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Abstract. Recent evidence elucidating the relationship between parenchyma
cells and otherwise “healthy” cells in malignant neoplasms is forcing cancer
biologists to expand beyond the genome-centered, “one-renegade-cell” theory
of cancer. As it becomes more and more clear that malignant transformation
is context dependent, the usefulness of an evolutionary ecology-based the-
ory of malignant neoplasia becomes increasingly clear. This review attempts
to synthesize various theoretical structures built by mathematical oncologists
into potential explanations of necrosis and cellular diversity, including both
total cell diversity within a tumor and cellular pleomorphism within the pa-
renchyma. The role of natural selection in necrosis and pleomorphism is also
examined. The major hypotheses suggested as explanations of these phe-
nomena are outlined in the conclusions section of this review. In every case,
mathematical oncologists have built potentially valuable models that yield in-
sight into the causes of necrosis, cell diversity, and nearly every other aspect
of malignancy; most make predictions ultimately testable in the lab or clinic.
Unfortunately, these advances have gone largely unexploited by the empirical
community. Possible reasons why are considered.

1. Introduction. Modern cancer theory is founded on two central questions. First,
how do malignant tumors arise from previously healthy, genomically intact cells?
Second, why do malignant tumors tend to share similar characteristic behaviors—
uncontrolled growth, lack of tissue integration, invasion of surrounding tissue, and
metastasis? Although neither question has been answered satisfactorily in detail,
over the past twenty years researchers have established at least the broad outlines
of the answers, primarily because of advances in molecular biology. As a nat-
ural consequence, we describe cancer etiology in terms of genetic and epigenetic
changes in key genes scattered throughout the genome [35, 50, 51, 70, 95]. Here
the phrase “genetic changes” is understood to mean mutations, and in this con-
text “epigenetic changes” usually refers to methylation or acetylation of DNA or
chromatin-associated histones [95, 111] that can alter gene transcription patterns.
Such genomic alterations in humans are commonly caused by environmental factors
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(see [116] for a recent review) that either directly damage DNA (mutagens), such
as coal tars in cigarette smoke or UV radiation, or cause irritation and subsequent
cell turnover in tissues (mitogens), for example, asbestos or inhaled particulates
in cigarette smoke or pollution. Viruses can also cause oncogenic changes in cells,
either by inserting an oncogene or oncoprotein directly into a cell or by disrupting
gene regulation as the viral genome is integrated into the host’s DNA.

Since most cancer theory revolves around “key genes” and their products, most
basic cancer research attempts to identify the location of these genes, their normal
function, and how their structural and functional disruption leads to cancer. Per-
haps the most complete and lucid statement of modern cancer theory, what I will
refer to as the standard theory, was presented by Douglas Hanahan and Robert
Weinberg in 2000 [51]. In short, the standard theory suggests that transformation
occurs if and only if a single cell acquires the following six characteristics: (1) self-
stimulated proliferation; (2) unresponsiveness to external inhibitory signals; (3)
malfunction of apoptotic machinery; (4) ability to promote tumor angiogenesis;
(5) immortalization; and (6) ability to invade surrounding tissue and metastasize.
Acquisition of each attribute represents a step toward malignancy, and cells in
intermediate steps can be recognized as benign, sometimes premalignant lesions
[112]. I should note that Hanahan and Weinberg do not press the theory quite this
far; rather, they seem to suggest that these conditions are usually necessary and
perhaps not always sufficient. Such is the complexity of this disease.

On its face, the standard theory attempts to answer only one question—what
causes malignant tumors? However, the conventional focus on genomics of a single
transformed cell suggests that the second foundational question—why do cancers
behave as they do—is answered as a mere corollary. Since cancers arise from “one
renegade cell” [113] and the genomes of this cell’s clones ultimately govern tumor
behavior, knowing the function of the altered genes should explain that behavior.
For example, we recognize that inactivating mutations in the tumor suppressor gene
p53 propel a cell partway down the path toward malignancy. If that cell becomes
cancerous, its loss of p53 explains at least one of its characteristic behaviors—
evasion of apoptosis.

2. Inadequacies of the standard theory. Although this “genome-centered”
theory dominates the field [20, 36], its adequacy is not universally accepted [32, 36,
58, 67]. The critics, while rarely disputing the importance of cancer cell genomics,
recognize that cancer is not the manifestation of “a transformed cell.” Rather, it
arises by natural selection acting on a variety of multiply mutated cells in the con-
text of the host’s physiology, resulting in disrupted tissue architecture and loss of
tissue homeostasis. Therefore, any accurate theory must include interactions among
a variety of genetically distinct parenchyma (cancer) cell types, perhaps genetically
altered stromal cells, and unmutated healthy cells, both peritumoral and distant.
Although these interactions certainly are influenced by genomes, the genomes of
a variety of cell types, both cancerous and healthy, are involved. Also, knowledge
of genomes alone cannot predict in any practical way a tumor’s clinical behav-
ior, because the interactions among cell types are far too complicated. Therefore,
genome-centered research may not be as fruitful as originally hoped, and certainly
theorists must recognize that tumor behavior is at least as much an ecological and
evolutionary problem as a molecular one.
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The empirical basis for shifting focus from the one-renegade-cell concept to the
ecosystem concept comes from numerous observations that the standard theory
has difficulty explaining. For example, substantial evidence exists that fibroblasts,
normal denizens of extracellular matrix (ECM) in both healthy and tumor tissue, in
part control whether a carcinoma develops and its subsequent behavior (reviewed
in [17]). For example, fibroblasts from a malignant prostate tumor cocultured with
epithelial cells from a benign prostate tumor promote malignant transformation of
the benign cells. Normal fibroblasts do not, nor do tumor fibroblasts cocultured
with normal epithelial cells [53, 86]. Further evidence comes from a study in which
breast epithelial cells were transplanted into irradiated and nonirradiated mammary
fat pads in live mice [12]. Breast malignancies of epithelial origin arose in about
80% of irradiated fat pads, compared to only about 20% of controls, and tended
to be more aggressive in mice with irradiated fat pads. Prior to irradiation and
transplantation, native epithelial cells had been removed, so these tumors arose from
the injected, untransformed epithelial cells. The authors conclude that radiation
damage to native fibroblasts of host mice promotes tumorigenesis of epithelial cells.
These observations are corroborated by microdissection studies of the stroma in
human breast and colon cancers in which stromal cells showed genetic abberations—
loss of heterozygosity, microsatellite instability, and mutations in p53—that are
also characteristic of cancer cells [115]. It appears, then, that genetic alterations
in stromal fibroblasts in addition to genomic changes in the renegade cells are
important events on the road to cancer.

More recent research supports this conclusion. Kenoki Ohuchida et al. [85], for
example, found that pancreatic cancer cells tended to be more invasive, at least
in an in vitro invasion assay, when cocultured with irradiated versus nonirradiated
fibroblasts. Certain other manipulations lead the authors to conclude that irradi-
ated fibroblasts secrete a soluble chemical signal enhancing invasive activity of the
cancer cells. No matter the cause, malignant transformation apparently depends
not just on one cell type’s genetic status but also on the behavior of untransformed
cells in its ecosystem.

Another problem with the one-renegade-cell theory is its prediction that tumors
should be monoclonal. However, “evidence is now accruing, at least for a subset of
epithelial tumors, that by no means all of these lesions are [mono]clonal, with the
result that we probably have to come to terms with the concept that tumorigenesis
in epithelial systems demands the co-operation of several distinct clones, and some-
how account for this in any global theory of carcinogenesis” [20, p.90]. Even for
tumors that are inarguably monoclonal, the standard theory itself posits that the
single, fully malignant cell arises because natural selection favors it in the competi-
tion with other altered cells in premalignant lesions. This view is so well accepted
that it can be found in most standard textbooks (for example, see the cancer and
neoplasia chapters in [5] and [28]). So, natural selection and tumor ecology should
play central roles in cancer theory.

Although cancer theory derived from molecular and cellular biology largely
ignores evolutionary and ecological relationships, the same cannot be said for theory
developed by mathematical biologists, who for the last thirty years have produced
an enormous variety of mathematical models of malignant neoplasia. These mod-
els rely heavily on formalisms previously applied to ecology but adapted almost
directly to tumor ecosystems—Gompertz and logistic models to represent tumor
cell population dynamics, Lotka-Volterra models of competition among cells for



384 J. D. NAGY

nutrients, von Förster–like forms for age-structured population models, and more
general reaction-diffusion models for spatially explicit competition, to name a few.
The theory growing from these modeling efforts is the focus of this review.

Mathematical oncologists must constantly revisit the relevance of existing math-
ematical models of tumor ecology to modern cancer biology and what needs to
happen to complete the ecology-based theory and facilitate its entry into main-
stream oncology. Although these questions sparked this review, they are unfortu-
nately far too broad for a single article to span. Instead I adopt the more modest
goal of reviewing how an evolutionary-ecology outlook has helped theoretical on-
cologists develop hypotheses to explain two common characteristics of malignant
neoplasia—necrosis and tumor cell diversity. In section 3, I focus on necrosis, start-
ing with a description of a tissue culture model of malignant neoplasia, called the
multicell spheroid, famous within the mathematical oncology community (section
3.1). Then I examine models of necrosis caused by nutrient limitation (section 3.2),
mechanical disruption of cells (section 3.3), local acidosis (section 3.4), and finally
local ischemia (section 3.5). In section 4, I discuss the issue of cell diversity within
tumors, including diversity among all cell types (section 4.1) and pleomorphism
among parenchyma cells (section 4.2). In section 5, I then examine models that
show the interrelation between the causes of pleomorphism and necrosis. Finally,
in section 6 I summarize this body of research and ask, if no mathematical models
of cancer had ever been constructed, how would our understanding of necrosis and
tumor cell diversity be different?

3. Necrosis: What causes the tumor ecosystem to collapse? Malignant tu-
mors in vivo and certain tissue models variously called multicell spheroids, tumor
spheroids or avascular spheroids, typically are characterized by regions of necrosis
(Fig. 1). Although it might seem obvious that these necrotic zones arise through
“lack of nutrient,” various more detailed hypotheses have been presented in the
mathematical and theoretical literature. Possible immediate causes include defi-
ciencies in oxygen, glucose, or perhaps other nutrients, such as phosphorus [34, 60]
or iron [30, 52, 63, 91]. Some researchers suggest that inhibitory chemicals, which
could be metabolic waste or other compounds, might play a role. Still others im-
plicate mechanical destruction of cells. At one level removed from the immediate
cause, if nutrient deficiency, toxin production, or both are to blame, local ischemia is
almost certainly involved. But then what causes the ischemia—inefficient neoangio-
genesis (the tumor “outgrowing” its blood supply), blood vessel collapse, variation
in hematocrit distribution in a microvascular net, or some combination of the three?
All of these hypotheses have been the subjects of mathematical investigations, which
I review in the following subsections.

