease
extinction when ¢ = 0.12 and N = 200 is < 0.001 and is even smaller when ¢ = 0.10
or 0.12 and N = 1000. These results reflect that there is good agreement between
the deterministic model and CTMC model for large N.

1 T T > 1
N=50 ISP N=200
0.8 = 0.8
o6 - 06
= =
o o
£ o4t £ 0.4t
0.2 — 0=0.08 || 0.2
e - 0=0.1
--o=012}) | S e
G0 365 730 1095 1460 1825 C’0 365 73 1095 1460 1825
Time in days Time in days
1
N=1000
0.8
,'OL 0.6
=
o
& 0.4t
0.2p —0=0.08|
-=0=0.1
---0=0.12
GO 365 730 1095 1460 1825

Time in days

FIGURE 2. Probability of disease extinction for ¢ = 0.08, 0.10 and
0.12 with population sizes N = 50, 200 and 1000, and initial values
for the random variables Prob{Z(0) = 5} = 1, Prob{R(0) = 0} =
1, and Prob{V(0) =0} = 1.

In Figure 3, the probability of disease extinction is compared for o € [0.08,0.12]
and N = 50, 200, and 1000 after a period of five years for the same initial condi-
tions as in Figure 2. For o = 0.08, the disease is eventually eliminated from the
population (with probability one after five years). For the given initial conditions
and parameter values, as expected the stochastic and deterministic results are in
much better agreement for N = 1000 than for the other population sizes. There-
fore, to compare the dynamics of the stochastic and the deterministic models in the
region of bistability, a population size of N = 1000 is used.

3.2. Probability distribution for the infective population. The probability
distributions associated with the infective population are investigated when param-
eter values lie within the region of bistability. The parameter values are given in
Table 1 for o € {0.09,0.095,0.10,0.105} C [0.08866,0.10884] and N = 1000. The
stable and unstable endemic equilibrium values are given in Table 3 for N = 1000.
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FIGURE 3. Probability of disease extinction after five years for
N =50, 200 and 1000 with initial conditions Prob{Z(0) = 5} =1,
Prob{R(0) = 0} =1, and Prob{V(0) =0} = 1.

The stochastic dynamics in this case depend on the magnitude of o and the initial
conditions. The disease-free equilibrium is I = 0 = R, V = 988.45, and S = 11.55.
For other population sizes, the equilibrium values are multiples of these values (e.g.,
for N =200 = (1/5)1000, the equilibrium values are 1/5 of these values).

TABLE 3. Stable and unstable endemic equilibrium values for the
infective, recovered, and vaccinated states, I, R, and V, when
N = 1000.

Stable Unstable

o I R v I R Vv
0.090 | 138.23 203.82 592.10 | 76.51 112.81 759.93
0.095 | 173.06 255.18 500.13 | 42.53 62.71 857.04
0.100 | 193.25 284.95 447.41 | 23.11 34.02 915.19
0.105 | 208.18 306.96 408.63 | 8.88 13.09 959.65

Approximations to the probability distribution for the infective state at five
years are estimated based on 10,000 sample paths. The approximate probability
distributions, Prob{Z(T) = i}, i = 0,1,2,..., for the number of infective individ-
uals are graphed in Figures 4 and 5 with the two sets of figures differing in their
initial values. The initial conditions lie in the basin of attraction for the stable
endemic equilibrium for the deterministic model except in one case: ¢ = 0.09 and

The two modes of the probability distributions are visible in Figures 5 (b), (c),
and (d). The mode near the stable endemic equilibrium corresponds to a quasi-
stationary distribution (conditional on nonextinction). Increasing the initial value
of V(0) brings the initial values closer to the disease-free equilibrium and a greater
number of the sample paths enter the basin of attraction for the disease-free equi-
librium (Figure 5 as compared to Figure 4), especially in the case where o = 0.09,
Figure 5 (a), where the initial condition is in the basin of attraction for the disease-
free equilibrium. The proportion of sample paths at the disease-free equilibrium
(Z(t) = 0 at t = 1825 days) for the distributions in Figure 5 at o = 0.09, 0.095, 0.10,
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and 0.105 are 0.85, 0.49, 0.20, and 0.07, respectively, as compared to those in Fig-
ure 4, where the proportion of sample paths at the disease-free equilibrium are
0.08, 0.002, 0.0002, and 0.0002, respectively. These two cases illustrate differences
that might exist between initiation of a new vaccination program after an outbreak
(Figure 4, V(0) = 0, where no one has been vaccinated) and continuation of a vac-
cination program (Figure 5, V(0) = 500, where 50% of the population has already
been vaccinated).