3.1. Necrosis in multicell spheroids. Multicell spheroids have enjoyed consider-
able attention from mathematical oncologists, probably more than any other tissue
model of malignancy. Studied both empirically and theoretically for more than
thirty years [48, 105], multicell spheroids “are of intermediate complexity [as tissue
models of cancer] between in vitro monolayers and tumors in vivo” [104, p.1669]
(see also [61]). One can grow them either in suspension or in a gel by inducing
a clump of transformed cells to proliferate into a stable, somewhat symmetrical
ball of cells usually no more than 2 mm in diameter (see [78, 104] for pictures of
spheroids). Sectioning a larger spheroid through its equator can reveal at least two,
sometimes three or more, histologically or physiologically distinct regions. Most
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Figure 1. Squamous cell lung cancer, H. & E. stain, 100× original
magnification. Regions labelled “N” are necrotic, and arrows point
to examples of ECM. Purple dots in the necrotic regions are mostly
immune cell nuclei, primarily of neutrophils. Note how cancer cells
form deranged sheets reminiscent of epithelium but with a highly
disturbed architecture.

commonly one finds a core of necrotic tissue surrounded by a layer of living cells up
to about 150 µm thick. Typically, this annulus of living cells has an exterior rind
of proliferative tissue. Beneath this rind, between it and the necrotic core, often
exists a layer of “quiescent” cells—alive but not dividing (Fig. 2).

The obvious hypothesis explaining this characteristic histological pattern—that
cells in the interior die or stop reproducing because they suffer a profound lack of
nutrient caused by diffusion limitation and competition—is compelling but proba-
bly too simple [77, 78]. Either from a recognition of the true complexity or pure
luck, the obvious hypothesis was almost instantly discarded by mathematical mod-
elers in favor of more complicated mechanisms. The influential series of papers
by H. P. Greenspan [48, 49], published in the early 1970s but motivated by ear-
lier models [21, 110], stands as an example. In these models, Greenspan included
a hypothesized inhibitory chemical, produced either by necrotic tissue or living
cells, that along with nutrient deficiency explained the observed pattern of necrosis
in multicell spheroids. These papers were among the first to present mechanis-
tic explanations of tumor behavior, as opposed to contemporary studies assuming
a Gompertzian phenomenonology (reviewed in [10]), and spawned an enormous
number of subsequent models (reviewed in [1, 10, 22]).

Because it forms part of the foundation of mathematical oncology, a quick sur-
vey of Greenspan’s approach helps us understand subsequent developments. In this
study [48], Greenspan assumes the simplest possible geometry for the spheroid—an
actual perfect sphere of radius R0(t) at time t. (Here, as elsewhere, I attempt to
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Figure 2. Idealized cross section through a multicell spheroid.
The necrotic core has radius Ri; the annulus of quiescent cells has
outer radius Rg, and the spheroid itself has radius R0. Based on
Fig. 1 in [48, p.318].

preserve the author’s original notation unless simplification clarifies the presenta-
tion.) The spherical shape is maintained by surface tension and incompressibility
of cells and necrotic debris. Cell kinetics depend on two diffusible compounds: a
nutrient like oxygen or glucose, with concentration σ(r), supplied by the media,
and a toxin produced within the spheroid, with concentration denoted β(r), where
r represents radial position within the spheroid.

Greenspan hypothesizes that lack of nutrient drives necrosis; the inhibitor simply
modifies the cell proliferation rate. Therefore, he assumes a minimum nutrient
concentration σl below which cells die. Therefore, the center of the spheroid may
contain a necrotic core of radius Ri(t) if σ(r) < σl for 0 ≤ r ≤ Ri. Greenspan
further hypothesizes that quiescence arises from the inhibitor, not lack of nutrient.
He initially leaves the source of the toxin incompletely specified and then builds
two models—one in which the toxin is released by disintegrating necrotic cells (see
equation (1)), and the other assuming the toxin is metabolic waste or some other
secretion from living cells (see (3)). In any event, if the inhibitor concentration
rises above some threshold βl, mitosis in cancer cells ceases. Therefore, in addition
to a necrotic core, a “core of quiescence” of radius Rg can also develop if β(r) > βl

for 0 ≤ r ≤ Rg. The often-observed histology of a necrotic core surrounded by an
annulus of quiescent tissue further surrounded by a rind of proliferative tissue will
develop if the nutrient and inhibitor profiles allow Ri < Rg < R0 (Fig. 2).

Both the nutrient and putative toxin are assumed to diffuse on a much shorter
time scale than cell proliferation, so Greenspan passes to the quasi-steady-state
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approximation under the assumption of diffusive equilibrium. With these primary
assumptions, among others, Greenspan arrives at the following model in spherical
coordinates:
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with s the constant per unit proliferation rate in the proliferative rind, λ the rate
at which necrotic cells disintegrate, k and κ the respective diffusion constants for
nutrient and toxin, A the constant rate at which living cells consume nutrient, P
the constant per-unit production rate of toxin from the necrotic core, and H(·) the
Heaviside step function:

H(a) =
{

1 ; a ≥ 0,
0 ; a < 0.

(2)

If instead of emanating from the necrotic core the toxin’s source is assumed to be
living cells, then the right-hand side of the third equation in model (1) becomes

−P

κ
H(R0 − r)H(r −Ri). (3)

Greenspan’s models suggested a very simple experiment to test the inhibitor’s
effect, if any, on spheroid dynamics. In short and ignoring certain technical details,
one would grow spheroids under standard conditions allowing reproducible behav-
ior, begin sectioning samples of spheroids just before and after they enter the first
growth retardation phase, and measure the extent of necrosis. From such measure-
ments one can obtain quantitative estimates of the inhibitor’s impact over time in
terms of the proportion of cells reproducing. Of course, this model’s assumption
that cells either reproduce at a constant rate or not at all is almost certainly unre-
alistic; however, the result still has meaning as a measure of the inhibitor’s impact.
In the simplest case, this procedure can at least establish whether the inhibitor ex-
ists. Apparently, however, these models failed to impress the empirical community
and were never used to determine the role of an inhibitor in necrosis development
[10].

3.2. Necrosis caused by diffusion-limited nutrient delivery. Greenspan’s
results did impress theorists, sparking an avalanche of research that is not yet spent.
Part of this avalanche used Greenspan’s model as a basis to refine the diffusion-
limitation hypothesis, which I briefly review next. Parallel with these studies,
another formalism developed that also was used to probe diffusion limitation. This
set of models focuses on tumor cords, essentially spheroids turned inside-out. Below
I outline some of the main results from both types of models.

3.2.1. Diffusion limitation in multicell spheroids. Among the more influential re-
search threads using multicell spheroids to study necrosis is a series of papers by
Helen Byrne and Mark Chaplain [23, 24]. These models represent a small spheroid,
which Byrne and Chaplain interpret as a tiny in vivo tumor. The first of these
models [23] assumes that no necrotic core exists and takes the following form under
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the quasi-steady-state approximation of diffusive equilibrium for both the nutrient
and inhibitor:
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with the following notation: R is the radius of the spheroid; S(σ, β) is cell prolif-
eration rate; D1 and D2 are diffusivities of nutrient and inhibitor, respectively; Γ
measures vascular delivery of nutrient; σB is concentration of nutrient in the blood
plasma; g1 and g2 represent sources and sinks of nutrient and inhibitor, respectively,
within the spheroid; and all other notation is consistent with model (1). They sub-
sequently [24] apply Greenspan’s original hypothesis that necrosis occurs whenever
the nutrient concentration falls below some critical value to obtain this model:
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with N the rate at which necrotic cells disintegrate and γ1 and γ2 the rates at which
the inhibitor decays within the proliferative and necrotic regions, respectively. All
other notation equates with that in models (1) and (4) with one exception—in model
(5), Γ represents the consumption rate of nutrient by living cells. Furthermore,
nutrient is delivered to the interior by diffusion from the media or interstitium, not
through an interior vascular network as in (4). There is no quiescent layer in either
model.

Among the advances introduced by models (4) and (5) is a more realistic action
for the inhibitor. Instead of causing quiescence, the inhibitor is hypothesized to
increase cell mortality within nonnecrotic regions of the spheroid, which Byrne and
Chaplain equate to apoptosis. Therefore, S(σ, β) is interpreted as pointwise differ-
ences between births and deaths and generally increases with σ and decreases with
β. This hypothesis allows richer dynamics than Greenspan’s model. Of particu-
lar importance, model (4) shows that spheroids can reach a steady state without
necrosis. (See [29, 38] for more details.) In fact, a sufficiently large apoptosis rate
can cause complete spheroid regression without development of a necrotic core in
both models. Model (5) also predicts that spheroids with a necrotic core arise only
if loss to apoptosis is less significant than loss to necrosis and if the external oxygen
concentration is not too large. More precisely, they show that for a particular real-
ization of g1 and g2, the width of the proliferating rim is proportional to

√
σ∞ − σl,

where σ∞ is the nutrient concentration in the media and σl is defined above.
More recently, Davide Ambrosi and Francesco Mollica [6, 7] modeled nutrient

deficiency in multicell spheroids cultured either free in suspension or embedded in
agarose. These models introduce mechanical stress generated within the tumor and
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externally through the agarose gel under the assumption of an elastic spheroid. As
in the previous models, nutrient is assumed to diffuse into the spheroid from the
media very rapidly relative to cell proliferation rates. Since Ambrosi and Mollica
imagine the nutrient to be a storable form of energy to power cell proliferation,
one can interpret it as glucose. They assume that glucose determines reproductive
potential of cells within the spheroid. In particular, if we let n be the nutrient
concentration and g be the growth potential (birth rate minus death rate) at a
certain point within the spheroid, then g is an increasing linear function of glucose
concentration such that g(n, ·) < 0 for 0 ≤ n < n0 < ∞, reflecting the dominance
of deaths over births in low-glucose environments. In addition, g decreases with a
measure of stress on the cells.

The complexity of Ambrosi and Mollica’s formalism takes a complete descrip-
tion of their model outside the scope of this review. However, their results are
of interest. Numerical investigations show that the spheroid naturally develops an
outer proliferative rim with a core dominated by lack of nutrient. Predictions about
necrosis per se cannot be made from their analysis, because they chose n0 = 0. How-
ever, their formalism hints at the possibility of combining the nutrient-deficiency
and mechanical-deformation hypotheses (see section 3.3) into a single model, which
promises an incisive instrument to tease these two hypotheses apart.

3.2.2. Diffusion limitation in tumor cords. The tumor cord is a concept introduced
around the same time that theorists started modeling multicell spheroids [54, 110].
In essence, the tumor cord turns the spheroid inside-out, placing the source of
nutrient in the center, and transforms it from a sphere to a cylinder. The cord
itself is a sleeve of tumor tissue surrounding a microvessel, which supplies nutrients
and waste removal services. The outer portion of the cord is often necrotic (Fig.
3). Tumor cords can be observed in certain regions of certain tumors (see [57] for
example) but not all (see Fig. 1 for example).

Recently, Alessandro Bertuzzi, Alberto Gandolfi, and their colleagues [13, 15, 16]
(reviewed in [14]; see also [33]) have studied tumor cords theoretically. In their
models, we imagine a rigid-walled capillary of radius r0 surrounded by a cylinder
of tissue. The maximum (fixed) width of the cord is R. In later work, they also in-
troduce a necrotic rind of outer radius B. As in the spheroid models above, surface
tension and incompressibility of cells and interstitium maintain the cord’s shape,
and the tissue can exist as a mosaic of both proliferative and quiescent cells. The
rate at which cells become quiescent decreases with local nutrient concentration.
However, a distinct annulus of quiescent cells can arise when nutrient concentra-
tion falls below a prescribed threshold. In some of these models, the active cell
population is structured by age. Within the tissues, both living and necrotic, the
volume is entirely exhausted by three components: living cells (νp), necrotic cells
(νn), and extracellular space (νe). Cell packing is assumed to be homogeneous (νe

and νp + νn + νe are constants).
These assumptions lead Bertuzzi et al. [13] to a model that really consists of two

submodels for the cell dynamics. The first, expressed generally as





∂νp

∂t
+∇ · (uνp) = χ(σ)νp − [µ(σ) + µc(c, σ) + µr(σ, t)]νp,

∂νn

∂t
+∇ · (uνn) = [µ(σ) + µc(c, σ) + µr(σ, t)]νp − µnνn,

(6)
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Figure 3. Idealized section of a tumor cord. The red core rep-
resents a microvessel with radius r0. Surrounding the vessel is a
sleeve of living tumor tissue with outer radius R that is further
surrounded by a necrotic rind of radius B. Based on Fig. 1 of [14,
p.163].

describes dynamics in the region of living tissue (r0 < r < R). The second,
∂νn

∂t
+∇ · (uνn) = −µ̃nνn, (7)

valid for R < r < B, models the necrotic region, because no living cells are present
there (νp ≡ 0). The vector u represents a cell velocity field that arises as cells push
on one another as they reproduce or are squeezed together as some disintegrate. If
one assumes that this motion is confined to the radial plane in a perfect cylinder,
then u = u(r), where r is the radial position. In addition, χ(σ) is the per-capita
proliferation rate, which depends on nutrient concentration σ; µ(σ) is the “natural”
mortality rate; and µn and µ̃n represent the disintegration rate of necrotic cells in
living tissue and the necrotic rind, respectively. The additional death terms µc(c, t)
and µr(σ, t) denote death rates from chemotherapeutics and radiation treatment,
respectively, where c is the drug concentration. The dependence of µr on σ arises
because the authors assume the nutrient is oxygen, and radiation-induced mortality
is well known to depend on local O2 concentration [54].

Nutrient is assumed to move entirely by diffusion on a much faster time scale
than cell velocity. Therefore, they assume that

∆σ = f(σ)ν, (8)

where f depends on the diffusivity of O2 and the rate at which the tissue consumes
it. Nutrient enters the cord only across the microvessel wall at a constant rate,
reflecting blood O2 homeostasis. They also impose a no-flux condition for O2 at
the outer cord boundary. As with the spheroid models, these authors assume that
all cells become necrotic whenever O2 concentration falls below some threshold σn.
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Cells enter a reversible quiescent state, modeled in χ(σ), if O2 drops below another
threshold, σq > σn.

Interestingly, this model predicts that the boundary between necrotic and living
tissue cannot always be identified as the point at which σ drops below σn. For
example, suppose the cord sits at its steady-state radius with the demarcation of its
necrotic region rn defined by σ(rn) = σn. Suppose further that a chemotherapeutic
attack kills a large number of tumor cells. Afterward, competition for oxygen
among survivors transiently slackens, and the cord begins to grow, pushing the
necrotic region outward. Then for a short period the boundary of the necrotic
region is determined by history and not by nutrient availability. One can therefore in
principle use this model to predict the transient dynamics of a tumor cord following
cytotoxic treatment as a way to test the hypothesis that necrosis is caused by
a lack of O2 or, with proper modification, some other nutrient. More mundane
phenomena, in particular the size of the viable and necrotic sleeves as a function of
O2 delivery, can be used for a similar purpose, at least in principle.

3.2.3. Diffusion limitation in ductal carcinoma in situ. Whole autochthonous tu-
mors are often much more difficult to model than laboratory systems, such as
multicell spheroids, or special in vivo systems, such as tumor cords or explants,
because their geometries are usually much more irregular. However, breast ductal
carcinoma in situ (DCIS) is something of an exception and so has attracted the at-
tention of mathematical oncologists [37, 117]. By definition, this lesion is confined
to the lumenal side of the duct’s basement membrane, which means it is usually
forced to grow in a cylindrical shape around 700 µm in diameter on average [37].
Unlike tumor cords, however, nutrients are delivered to the cancer cells via diffusion
from the external surface of the cylinder rather than a central blood vessel.

A recent model of early DCIS by Susan Franks et al. [37], although including no
explicit mechanism of necrosis, helps explain why some such lesions have a necrotic
interior that others lack. In their investigation, they imagine a tumor growing
within a rigid-walled cylinder representing a milk duct. Tumor cell proliferation
therefore generates pressures that force cells to move with velocity v(x) at point
x. The portion of the model describing tumor volume and nutrient concentration
takes the following form:
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∂t
+∇2 · (nv) = Dn∇2n + (km(c)− kd(c))n,

∂m
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(9)

where n and m are densities of living and dead cells, respectively; ρ is the density
of interstitial fluid; and c is nutrient concentration. Functions km and kd represent
per-capita births and deaths, respectively. Generally, km increases with c, and
kd decreases with c. Diffusion coefficients are represented as Di, i ∈ {n, m, ρ, c},
and β is the amount of nutrient required to produce a new cell. Dead cells never
disintegrate, and living, nondividing cells do not consume nutrient. By assuming
that the tumor mass is exhausted by living cells, dead cells, and interstitial material,
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they show that

∇ · v = km(c)n. (10)

They then complete the model by using Stokes’s law to derive expressions for in-
tratumoral pressure.

This model produced no necrosis, because the duct diameter was so small that
nutrient concentration favored proliferation over mortality everywhere in the tumor
interior. However, the authors point out that allowing the duct wall to distend will
decrease nutrient concentration in the tumor core, perhaps to the point where
necrosis develops, as in comedocarcinoma [64], for example. The model could be
extended to allow one to probe this scenario empirically, either in animal models
or human histopathology samples, as a test of the nutrient-deficiency hypothesis.

3.3. Necrosis caused by mechanical disruption of cells. In distinct contrast
to the nutrient-limitation hypothesis, Colin Please et al. [93, 94] hypothesize that
necrotic regions form because cells are torn from their anchors to the extracellular
matrix (ECM) and each other by pressures within the tumor. This mortality could
arise either from literal destruction of the plasma membrane or apoptosis caused by
loss of cell-ECM or cell-cell contact. The basic models [93] assume that the tumor’s
interior consists of two “phases”—cells and interstitial fluid. (ECM is not explicitly
modeled in these early explorations.) Please et al. assume that cell interiors are
composed of the same material as the interstitial fluid; therefore, fluid moves be-
tween phases, entering cells through the process of proliferation and reentering the
interstitium as dead cells disintegrate. The models are thereby controlled primar-
ily by conservation of this fluid. The requirement for fluid conservation produces
pressures within the tumor that cause both cell and fluid movement. For example,
as cells proliferate, fluid entering the cell phase produces an “outward” pressure,
pushing the cell phase outward. Cells move freely in response to this force, because
unlike the previous models, cells in this system do not adhere to each other. On the
other hand, pressures in the fluid phase force interstitial fluid to move among the
cells as if the tumor were a porous medium. Therefore, two pressures must enter the
model: (1) the pressure on the interstitial fluid (Pe) and (2) the pressure exerted
cell-to-cell via the ECM scaffold (Pc). The intracellular pressure is not modeled.

If in any region within the tumor Pc > Pe, then the cells in that region feel
a compressive force through the surrounding ECM. If the inequality is reversed,
then cells are assumed to be torn apart as tension forces rip them from the ECM.
Although Please et al. hypothesize that this form of cell destruction occurs only to
physiologically stressed cells, as in hypoxia, in the model any cell in such an envi-
ronment is destroyed. This, then, is the mechanism of necrosis under investigation.

Although nutrient deficiency does not cause necrosis here, nutrients still play a
role. As before, the nutrient moves primarily by diffusion on a much faster time
scale than cell kinetics, so the nutrient concentration, denoted C(x), is assumed
to be in a quasi-steady state. Please et al. assume that cells proliferate at a rate
proportional to the nutrient concentration and die at a constant per-capita rate;
that is, at x the per-capita growth rate density is dC(x) − e. If we let k be the
constant permeability of fluid through the interstitium and φ be the proportion
of the tumor volume taken up by interstitial space, also assumed to be constant
throughout the tumor, then the above assumptions can be modeled as follows [94]:

k(1− φ)2∇2Pc = e− dC. (11)
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Consider the application of this model to a multicell spheroid. Again we assume
perfect spherical symmetry and a nutrient diffusing into the spheroid from the
external media (see [94] for the detailed boundary conditions). Then once again
dynamics vary only over the radial position, so we can replace x with r defined in
section 3.1. In this case, the O2 concentration obeys the following relation:

C(r, t) =
R0[sinh(r −Ri) + Ri cosh(r −Ri)]

r[sinh(R0 −Ri) + Ri cosh(R0 −Ri)]
, (12)

with R0 and Ri defined as in section 3.1 except that the necrosis condition is now
Pc < Pe. In addition, the tumor and necrotic radii must satisfy the following
conditions:

R2
0

dR0

dt
=

∫ R0

Ri

r2(C(r, t)− α) dr, (13)

0 =
∫ R0

Ri

(
r − r2

R0

)
(C(r, t)− α) dr, (14)

where α = e/dC(R0).
Superficially this model predicts observed spheroid behavior. Starting with a

small spheroid, the radius grows exponentially until the moment a necrotic core
begins to develop in the center. At that time, it enters a “linear” growth phase with
a necrotic core eventually growing at the same rate, producing the proper histology.
The depth of the proliferative layer will in general differ from that predicted by
nutrient-deficiency models and can therefore be used to contrast the two hypotheses
empirically.

Unfortunately, this model makes a disturbing prediction—in the absence of sur-
face tension, the spheroid grows without bound. In fact, this result is general
across choices of cell-growth models as long as cell proliferation is nondecreasing
with oxygen concentration. However, Please et al. show in [94] that one can relax
the assumption of inviscid cells and allow a (small) surface tension that can halt
runaway growth. Doing so requires only the addition of the term 2Γ/R0 to equation
(14), where Γ is a measure of surface tension.

Working from an extension [62] of the previous model, C. Y. Chen et al. [27]
investigate the mechanical disruption hypothesis in spheroids growing in agarose
gels. The gel is assumed to be elastic and therefore exerts pressure on the spheroid
as it grows. Once again the tumor consists of cellular and extracellular fluid phases
permeated by a nutrient, all of which obey the following relations:





∂ψ

∂t
+∇ · (ψUc) = ψS(C),

∂(1− ψ)
∂t

+∇ · [(1− ψ)Ue] = −ψS(C),

D∇2C = ψΣ(C),

(15)

where ψ is the cellular volume fraction within the tumor (≡ 1 − φ for φ defined
above); Uc and Ue represent velocity fields for cell and extracellular fluid, respec-
tively; S denotes cell-growth rate; D is oxygen diffusivity through the tumor; Σ
represents rate of nutrient consumption; and all other notation is defined earlier in
this section. Following [62], Chen et al. include in the force balance equations hy-
drodynamic drag, hydrostatic forces in the interstitial fluid, and forces among cells
transmitted by an ECM scaffold. In the nonnecrotic region, by definition Pc > Pe
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and cells are maximally packed such that ψ = ψ0, ψ0 a constant; however, in the
necrotic core, Pe = Pc but ψ ≤ ψ0.