The normal distribution provides a good fit to the quasistationary distribution
when the value of o is not close to the saddle node bifurcation (dashed curves in
Figure 4 (b), (c), and (d) and Figure 5 (d)). The means and variances associated
with the quasistationary distribution are approximated from the simulations and
are used to graph the normal approximation. The graphs in Figures 4 and 5 are
computed from the CTMC model. Simulation results for the SDE model also show
close agreement with the results for the CTMC model for both the probability of
extinction and the quasistationary distribution.

Close to the saddle node bifurcation (¢ = 0.09), the stochastic model behaves
quite differently from the deterministic model. The proximity of the two endemic
equilibria, one stable and one unstable, allows sample paths to leave the basin of
attraction of the stable endemic equilibrium and pass near the unstable endemic
equilibrium (saddle fly-by) [24]. A local stability analysis of the unstable endemic
equilibrium for o = 0.09 shows that the linearized system of (1) for I, R, and V has
two negative eigenvalues and one positive eigenvalue [1]; it is unstable hyperbolic.

4. Summary. Two new stochastic epidemic models are formulated to account
for the variability inherent in the birth, death, and infection processes, namely, a
CTMC model and an SDE model. The stochastic models are used to investigate the
dynamics of an epidemic model with parameters applicable to pertussis when the
vaccine is imperfect. For a given range of values for the parameter o (where 1 —o is
the vaccine efficacy), the deterministic model exhibits bistability. The simulations
show for population sizes sufficiently large, N > 1000, the probability distribution
associated with the stochastic epidemic models exhibits bimodality as expected in
the region of bistability (one mode at the disease-free equilibrium and the other
at the endemic equilibrium). For population sizes N < 1000, the deterministic
and the stochastic models differ significantly and a stochastic model provides a
more realistic representation of the dynamics. FEither the CTMC model or the
SDE model can be applied unless population sizes and initial number of infected
individuals are very small, N < 100, I(0) € {1,2, 3}. In this latter case, the CTMC
model is preferred over the SDE model because the CTMC model preserves the
discrete population values. These results regarding population size and choice of
deterministic versus stochastic model apply to the pertussis model but may hold
for more general epidemic models when the population is homogeneously mixed.
The particular population size for which one model is selected over another, such as
N =100 versus N = 1000, will depend on the magnitude of the model parameters
in relation to N (see equation (7)). It should be noted, however, that even for
large population sizes the deterministic model will not capture the probability of
disease extinction when the initial number of infected individuals is small, such as
1(0) € {1,2,3}. In this case, a stochastic model should be applied.
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FIGURE 4. Probability distributions at five years for the number
of infective individuals given N = 1000, Prob{Z(0) = 5} = 1,
Prob{R(0) = 0} = 1, and Prob{V(0) = 0} = 1. (a) ¢ = 0.09, (b)
o =0.095, (c) 0 = 0.10, (d) 0 = 0.105. The dashed curves in (b),
(c), and (d) are the normal approximations.

The existence of a backward bifurcation in an epidemic model has important
public health implications. With a backward bifurcation, it is not sufficient to re-
duce the vaccination reproduction number to a level below one to eliminate the
disease. The vaccination level must be much greater than expected to eliminate
the disease (thereby reducing the vaccination reproduction number). However, as
shown in the stochastic simulations, this result depends on the population size and
the initial values. Based on the parameter values in Table 1, simulations of the
CTMC model show for a population size N = 50 that there is a high probability of
disease extinction for a range of values of the vaccination reproduction number (in
this case a stochastic model is required). For a larger population size, N = 200, the
backward bifurcation is more evident, but it appears that the value of the vaccina-
tion reproduction number in relation to one is more important than the effect of
the backward bifurcation. Finally for a population size of N = 1000, the backward
bifurcation is very significant. The simulations for the CTMC model (Figures 4
and 5) indicate that the backward bifurcation may be more important when a new
vaccination program is initiated (V(0) = 0) than when a vaccination program has
already been in place (V(0) = 500). Thus, depending on the initial values and
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FIGURE 5. Probability distributions at five years for the number
of infective individuals given N = 1000, Prob{Z(0) = 5} = 1,
Prob{R(0) = 0} = 1, and Prob{V(0) = 500} = 1. (a) o = 0.09,
(b) 0 = 0.095, (¢) 0 = 0.10. (d) 0 = 0.105. The dashed curve in
(d) is the normal approximation.

the population size, introduction of a small number of infective individuals into a
population can have widely different longterm outcomes in the stochastic model,
especially when the vaccine efficacy lies in the region of bistability.
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