The model becomes quite tractable if one limits the investigation to a perfect
sphere, defines Σ(C) = 1, and sets

S(C) =
{

1 if C > α,
−ρ if C ≤ α,

(16)

where α represents a lower O2 threshold below which cell death predominates and
ρ is a positive constant representing sensitivity of cells to nutrient deficiency. With
this definition of the growth function, spheroids obeying model (15) can develop
three histologically distinct regions: a necrotic core, a middle annulus characterized
by cell mortality dominating proliferation, and an outer annulus of proliferative
tissue. As in [94], this model predicts that spheroids suspended in liquid media
(zero gel stiffness) obtain the traditional histology, including a necrotic core, but
contrary to observation tend to grow without bound. In a gel, however, spheroids
always asymptotically approach a limited size, with or without a necrotic core.

For our purposes the most important prediction made by this model involves the
relationship of necrosis to gel stiffness. In a very rough sense, spheroids in stiffer
gels tend to be smaller at their steady-state size, with a lower likelihood of becoming
necrotic than spheroids in more elastic gels. Even if necrosis does develop, it tends
to arise later in stiffer gels. Apparently, stiff gels squeeze fluid out of the spheroid
while favoring cell compression, so the necrosis conditions are less likely to be met.
Therefore, this model encourages one to test the mechanical disruption hypothesis
against nutrient deficiency by varying gel stiffness and nutrient availability using a
fully crossed, factorial experimental design. (See [55] for example.)

3.4. Necrosis from local acidosis. A series of recent investigations by Robert
Gatenby and his colleagues focusing on how malignant neoplasms invade surround-
ing tissue has also produced an explanation of necrosis that harkens back to the
inhibitors hypothesized by Greenspan, Byrne, and Chaplain. In this case, Gatenby
and his colleagues identify the inhibitor as acid. Most malignant tumors acidify
their local environments because parenchyma cells metabolize glucose via glycoly-
sis and fermentation, which produces lactic acid that cells then secrete [43, 45, 97]
(see section 4.2.2 for an elaboration of this idea). Gatenby et al. [41, 42, 90] suggest
that this acidification selects for tumor cells able to withstand acidosis, allowing
them to outcompete and therefore invade adjacent healthy tissue. In one model
of this hypothesis [41, 42], one represents the densities of cancer and healthy cells
with N1(x, t) and N2(x, t), respectively, at point x in the tumoral or peritumoral
environment at time t. The excess hydrogen ion or lactic acid concentration is
denoted L(x, t). With this notation, Gatenby et al.’s model becomes





∂N1

∂t
= r1N1

(
1− N1

K1
− α12

N2

K2

)
− d1LN1,

∂N2

∂t
= r2N2

(
1− N2

K2
− α21

N1

K1

)
− d2LN2 +∇ · [DN2∇N2],

∂L

∂t
= r3N2 − d3L + DL∇2L,

(17)

where d1 and d2 are excess death rates of the two cell types due to local acido-
sis; DN2(N1, N2) represents cancer cell motility, modeled in particular as either
D2(1−N1/K1) or D2(1−N1/K1 −N2/K2); r3 is the per-cancer-cell H+ secretion



ECOLOGY AND EVOLUTIONARY BIOLOGY OF CANCER 395

rate; d3 is the rate at which hydrogen ions wash out in blood or are absorbed by
physiological buffers; and DL is the acid diffusivity through tumor tissue. A cellu-
lar automaton (CA) analogue of this system, with an addition of glucose delivery
through a vascular net, has also been studied [42, 90].

Both model (17) and its CA analogue support the notion that acid secretion
facilitates invasion, even in small tumors. These models also suggest a relation-
ship between the morphology along the tumor edge and invasiveness; namely, a
gap between tumor and healthy tissue tends to form in more aggressively invasive
cancers. More important for our current purposes is the observation of necrosis in
the CA model. Under certain circumstances, Aalpen Patel et al. [90] show that
areas within the tumor can become so acidic that all cells are destroyed, yielding a
region of necrosis.

Although this mechanism is distinctly different from all others presented above, it
may be hard to tease apart from the nutrient limitation hypothesis for the following
reason. Cancer cells might evolve to rely on glycolysis instead of the tricarboxylic
acid cycle precisely because of nutrient limitation in nascent tumors [43, 45]. So
areas where nutrients are limited are precisely those areas where selection favors
cells that acidify the environment, resulting in a spatial correlation between nutrient
deficiency and acidosis. However, the acidification hypothesis predicts that in older
tumors at least regions with a higher density of parenchyma cells and therefore
regions of high acid secretion, should be more prone to necrosis than regions with
a more mixed histology, even if nutrient delivery does not vary between the areas.
Models such as (17) and those presented in sections 3.2 and 3.5 may be employed
to refine this prediction into something empirically testable.

3.5. Necrosis due to local ischemia. The irregular pattern of necrosis often
observed in real tumors begs for more complex hypotheses than those presented
above. In particular, how necrosis-inducing conditions arise in larger, irregularly
shaped tumors in the face of vascularization needs explanation. If necrosis is caused
by nutrient limitation, for example, then what determines where it occurs within
a vascularized tumor? If, on the other hand, mechanical disruption of cells causes
necrosis, then can one predict where such necrotic regions will crop up within a
growing tumor given its location within the body?

To my knowledge, no major theoretical work has been done on the mechanical-
disruption hypothesis in an in vivo setting, probably for two reasons. The first is
the obvious complexity involved; the region of the body itself would have to be
modeled, including organ shape and tissue compositions. The importance of these
factors is highlighted by the observation that multicell spheroid behavior depends
in part on the stiffness of the media (see section 3.3). Second, the hypothesis itself is
relatively young and so has not been fully analyzed beyond the simplified geometry
of a spheroid.

On the other hand, three distinct variations of the nutrient-limitation hypothesis
have been proposed to explain necrosis in vascularized tumors. All three point
to local ischemia (lack of blood delivery at the tissue level) as the culprit, but
they disagree on what causes the ischemia. One, commonly cited in oncology
texts, suggests that tumors “outgrow their blood supply”; that is, parenchyma
growth exceeds vascular growth in some region within the tumor, resulting in a
local ischemic necrosis. The viability of this hypothesis is questionable, because the
net proliferation rate appears to depend on local perfusion, so it is unclear how the
parenchyma could overshoot its local “carrying capacity” so wildly. Nevertheless,
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such a mechanism could account for some subtle oscillations in growth rate [82] (see
section 5 below). In the second variation, local ischemia is caused by compressive
pressure within the tumor, which collapses tumoral blood vessels. This compression
is thought to arise in part through high fluid pressure in the interstitium [76],
although bulk pressure from cells probably plays a dominant role [59]. Finally,
the third variation places the blame on irregular distributions of blood flow and
hematocrit that can arise even within a highly organized microvascular net. Here,
I will focus on models of these last two variations.

3.5.1. Ischemia caused by vascular collapse. One version of this hypothesis has been
modeled by Mollica et al. [76] at the level of a single microvessel. In this model
we imagine a capillary of length L situated within the tumor. The interstitial fluid
pressure, πi, is assumed to be constant, so the pressure acting on the capillary
at location x along its length at time t, denoted p(x, t), is π(x, t) − πi, where π
represents the vessel pressure. If p < 0, then the capillary feels a compressive
force and will begin to collapse. Sufficient compression causes the capillary to
buckle, resulting in almost complete cessation of blood flow. On the other hand,
the capillary is assumed to have some elasticity, so it may dilate in response to the
distending force the capillary feels when p > 0.

If we let u(x, t) be the displacement of the capillary wall from its average width
h0, then the main model equations take the following form:





−T

w

∂2u

∂x2
+ Φ(u)− p + c

∂u

∂t
+ ρH

∂2u

∂t
= 0,

− ∂

∂x

(
(h0 + u)3

∂p

∂x

)
+

3kp

wδ
+

3µ

w

∂u

∂t
= 0,

(18)

where T represents capillary wall tension, w normalizes the vessel cross section so
changes in its area can be equated to changes in the height of a rectangle of equal
area, Φ(u) represents the capillary wall stiffness, c is a drag coefficient, ρ represents
interstitial fluid density, H is the virtual mass coefficient, δ is the capillary wall’s
thickness, k denotes the permeability of the capillary wall to serum, and µ is blood
viscosity. At the venous and arterial ends, the capillary is held at fixed width h0,
and the entrance (arterial, πa) and exit (venous, πv) pressures are also fixed, with
πa > πv.

Numerical investigation of this model uncovered a regime in which blood flow
through the vessel cycles on a 100-millisecond time scale. The cycles appear to
be chaotic and persistent, indicating a continuous “pulsing” of blood through the
capillary independent of the cardiac cycle, which was not modeled. The original
purpose of the model was to investigate observed variation in blood flow rate and
direction in actual tumors. Mollica et al. note that their results, while intriguing,
fail to explain observed behavior because the oscillations occur much too rapidly.
However, they suggest that a network of such capillaries and relaxation of certain
simplifying assumptions may yield more realistic behavior. A similar cautionary
remark applies to the use of this model to study necrosis. The basic premise is
promising, but a more coarse-grained scale is probably required. Nevertheless, this
model is an important mechanistic attack on the problem.

3.5.2. Ischemia caused by irregular blood flow and hematocrit distributions. Al-
though it is well-known that tumors frequently suffer disrupted circulation [59,
97], vessel collapse from compressive pressure is not the only possible mechanism.
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Tomas Alarcón et al. [3, 4] investigate an alternative in which ischemia arises as
a result of capillary accommodation responses and heterogeneous distribution of
hematocrit throughout a tumor. Using a “hybrid” cellular automaton model, so
called because it includes a traditional diffusion formalism along with the CA mech-
anism, they study the effects of heterogeneous blood distribution on the competition
between tumor cells and healthy cells. The setting is a prescribed, two-dimensional
vascular net overlaying a 60-by-60 pixel CA grid. Each pixel in the grid represents
one (biological) cell, so the domain is about 1200 µm2, assuming an average cell
diameter of 20 µm. The vascular bed is a regular “hexagonal” net with anastamoses
every 80 to 90 µm or so. This arrangement results in a maximum avascular interval
of 160 µm along the vertical axis and 240 µm along the horizontal.

The vessels themselves are not inert tubes. Rather, they change diameter in re-
sponse to changes in transmural pressure, sheer stress, effective oxygen delivery and
intrinsic mechanisms. In short, if we let Ri,t be the diameter of the ith capillary sec-
tion at time step t, then accommodation dynamics of the capillary are described by
the following equation, which because of the CA formalism is expressed in discrete
time steps of length ∆t:

Rt+∆t −Rt

∆t
= R

[
ln

(
τw

τ(P )

)
+ km ln

(
Q̇r

HQ̇
+ 1

)
− ks

]
, (19)

where the i subscripts have been dropped, τw is the sheer stress along the capillary
wall, Q̇ is whole blood flux, Q̇r measures constant oxygen demand of cells serviced
by the capillary, km measures how sensitive the capillary response is to discrepancies
between O2 demand and O2 delivery, and ks represents an innate tendency of the
capillary to shrink in the absence of other modifiers. In addition, the authors assume
that capillaries homeostatically regulate sheer stress around a set point that can
vary with transmural pressure, P ; that set point is represented by τ(P ) and was
determined empirically. The variable H is a measure of red blood cell count or,
alternatively, moles of O2 and can be thought of as proportional to the hematocrit,
the red cell volume fraction of whole blood.

The most important aspect of this paper is the recognition that hematocrit tends
not to remain homogeneous in a microvascular net; therefore, if hematocrit in one
region of a tumor became very low, nutrient delivery would be impaired and necrosis
might result. The mechanism causing hematocrit inhomogeneity is the tendency
of erythrocytes to disproportionately enter branches with larger flow rates per unit
area in the branch’s cross section. To model this phenomenon, Alarcón et al. assume
that at a vessel bifurcation, erythrocytes prefer to enter branches with a larger flow
rate. In fact, if the difference in flow rates is large enough, all erythrocytes enter
the faster branch.

Results of this model showed that both blood volume and hematocrit can vary
wildly throughout a microvascular net. Unfortunately, Alarcón et al. did not use
this model to investigate it as a mechanism of necrosis, but certainly this intriguing
hypothesis is worth following up.

4. What causes cell diversity within malignant neoplasia? Along with necro-
sis, cell diversity is another biologically and clinically significant feature of malig-
nant neoplasia, the explanation of which benefits from an ecological perspective.
This cellular diversity exists on two levels. The first, which for convenience I will
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call “Type I” diversity, includes all types of cells within malignant tumors, includ-
ing parenchyma cells, “healthy” cells of the reactive stroma—primarily fibroblasts
and myofibroblasts—and cells of the circulatory infrastructure—blood and lymph
endothelial cells, pericytes, smooth muscle cells, and a few others. In addition,
immune reactive cells, including lymphocytes, macrophages, and neutrophils, are
also present (Fig. 1).

The second type of diversity, “Type II,” is variation in parenchyma cell anatomy
and physiology. Anatomical variation alone is typically referred to as cellular pleo-
morphism, or more specifically nuclear pleomorphism if one focuses on that or-
ganelle, but here I will extend the concept to include physiological differences as
well. Although mathematical attacks on the causes of necrosis have a deeper his-
tory than studies of tumor cell diversity, theories for both types have appeared, as
I review below.

4.1. Causes of Type I diversity. Cancer can be understood as a result of natural
selection favoring certain cell lineages that one can describe as “selfish ‘cheats’
that exhibit antisocial characteristics” [84, p.493]. In the short term, selection
favors aggressive mutant cells over “healthy,” cooperating cells at the expense of
integrated tissue architecture. Tissue integration breaks down because mutant cells
enter a competition for resources that otherwise would not exist among cooperating,
genetically similar clones. Since this destruction of tissue architecture, which defines
malignancy, arises through disrupted relationships among all cell types within the
lesion, Type I diversity should be a major focus, if not the main focus, of theoretical
oncology. However, besides efforts to model angiogenesis (see [8, 25, 26, 65, 66, 72,
92, 102] for reviews) and some promising recent models of interactions between
parenchyma and ECM [26], the most modern empirical research of phenomena at
this level of diversity (which can be thoroughly explored in [17, 32, 58, 67, 71, 89,
96, 98, 100, 114]) has attracted surprisingly little attention from the theoretical
oncology community.

Despite the relative paucity of effort directed at Type I diversity, at least three
hypotheses explaining how it arises can be derived from existing research. The
first suggests that invading parenchyma cells cannot entirely outcompete the orig-
inal healthy population, leaving remnants of the healthy population in pockets or
spread evenly throughout the tumor. The second supposes that tumor tissue in-
vades surrounding healthy tissue with fingerlike projections, like the fungiform inva-
sion described in pathology texts, caused by known reaction-diffusion mechanisms.
Finally, the third hypothesis is an extension of the first. Complex interactions
among parenchyma, healthy, and immune cells within the lesion cause Turing-like
patterns to arise in which densities of the various cell types vary throughout the
tumor, with some areas inhabited primarily by parenchyma, others by normal cells.
Each of these ideas is explored more fully below.

4.1.1. Incomplete competitive exclusion. Perhaps the most straightforward way to
represent the competition among cell types characteristic of malignancy is a direct
application of the Lotka-Volterra model, as was made by Gatenby [40]:





dN

dt
= rNN

(
1− N + αT

KN

)
,

dT

dt
= rT T

(
1− T + βT

KT

)
,

(20)
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where N(t) and T (t) represent the number of healthy cells and tumor cells, respec-
tively; Ki is the “carrying capacity” for a body made exclusively of cell type i; α
measures the competitive impact of tumor cells on healthy cells; β is the competi-
tive impact of healthy cells on tumor cells; and ri is the intrinsic rate of increase for
cell type i. The dynamics of this model are well understood [56, 80]; the novelty is
Gatenby’s interpretation of the behaviors. He views parameter regions that allow
an attracting interior (nonboundary) fixed point as benign neoplasia. Malignancy
is recognized as an attracting fixed point on the boundary for which N = 0 and
T = KT . Later, Gatenby et al. [44] used this system in a general reaction-diffusion
model,

∂n
∂t

= f(n) + D∇2n, (21)

where n(x, t) is a vector of cell population densities for all cell types at point x and
time t, D is a matrix of cell motility coefficients, and f(n) is a generalization of
model (20) that includes an arbitrary number of cell types competing at a point in
space. In their application, Gatenby et al. limit the model to one space dimension
and two competing species, again cancer versus healthy cells, so f(n) is the right-
hand side of model (20).

Again, model (21) is well studied [81] and known to admit travelling-wave so-
lutions with well-characterized velocities, interpreted by Gatenby et al. as tumor
invasion of surrounding tissue. In particular, if

αKT > KN (22)

and
βKN < KT , (23)

then the tumor will invade surrounding healthy tissue, completely replacing it, at
a speed no less than

2

√
rT DT

(
1− βKN

KT

)
. (24)

However, if the inequality in equation (23) is reversed, then the tumor still in-
vades but does not entirely eliminate surrounding healthy tissue. This result is
interpreted as desmoplasia, a mixture of cancerous and noncancerous cells within a
tumor. Therefore, this model explains tumor cell diversity as incomplete competi-
tive exclusion.

This model, although simple, makes some interesting practical predictions about
how tumors will respond to treatment. Most basically, any successful treatment
must reverse both inequalities (22) and (23). If the treatment is successful and
scar-forming tissue has essentially the same properties as the original healthy tissue
destroyed by the tumor, then the lesion will scar over at a minimum speed given by
an expression formally equivalent to (24), with subscripts switched and α replacing
β. Also, as Gatenby et al. point out, cytotoxic therapy can kill tumor cells directly
and may blunt the tumor population’s intrinsic rate of increase rT . In neither
case will it have an effect on the asymptotic behavior of the tumor—rT does not
determine the stability properties of the steady states—unless the tumor is entirely
eradicated. Such behavior in the model may help explain why cytotoxic therapy
often fails.

Gatenby et al. use this insight to identify other parameters that might make more
promising targets for therapy. In fact, this model supports attacks on a potential
target already identified—tumor vasculature [36]. In the context of this model, an
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attack on tumor angiogenesis at the least reduces KT , which will tend to reverse
both inequalities (22) and (23). If all else remains equal, angiogenesis inhibition
could therefore cause stability of the boundary equilibria to switch, in which case
the tumor would regress without further cytotoxic treatment. In essence, the body
itself would destroy the tumor by outcompeting it. However, whatever effect such
a treatment has on KT , it must not equally degrade KN , as is clear from relations
(22) and (23).

These inequalities also suggest that one might profitably attack the tumor by
altering the competitive relationship between cancerous and healthy cells since de-
creasing α and increasing β will also tend to favor healthy cells. Gatenby et al.
suggest that techniques to decrease tumor cell nutrient uptake and perhaps in-
crease healthy cell uptake might work. This idea is in line with results obtained
by [60]. Gatenby et al. also recommend looking for ways to decrease protease ex-
pression and acid secretion as ways to decrease α. They also suggest one might
consider trying to increase KN by somehow attenuating contact inhibition among
normal cells.

4.1.2. Fungiform invasion. As an alternative to the incomplete-competitive exclu-
sion hypothesis, a model by Shusaku Tohya et al. [107] suggests that nutrient dy-
namics within the tumor drives Type I diversity. This model was originally designed
to explore the irregular penetration of dermis by nodular lesions of basal cell car-
cinoma (BCC), a largely curable form of skin cancer. In this model, we look at a
cross section through a BCC lesion perpendicular to the skin. All dynamics occur
on the plane of the cut, so it is convenient to let x and y be the dimensions parallel
and perpendicular to the skin’s surface, respectively. Also, let 0 ≤ x ≤ X and
0 ≤ y ≤ Y . Nutrient is delivered to the tumor by a capillary that lies along the
basal edge of the tumor, so the nutrient along the line y = Y for all allowable x is
fixed at n0. Cells take up this nutrient, metabolize it, and use it for both move-
ment and growth. If we let n(x, y, t) and c(x, y, t) be the nutrient concentration
and cancer cell density, respectively, at point (x, y) and time t, then Tohya et al.’s
model becomes 




∂n

∂t
= Dn∇2n− knc,

∂c

∂t
= ∇(Dc(n, c)∇c) + θf(n, c),

(25)

where Dn is the diffusivity of nutrient; k is the base rate at which cells uptake
and metabolize nutrient; Dc(n, c) = σnc, σ constant, expresses cancer cell motility;
and θ measures how efficiently cells convert nutrient into new growth. Initially the
lesion starts as a flat layer of cells of fixed thickness y0, with the remaining space
y0 < y < Y for all allowable x considered to be normal dermal tissue.

Despite this model’s formal simplicity, it produces an intriguing hypothesis. Un-
der certain conditions, in particular when n0

√
θ/Dn is sufficiently small, the lesion

extends tumorous “fingers” into the dermis. If sectioned in any way other than
exactly perpendicular to the skin surface, a microscopic examination of such tissue
would look like islands of normal tissue within a sea of cancer tissue, or vice versa.
Alternatively, it is not hard to imagine a more realistic extension of model (25) in
which these fingers grow together, engulfing islands of healthy tissue and yielding
a realistic histology. As it stands, the simulations make certain predictions about
the width of the tumorous fingers and the rate at which they grow as functions of
parameters that may help guide empirical investigation.
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4.1.3. Turing instabilities. A model by Markus Owen and Jonathan Sherratt [88] of-
fers a distinctly different explanation of Type I diversity from either the incomplete-
competition or fungiform-invasion hypotheses. Their model is a spatially explicit
description of macrophage-tumor interactions that includes dynamics of a chemical
regulator secreted by cancer cells that both attracts and activates macrophages.
Macrophages are seen as able to bind to parenchyma cells to form a parenchyma-
macrophage complex. Such complexes then fall apart, yielding an intact macro-
phage and unmodeled debris. If we let

l(x, t) = macrophage density at spatial point x at time t,
m(x, t) = cancer (parenchyma) cell density,
n(x, t) = healthy cell density,
f(x, t) = concentration of the chemical regulator, and
c(x, t) = parenchyma cell-macrophage complex density,

then the following is a nondimensional version of Owen and Sherratt’s model:




∂l

∂t
= Dl∇2l − χl∇(l∇f) +

αfl(N + 1)
N + l + m + n

+ I(1 + σf)

−k1flm + k2c− δll,

∂m

∂t
= Dm∇2m +

ξm(N + 1)
N + l + m + n

−m− k1flm,

∂n

∂t
= Dn∇2m +

n(N + 1)
N + l + m + n

− n,

∂f

∂t
= Df∇2f + βm− δff,

∂c

∂t
= Dc∇2c + k1flm− k2c− δcc.

(26)

Everything in this model moves about by simple diffusion with diffusion constants
Di, i ∈ {l,m, n, f, c}, and macrophages tend to migrate up the chemical regulator
gradient with basic motility χl. All cell proliferation terms have the form

ψ(N + 1)
N + l + m + n

, (27)

with ψ some simple function of assorted dependent variables and N a parame-
ter that describes sensitivity of cells to crowding. The healthy cell population
reaches equilibrium whenever l + m + n = 1 in the absence of diffusion. There-
fore, the variables are scaled such that when total cell density is unity, a sort of
“carrying capacity” for healthy cells is reached. Note that in this model crowd-
ing inhibits only proliferation, not mortality. The remaining parameters include
the rates at which macrophages proliferate in response to the chemical regulator
(α), macrophages leave blood vessels to enter the tumor interstitium (I), blood-
borne macrophages enter the tumor interstitium in response to the chemical regu-
lator (σ), the macrophage-tumor cell complex forms (k1) and dissociates (k2), free
macrophages disappear (δl), the chemical regulator is secreted by cancer cells (β),
the chemical regulator decays (δc), and macrophage-cancer cell complexes disso-
ciate. Finally, ξ > 1 measures the proliferative advantage cancer cells enjoy over
healthy cells.

If one simplifies this model by turning chemotaxis off (χl = 0), then numerical
investigation reveals two interesting regimes. The first represents a smooth wave-
front of cancer tissue infiltrating and completely eliminating surrounding healthy
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cells. In this regime, the wave speed is approximately 2[Dm(ξ − 1)]
1
2 per time, to

first order. Their parameter estimates applied to this formula indicate that a 1 mm
diameter tumor would take on the order of 100 days to grow.

The second regime is dynamically more surprising and shows the potential im-
portance of immune attack on Type I diversity within a tumor. If the chemical
regulator diffuses sufficiently well (Df is large enough), then behind the invasion
front a Turing pattern of alternating regions of high and low cancer cell density
develops. In one dimension, the healthy cell density becomes very ragged as it
decays outward in a pattern reminiscent of actual cancerous lesions. These pat-
terns form because local areas in which cancer cell density, and therefore chemical
regulator production, is high cause a sharp chemical gradient to form. Since both
the gradient and diffusion constant are large, most of the chemical regulator moves
out of areas of high cancer cell density. As a result, macrophages, following the
chemical regulator, tend to cluster in areas of relatively low cancer cell density.
Since these areas contain very few cancer cells, and therefore produce very little
chemical regulator of their own, the gradient is maintained as long as the chemical
regulator decay rate is sufficiently high. These patterns were observed in both one-
and two-dimensional solutions.

Allowing macrophages to migrate up the chemical regulator gradient (allowing
χl > 0) stabilizes these Turing patterns in the following sense: chemotaxis tends to
increase the critical value of Df above which these patterns form. However, chemo-
taxis also appears to favor even wilder behavior once Df gets high enough. The
pattern following the invasion wavefront, which before was more or less regularly
repeating regions of high and low cancer cell density, can become highly irregular,
exhibiting the mixed histology often characteristic of malignant neoplasia.

4.2. Causes of Type II diversity. As already mentioned, diversity within ma-
lignant neoplasms is not limited to differences between parenchyma and a few
“healthy” cell types. Even among parenchyma, cellular pleomorphism is a common
feature, although it varies among tumors and even within the same tumor over
time, typically declining as the tumor ages [68]. The question I now address is, how
does cellular pleomorphism arise? At least three hypotheses exist. First, as already
discussed, a number of different aspects of the intratumoral environment—nutrient
concentration, hydrostatic and mechanical pressure, among other things—vary both
temporally and spatially. Since cells are physiologically plastic, they can change
their behavior and even form to accommodate the demands of their local environ-
ment. Therefore, pleomorphism may represent nothing more than accommodation
of cells to different environmental conditions. We have already seen an example of
this idea in the quiescent layer of some multicell spheroids. Despite the elegance of
this hypothesis, it has rarely been evoked in any mathematical treatment to explain
parenchyma pleomorphism beyond quiescence.

The cause of this neglect is probably the existence of an alternative hypothesis
that, in this age of genomics, is more intuitively satisfying. Parenchyma cells have
long been known to exhibit striking genetic variation, which was later discovered
to be caused in part by dysfunction of their DNA-maintenance machinery [69, 78].
From this observation an explanation of cancer cell variation almost immediately
follows—pleomorphism is driven by genetic polymorphism caused by the rapid ac-
cumulation of mutations among cancer cells. This hypothesis has been applied
directly to explain variations in proliferation rate, invasion and metastasis poten-
tial, anaplasia (lack of differentiation), and senescence, in addition to cellular and
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nuclear anatomy (reviewed in [18, 19]), although rarely has it been used in the
mathematical oncology literature (see [103] for an exception).

The third hypothesis is really an extension of this genetic polymorphism idea.
This new hypothesis, however, suggests that the history of mutations among cancer
cells, while important, is still insufficient to explain the pattern of pleomorphism
within any given tumor. One must also know how natural selection then sifted
through the mutations to understand fully the diversity and frequency of paren-
chyma cell phenotypes. The role that natural selection plays depends critically on
the functional nature of the pleomorphism. That is, are tumors integrated tissues,
with a variety of cell types working together for their mutual benefit? Or are tu-
mors a collection of uncooperative cell types competing for scarce resources? If the
latter, then pleomorphism is a manifestation of niche segregation, and damaging
or removing one cell type should have little effect on overall tumor growth. If the
former, then pleomorphism is an adaptation of the tumor to the host; destruc-
tion of one subpopulation will cause disproportionate damage as the disruption of
integrated function will ripple throughout the tumor.

Although the idea that natural selection acts within tumors is old [83, 87] and
presented dogmatically in standard texts, the magnitude of selection’s impact still
demands evaluation. For example, if mutation rates are very high and environmen-
tal conditions extremely spatially and temporally variable, no consistent selection
pressures will exist, thereby minimizing natural selection’s role. Therefore, one
should maintain natural selection and genetic polymorphism as distinct hypothe-
ses.

For the remainder of this section I focus on the natural-selection hypothesis and
ask, what traits does selection favor in the competition among parenchyma cell
types? Certainly growth rate is an obvious candidate, but others have also been
proposed, including efficient nutrient use and decreased dependence on oxygen.
Below I review models of each of these suggestions.

4.2.1. Natural selection favoring proliferation rate and efficient nutrient use. As
with Type I diversity, the earliest models of pleomorphism, by Seth Michelson et al.
[75], grew from the Lotka-Volterra competition models. However, unlike Gatenby,
Michelson et al. interpret the species as two different strains of cancer cells within a
single tumor. In essence, the model “begins” after mutation has already created a
challenger to the resident parenchyma strain. The question then is, will one strain
eventually dominate or will a polymorphism result? In one variation, for example,
Michelson et al. (see also Michelson and Leith [74]) allow one cell type to mutate
into the other. In this model they represent the population sizes of the two cell
strains as x and y and define the following model:





dx

dt
= r1x

(
1− x

K1
− λ1y

)
− px,

dy

dt
= r2y

(
1− y

K2
− λ2x

)
+ px,

(28)

with ri and Ki the intrinsic rate of increase and carrying capacity, respectively, of
cell type i; λi the effect of competition on strain i; and p the rate at which cell type
1 mutates into cell type 2. This model can have three fixed points: the origin, the
point (0,K2), and a point in the interior representing a polymorphism. The authors
use Dulac’s criteria to show that no relevant limit cycles exist. The origin is never
asymptotically stable if one assumes both ri > 0; so, the dynamics are (almost
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always) well characterized. In short, if p > r1(1−λ1K2), then solutions always ap-
proach the boundary fixed point, representing a monomorphic y-type population.
If the inequality is reversed, the population approaches a well-characterized poly-
morphism asymptotically. So, if the x-type population suffers either a low intrinsic
reproductive rate or high mortality, then selection will favor its complete annihila-
tion. We can also see in this model selection punishing cells that use nutrients or
space inefficiently—if y-type cells are inefficient, manifested as a limited “carrying
capacity” (K2 small), then x-type cells are less likely to be completely excluded.

A more sophisticated extension to these simple competition models provided by
Gatenby and Thomas Vincent [45] can be used to predict how tumor populations
are likely to evolve in the face of competition for resources, in this case glucose.
Consider a tumor that contains one healthy cell population and p−1 subpopulations
of parenchyma cell types. The number of healthy cells at time t is denoted N1(t),
while Ni(t), i ∈ {2, . . . , p}, represents the size of the ith cancer subpopulation.
Cells of all types take up and metabolize glucose, the absolute amount of which is
denoted R(t). Gatenby and Vincent then write the following model to represent
competition for glucose within this heterogeneous tumor:
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(29)

where αn and αc are intrinsic rates of increase for healthy and cancer cells (invariant
across strains), respectively; Ki and Ei, i ∈ {1, . . . , p}, are “carrying capacities”
and maximum substrate uptake rates for all cell types, respectively; Rn and Rc

measure the sensitivity of nutrient uptake to changes in nutrient concentration,
and mn and mc represent glucose oxidized for purposes other than proliferation,
which one can think of as maintenance metabolism. The function r represents
glucose delivery through the blood, which increases with tumor size. Gatenby and
Vincent appear to assume that microvessel density varies in proportion to glucose
demand for maintenance metabolism, so they modify the basic glucose delivery
rate, re, by the weighted average of basic glucose demand.

In this model the parameters assumed to be under selection are K and E and
are considered to be random variables. They assume that normal cells’ carrying
capacities and basic nutrient uptake rates distribute normally around means µK

and µE , with variance σ2
n for both distributions. Similarly, parameter values for

cancer cells are normally distributed with means νK and νE and variance σc for
both. To determine how the population evolves, Gatenby and Vincent exploit a
method involving fitness-generating functions that essentially allows them to write
an expression for the fitness of all possible cell types for any given population com-
position. With this adaptive landscape, they can then write a differential equation
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for the change in population size for any strategy in any population. With such
an equation one can find evolutionary equilibria, equivalent to evolutionary stable
strategies [46, 73], by finding the population configuration at which the fitnesses of
all cell types are zero.

The results of this model suggest that when cancer arises, glucose concentration
tends to decline, because the basic metabolic rate of the tissue (tumor) increases.
Because glucose becomes scarce, natural selection favors cells that can sequester
and metabolize glucose efficiently (maximize both K and E). So over time the
tumor is able to maintain its proliferation rate in the face of fierce competition
for glucose. In addition, this model is among the first to reproduce the observed
decline in tumor pleomorphism as tumors progress.

Further support for the hypothesis that selection favors efficient nutrient use
comes from a model by Yang Kuang et al. [60]. In this model we imagine a tumor
growing in an organ with mass x(t). The tumor contains two different parenchyma
cell types with masses y1(t) and y2(t). Nutrient is delivered to the cells through a
dynamic vascular network with a total mass of vascular endothelial cells (VECs) of
z(t). Total tumor phosphorus is denoted by P and is partitioned into five different
compartments: the interstitial fluid, healthy cells, cells of the first parenchyma
type, cells of the second parenchyma type, and VECs. Each unit mass of healthy
cells, including VECs, contains n units of phosphorus, while parenchyma cells of
type 1 and type 2 hold m1 and m2 units, respectively. Therefore, if we denote
extracellular phosphorus as Pe, then Pe = P − [n(x+ z)+m1y1 +m2y2]. With this
notation, Kuang et al. suggest the following model:
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(30)
where L = g(z − α(y1 + y2))(y1 + y2), a, b1, b2, and c represent intrinsic rates of
increase of all cell types; all terms di are basic death rates; kh and kt represent
limiting sizes for the healthy organ and tumor, respectively; f is the intracellular
fluid fraction; and L is a measure of vascular supply. In particular, α represents
the mass of tumor cells one unit of blood vessels can just barely maintain, and g
measures sensitivity of tumor tissue to lack of blood. Also, Kuang et al. assume
that tumor tissue starved for blood releases an angiogenic signal. This signal is
distilled by VECs from a complex mix of pro- and antiangiogenic chemical growth
factors released by all cells in the tumor. Upon receipt of the signal, VECs re-
spond by reproducing, moving toward the blood-starved region and forming new
microvessels. Kuang et al. further assume that the VEC response is delayed by
τ time units, representing the time needed for cells to transduce and respond to
the chemical signal and complete their reproductive, motility, and differentiation
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programs. Finally, parameters βi represent the effect of a drug able to modulate,
generally inhibit, cell type i’s ability to sequester phosphorus from the interstitium.

Model (30) admits two possible limiting factors: blood supply and phosphorus.
However, simulations with reasonably realistic parameter values suggest that phos-
phorus is the key limiting factor, determining both growth rate and final tumor
mass. In this case, then, what type of cell does natural selection favor—cells with a
high or low phosphorus requirement (high or low mi)? The nutrient-use efficiency
hypothesis suggests that selection will favor the most efficient type; that is, the
type that minimizes mi. However, the reality is complicated by the fact that phos-
phorus use relates to growth rate [34, 60, 101] in the following way. Cells require
phosphorus primarily for nucleic acid, and rapidly proliferating cancer cells must
synthesize large amounts of nucleic acids, primarily in the form of ribosomes [101],
to build proteins needed for cell division. In fact the number of ribosomes in cancer
cells appears to correlate with cancer aggressiveness (reviewed in [34]). Therefore,
selection for the aggressive cell type can work directly against selection for efficient
nutrient use.

Model (30) suggests that selection’s choice between nutrient-use efficiency and
aggressive proliferation depends on the state of the tumor. In particular, when
tumors are small and well supplied with phosphorus and blood, the more aggres-
sively proliferating cell type may have the advantage, growing faster than its less
aggressive competitor. However, as the tumor approaches its asymptotic limit, com-
petition for phosphorus increases as it becomes limiting. Then selection changes
favor and gives the advantage to the more efficient type, which eventually drives
the aggressive phenotype to extinction (Fig. 4). Therefore, this model predicts that
as tumors age they become less aggressive and more miserly with nutrients.

4.2.2. Natural selection favoring insensitivity to hypoxia. As already discussed (sec-
tion 3.4), malignant tumors and their peritumoral environments tend to be rela-
tively acidic, probably because tumor cells favor glycolysis and fermentation over
the tricarboxilic acid cycle. Gatenby and his colleagues [43, 45, 97] suggest that
natural selection provides the answer as to why. Carcinomas by definition begin
within epithelial tissue. This tissue is defined by the presence of a basement mem-
brane upon which the epithelial cells live (Fig. 5). Usually the vasculature servicing
such tissue lies on the opposite side of the basement membrane; therefore, prema-
lignant carcinoma precursors, which by definition cannot penetrate the basement
membrane, are constrained to expand away from the blood supply. (Such geometry
raises doubts about the validity of tumor cell spheroids as models of nascent carci-
noma.) Cells in such a situation able to produce ATP under hypoxic conditions will
then be favored. Since these geometrical constraints apply to essentially all carci-
nomas, selection favoring glycolytic oxidation of glucose will be nearly ubiquitous
[43, 45, 97].

Two recent models [39, 106] connect this hypothesis with molecular biology of
cancer cells through the tumor suppressor gene p53, whose product, p53, the editors
of Science declared “molecule of the year” in 1993. Among its many demonstrated
functions, p53 ’s product activates the apoptosis mechanism in “stressed” cells.
One form of stress to which p53 appears to respond is hypoxia. Evidence for
this conclusion comes from studies of p53 -deficient cells in culture, which commit
apoptosis less frequently than intact wild-type cells in hypoxic environments [47,
99]. This observation is profoundly significant to cancer biologists, because p53 is
widely regarded as the most commonly disrupted gene among cancers as a whole,
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Figure 4. A numerical solution to model (30) with a = 3, m1 =
20, m2 = 22, n = 10, kt = 3, f = 0.6667, P = 150, α = 0.05,
b1 = 6, b2 = 6.6, τ = 7, dx = 1, dz = 0.2, d1 = 1, d2 = 1,
g = 100, and [x(0), y1(0), y2(0), z(0)] = [9, 0.01, 0.01, 0.001]. This
example shows that selection appears to favor neither cell type
until phosphorus becomes limiting. From [60, p.233]

mutated in over 50% of all malignant neoplasms, and many cancerous tumors suffer
regions of local hypoxia (see section 3.5). If selection frequently favors cancer cells
able to withstand hypoxia as Gatenby and colleagues have suggested, perhaps p53
disruption is a common mechanism, along with other metabolic changes, by which
cells acquire the favored trait. Empirical support for this interpretation comes from
observations of cell populations evolving a dysfunctional p53 gene when exposed
to hypoxic environments [79].

Selection for dysfunctional p53 was studied quantitatively by David Gammack et
al. [39]. Building on the earlier model of Kevin Thompson and Janice Royds [106],
Gammack et al. model the dynamics of three quantities: the number of tumor cells
with the wild-type (normal) p53 gene (N(t)), the number of tumor cells with the
mutated p53 gene (M(t)), and molecular oxygen concentration (C(t)). Tumor cells
of both types consume molecular oxygen, proliferate, and die at rates dependent
on O2 concentration. Oxygen is supplied to cells in one of two ways, depending on
whether the model represents cells in culture in some virtual experiment or an in
vivo tumor. In the in vitro situation, O2 is supplied exogenously in the media. We
imagine the researchers of this virtual experiment varying the O2 concentration in
the following way: for a period of length δ, oxygen is maintained at physiologically
normal levels (normoxia); then a period of hypoxia that lasts for τ time units
follows. We imagine that the researchers control δ and τ and repeat the procedure
some number of times. In the model of an in vivo tumor, cells can also be exposed
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Carcinoma in situ

Figure 5. Illustration of nascent carcinoma in situ in a simple
epithelium. ECM refers to the basement membrane constructed
of extracellular matrix. Red circles labelled ‘V’ represent blood
vessels, and cells labelled ‘F’ are fibroblasts in the underlying mes-
enchyme.

to repeated rounds of normoxia and hypoxia but only if blood vessels collapse
from internal pressures (see section 3.5.1). This collapse occurs whenever total cell
numbers reach a prescribed threshold, N∗. Once N + M = N∗, hypoxia begins
for a fixed period of time, τ , representing the time required for angiogenesis to
reconstruct a sufficient vascular infrastructure.

From these assumptions, Gammack et al. build the following model:
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(31)

Parameters Ai and Bi represent maximum proliferation and mortality rates of cell
type i, respectively; Cp

N1
and Cp

M1
measure how sensitive each cell type’s reproduc-

tive response is to changes in O2 concentration. Similarly, Cp
N2

and Cp
M2

measure
how sensitive mortality rates are to changes in O2 concentration. Both p and q are
free parameters with no obvious physiological meaning but may be required to fit
the model to data. Parameters σN and σM can be interpreted as a measure of basal
mortality that occurs even in a perfect environment; that is, as the O2 concentration
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Table 1. Evolutionary payoff matrix for the model by Bach et al. [11]

Neighborhood A+ A−
A+, A− 1− i− j 1 + j
A+, A− 1− i− j 1
A−, A− 1− i 1

NOTE : Strain A+ secretes an angiogenesis factor, whereas strain A− does not.
Adapted from [11].

gets large, mortality asymptotes at Bi(1−σi). However, actual estimates of σ from
cell culture data reviewed by Gammack et al. put it very close to unity for both
wild-type and p53 -deficient cell lines, indicating that mortality in these assays was
negligible when O2 concentration was high. The function λCex(t) represents the
rate at which O2 is supplied to the system as described in the previous paragraph.
Oxygen is consumed by cells at base rates Γi for cell type i ∈ {N,M}, and total
O2 consumption depends on the growth rate of each cell type. Finally, O2 diffuses
out of the system or is consumed by other processes at linear rate ΓC .

Data from Thompson and Royds [106] indicate that wild-type and p53 -deficient
cell lines differ mostly in basic mortality rates and sensitivity to O2. Roughly
speaking, wild-type cells have a larger basic mortality rate (BN > BM ) and suffer
more from hypoxia (CN1 > CM1 and CN2 > CM2). Not surprisingly, p53 -deficient
cells tend to outcompete wild-type cells in the virtual experiment. In one run,
for example, with an initial cell culture in which wild-type cells outnumbered p53 -
deficient mutants by orders of magnitude and periods of normoxia were only slightly
longer than hypoxic periods, mutants became the dominant cell type between the
fourth and fifth hypoxic episode. Of course, the length of time it takes for mutants
to become dominant depends strongly on how long hypoxic and normoxic periods
last. In general, Gammack et al. found that longer periods of hypoxia slowed
mutant invasion, and longer periods of normoxia speeds mutant invasion. Higher
oxygen concentrations during normoxic episodes also favor invasion. In contrast
to the nutrient-use efficiency hypothesis presented in section 4.2.1, changes in the
rate at which mutant cells consume oxygen, ΓM , had very little effect; however,
increasing oxygen consumption by mutant cells very slightly decreased the invasion
rate, as predicted by the nutrient-use hypothesis.

Results of the in vivo case were similar. Once again, under the estimated para-
meters, p53 -deficient mutants tended to invade tumors in which they were initially
rare, whether solutions permitted oscillations or not. Oscillatory solutions like those
in the in vitro case arose when the oxygen concentration during normoxic episodes
was sufficiently high, and the rate at which mutants consumed O2 was sufficiently
low. Once again, variations in ΓM hardly affected the mutant invasion rate, which
was once again driven primarily by the duration of the hypoxic episode.

5. Synthesis: Competition, natural selection and necrosis. Before leaving
the topic of natural selection’s role in malignant neoplasia, it is necessary to ask,
are there any direct theoretical explorations of niche segregation as a cause of
cellular diversity in tumors? Although this question is at the heart of the selection
hypothesis of cellular pleomorphism, very few studies that deal with it directly have
been published. Among those that have is a game-theory model by Lars Bach et
al. [11]. This model, based on earlier work by Ian Tomlinson and Walter Bodmer
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[109, 108], assumes that two different strains of parenchyma cells exist within the
tumor. One strain, denoted by A+, secretes some chemical that is beneficial to the
cells in its neighborhood—say, an angiogenesis signal. The other strain, A−, does
not. Otherwise, all cells are identical. In Bach et al.’s model, neighborhoods consist
of three cells. If only one cell in the neighborhood secretes the chemical, then the
group gains no benefit, because, it is assumed, the chemical concentration remains
too small to elicit the effect. However, if at least two of the three cells secrete the
chemical, then all three enjoy an increased reproductive output of j units above
normal. On the down side, there is a cost associated with making the chemical;
those that do suffer a deduction of i to their expected reproductive output. These
considerations lead to the evolutionary payoff matrix shown in Table 1.

A discrete-time dynamical system model of these payoffs shows that selection
can allow coexistence of both strains under certain circumstances. However, niche
segregation cannot explain this behavior, for the following reason. If a tumor starts
with “cooperators” that secrete the angiogenesis factor and is later invaded by a mu-
tant “defector” strain that does not, then both defector and cooperator populations
can persist. However, if the roles of resident and potential invader are reversed—
that is, a population of defectors is challenged by cooperators—the cooperators die
out, leaving a monomorphic defector population. One can interpret these results
biologically as follows: defectors can invade a tumor full of cooperators as a sort of
parasite living off of the cooperator’s ability to bring in resources; however, coop-
erators are always hurt by the presence of defectors. Therefore, polymorphism can
be explained as parasitism instead of niche segregation.

This conclusion was corroborated in a study I conducted of a model with two
competing parenchyma strains that differ in their abilities to secrete angiogenesis
signals. However, unlike the Bach et al. model, this one allows dynamic population
sizes and a broader array of potential differences among cell types. Similar in
construction to models by Zvia Agur, Levon Arakelyan and their colleagues [2, 9],
my model tracks the mass of two strains of parenchyma cells, denoted by x1(t)
and x2(t). In addition, the model also follows the total mass of immature VECs
from which mature microvessels are made, y(t), and the total length of microvessels
within the tumor, z(t). With this notation, the model becomes
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dt
= Φ1(v)x1,

dx2

dt
= Φ2(v)x2,

dy

dt
= (αH(x1, x2, z)− β) y,

dz

dt
= γy − δvz,

(32)

where v(t) = z/(x1 + x2), H(x1, x2, z) = (x1h1(v) + x2h2(v))/(x1 + x2), Φi repre-
sents per-capita growth functions for both types of parenchyma, α is the rate at
which immature VECs convert the angiogenesis signal into growth, H is the mean
angiogenesis secretion rate within the tumor, hi is the per-capita angiogenesis se-
cretion rate for cell type i, β expresses both the VEC death and maturation rates,
γ represents the rate at which maturing VECs convert themselves into new blood
vessels, and δ is the base rate at which blood vessels are broken down during re-
modeling. In numerical analysis, the functions Φ take a form similar to that of cell
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growth in model (31) without the crowding term; that is,

Φi(v) =
AiC(v)pi

ĉpi

i1 + C(v)pi
−Bi

(
1− σiC(v)qi

ĉqi

i2 + C(v)qi

)
, (33)

where C(v) is the oxygen pressure and all other parameters equate to their ana-
logues in model (31). The cell type-specific angiogenesis secretion rate obeys a
function like the following:

hi(v) = riC(v)e−ξiC(v), (34)

where ri measures a type i cell’s commitment to producing the angiogenesis sig-
nal and ξi expresses how sensitive this commitment is to changes in local oxygen
pressure.

This model supports the hypothesis that natural selection favors aggressively
proliferating cell types, at least early in tumor growth, but with a twist. Work in
preparation shows that if strains differ only in their basic proliferation rates such
that A1 > A2, strain 1 always ends up dominating the tumor regardless of initial
conditions. In fact, one can show that for a broad array of forms for the growth
functions Φ, aggressively proliferating cell types are always favored. However, a tu-
mor invaded by a more aggressive strain may end up clinically less aggressive. This
paradox arises when the invading, aggressive cell type is sufficiently inept at produc-
ing the angiogenesis signal. Natural selection is blind to angiogenesis secretion and
so always favors the aggressive invader. But because the favored strain cannot en-
tice new blood vessels to grow very well, the tumor eventually ends up with a lower
microvessel density and is therefore relatively hypoxic. In certain circumstances,
this hypoxia can become so profound that the tumor regresses. One can describe
such circumstances as a hypertumor—one tumor invading and destroying part of
an existing tumor. And once again we see competition resulting in something akin
to parasitism.

This hypertumor phenomenon hands us yet another hypothesis explaining necro-
sis. Superficially, one can view it as a variant of the nutrient-limitation hypothesis.
However, certain predictions distinguish it from the other ideas. In particular, one
will recognize a hypertumor not just as regions of nutrient deficiency but as regions
of nutrient deficiency that always correlate with invading cells displaying cytological
or genetic features of aggressive proliferation.

6. Conclusion. Perhaps the most obvious conclusion one can draw from this re-
view is that existing mathematical theory provides significant insight into the causes
of the three phenomena studied—necrosis, total cell diversity, and cellular pleomor-
phism. Mathematical oncology provides a much richer theory than that underlying
explanations of these phenomena in standard pathology texts or even the massive
compendium edited by Vincent DeVita et al. [31]. In essence, these more clinical
sources either treat necrosis and cell diversity as explained—necrosis occurs from
nutrient deficiency with no further details, and pleomorphism results from natural
selection, again with no more details—or ignore them altogether. But as existing
literature makes clear, these phenomena are far from explained. For example, any
of the following possible causes of necrosis remain viable hypotheses:

1. Nutrient deficiency, caused by
a. the geometry of the tumor—spheroids, tumor cords, carcinoma in situ,

and remote regions within a mature tumor;
b. ischemia from vascular collapse;



412 J. D. NAGY

c. ischemia from heterogeneous blood flow and hematocrit distributions in
existing vascular nets;

d. hypertumor
2. Local acidosis from tumor cell acid secretion
3. Mechanical disruption of cells from pressures within the tumor

Of course, these models cannot distinguish which is or are correct; only empirical
study can do that. However, many of the models presented in this review make
testable predictions or at the least point to refinements from which testable predic-
tions can be deduced.

Similar conclusions can be made for the other phenomena. In particular, math-
ematical oncology has identified at least the following possible causes of total cell
diversity in malignant neoplasms:

1. Incomplete competitive exclusion
2. Fungiform invasion
3. Turing patterns

In addition, potential explanations of cellular pleomorphism include

1. anatomical and physiological accommodation to spatially and temporally
varying environments;

2. mutation;
3. mutation followed by natural selection leading to

a. niche segregation
b. tissue-like integration.

The favored hypothesis of natural selection leads us to ask what traits selection will
tend to favor. Once again, mathematical oncology provides a variety of hypotheses:

1. Aggressive proliferation
2. Efficient use of scarce nutrients
3. Insensitivity to hypoxia
4. Some combination of the three

And, as with necrosis, insight gained from most of these models provides a basis
for practical predictions that can be tested in the lab or clinic.

Unfortunately most of these insights have gone largely unexploited by the em-
pirical cancer biology community. To see this in a very profound way, compare
the literature-cited sections of the basic cancer biology chapters in [31] and the
historical review of mathematical oncology in [10]. The former is a compendium
of modern cancer biology from a pathologist’s or clinician’s standpoint, and the
latter is an outstanding review of the major themes in mathematical oncology. De-
spite their focus on the same disease, these two sources share very few citations,
especially theory papers. In essence, neither group is aware of the other’s literature.

Trying to establish why mathematical oncology has influenced the work of ex-
perimentalists and medical doctors so lightly is dangerous business, but ignoring it
is even more dangerous. One possibility, perhaps the most obvious, may be that
the two groups by and large cannot communicate because they speak different tech-
nical languages, and translators are rare. Hopefully this situation is changing as
more students seek training in both advanced molecular biology and mathematics.
Nevertheless, despite its obvious appeal, this explanation cannot be the only rea-
son for the disconnect, because although rare, very talented translators have always
existed between the empirical and theoretical communities.
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Another contributing factor to the lack of knowledge transfer may also be the
wildly different research focuses of the two groups. As discussed in the introduction,
empirical cancer biologists tend to focus on the molecular biology of cancer cells, as
is obvious from a casual inspection of any empirical cancer journal. Mathematical
oncologists, on the other hand, tend to focus on aspects of tumor ecology like
those reviewed here, plus immune predation, the effects of cytotoxic chemotherapy
and radiation therapy on competition among parenchyma cells, and other aspects
of tumor ecology. So, the outlook, interests, and research tools characteristic of
experimentalists and theoreticians have traditionally differed so much that there
has been very little overlap in research programs. Again, a look through DeVita
et al. [31] makes clear that the practice of oncology would hardly be changed if no
one had ever written a mathematical model of cancer.

The question then becomes, where, if anywhere, will empirical and mathemat-
ical oncology meet? In particular, how best can mathematical oncology serve ex-
perimentalists by helping direct their work in the lab and clinic? Certainly the
insights gained so far by mathematical oncology should not be abandoned, and
work on specific systems, especially drug trials on cell cultures and angiogenesis
inhibition, along with other recent collaborations between empiricists and theo-
reticians, are already building common interests. However, one major question of
growing importance appears to be a perfect place where the interests and tools
of molecular biologists, experimental cell biologists, and mathematical biologists
meet. That question is, how exactly do parenchyma, stroma—including ECM and
stromal cells— and immune and peritumoral cells interact to promote malignancy?
This question obviously involves molecular and cellular biology. Genes for growth
factors like the various forms of VEGF, their receptors, such as flt-1, matrix metal-
loproteinases, and a host of other molecules, choreograph all interactions among all
cell types and even nonliving elements within malignant and premalignant tumors.
But these interactions are primarily ecological in nature, ultimately determining the
outcome of competition, cooperation, and predation. Mathematical oncologists can
attack this problem with extensions of formalisms already in place, like multicell
spheroids with mixtures of cell types currently under investigation by empiricists
[78]. More important, mathematical oncologists must begin adopting formalisms
representative of more realistic geometries encountered in carcinoma (Figs. 1 and
5), especially when modeling nascent tumors. But, no matter how one attacks
the problems posed by malignant neoplasia, the time has arrived to begin meld-
ing the molecular and evolutionary ecology approaches to cancer biology, and the
mathematical oncology community has, above all others, the skill set to do it.
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