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Abstract. In this paper, we propose and analyze a mathematical model, in
the form of a system of ordinary differential equations, governing mutated
strains of human immunodeficiency virus (HIV) and their interactions with
the immune system and treatments. Our model incorporates two types of
resistant mutations: strains that are not responsive to protease inhibitors,
and strains that are not responsive to reverse transcriptase inhibitors. It also
includes strains that do not have either of these two types of resistance (wild-
type virus) and strains that have both types. We perform our analysis by
changing the system of ordinary differential equations (ODEs) to a simple
single-variable ODE, then identifying equilibria and determining stability. We
carry out numerical calculations that illustrate the behavior of the system. We
also examine the effects of various treatment regimens on the development of
treatment-resistant mutations of HIV in this model.

1. Introduction. Human immunodeficiency virus (HIV) is a pathogen that in-
fected approximately five million people worldwide in 2003 [34]. Progression from
HIV infection to acquired immunodeficiency syndrome (AIDS) typically occurs over
a decade or two. In 2003, almost three million people died from AIDS; since the
first cases were identified in 1981, more than 20 million have died from AIDS. The
immune system and, in particular, the T cells, play a central role in HIV population
dynamics, including the progression to AIDS [37, 8]. There are various treatments
in use, but no available treatment protocol results in clearance of the virus from
patients. Current drug treatments can extend the healthy life span of infected
patients by years.

One of the main problems is the emergence of drug-resistant strains of HIV in
patients undergoing treatment [31]. These mutant strains result in the resurgence
of viral loads after long-term suppression of the loads from treatment. Viral-load
resurgence correlates with T cell depletion and with the progression of patients to
AIDS [37]. In this paper, we apply mathematical modeling and analysis techniques
to examine the properties of a model that includes drug-resistant strains. The
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understanding gained from this work will be applied in future work to optimize
treatment regimes in this setting, with the goal of maintaining patient health for
as long as possible.

There is an extensive body of work that develops models of this type for the
interaction of T cells with HIV. Alan Perelson and Patrick Nelson [29] and Martin
Nowak and Robert May [25] have written detailed surveys of the main ideas devel-
oped through such models. Several other diseases with similar pathogen-immune
system interaction dynamics have been modeled in this way as well. These include
hepatitis B (cf. [23]), hepatitis C (cf. [22]), tuberculosis (cf. [38]), and chronic
myelogenous leukemia (CML) (cf. [21]).

Most relevant to the specific model we present here are the models of HIV that
incorporate drug-resistant strains of HIV. Such models include those of Angela
McLean et al. [17], Nowak et al. [24], McLean and Nowak [18], Simon Frost and
McLean [11], Denise Kirschner and Glenn Webb [15], Rob De Boer and Charles
Boucher [7], Jaap Goudsmit et al. [12], Lawrence Wein et al. [36] and [35], Nikolaos
Stilianakis et al. [33], Sebastian Bonhoeffer and Nowak [4], and Bonhoeffer et al.
[3] and [5].

Among the previous models that have considered mutant strains of HIV, most
consider only a single drug-resistant strain, and very few allow for mutations be-
tween strains. The contribution of the model presented in this paper is the analysis
of a model that includes four categories of differing drug resistance, with mutations
allowed between all of the categories. The virus categories we consider are wild-
type, resistant to treatment in the protease inhibitor class, resistant to treatment in
the reverse transcriptase inhibitor class, and resistant to treatment in both classes.
Our analysis is intended to add to a broader understanding of the dynamics of mul-
tiple drug-resistant strains, which could help guide future combination treatments
in this complex situation.

In addition to the analytic results we present, we also obtain numerical results,
first without any treatment, and then with various treatments. We consider con-
stant dosing protocols of various strengths, as well as structured treatment inter-
ruptions, with various interruption lengths. Our intent here is to demonstrate some
of the possible outcomes over fixed time periods. In agreement with models that
do not consider the two drug treatment classes separately (for example, [15]), we
find that the length of the cycle in the treatment interruption schedule does not
qualitatively alter the resulting levels of HIV or T cells. We also find that treatment
appears to exert selective pressure in favor of drug-resistant strains.

2. Background and assumptions for the model. We use differential equations
to model the dynamics in the peripheral blood of a hypothetical patient. The
equations give rates of change for various T cell populations, with parameter values
obtained from available experimental data and from estimates.

We consider healthy T cells (which are not infected with HIV) and T cells that
have been infected with several different strains of HIV. The HIV strains we consider
are wild-type virus (which is sensitive to the two drugs considered here), virus that
is resistant to one type of treatment, virus that is resistant to a second treatment,
and virus that is resistant to both drugs. We assume that resistance is acquired
through mutations, mainly from errors that occur during the transcription process.
Later, the drugs we consider will be one from the class of protease inhibitors (PIs)
and one from the class of reverse transcriptase inhibitors (RTIs).
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We do not include latently-infected T cells (those that will begin production of
virions after a significant delay) or nonproductively infected T cells (those that will
die before producing very many virions). These populations have been considered
in other models, but do not appear to significantly alter the dynamics of the system.
(Cf. [27] and [28] for the consideration of latently-infected T cells; cf. [30] in the
case of nonproductively infected T cells.) We also do not include T cells that are
infected by more than one type of HIV represented here, with the assumption that
this number is much smaller than the other populations.

Throughout this paper, we refer to the T cell populations infected with different
HIV strains using binary notation: quantities related to wild-type, drug-sensitive
HIV have the subscript “00”; those related to the first class of strains have the
subscript “01”; those related to the second class of strains have the subscript “10”;
and those related to the HIV population resistant to both drugs have the subscript
“11”. Later, we will have the first class of strains (01) represent those resistant to a
protease inhibitor and the second class of strains (10) represent those resistant to
a reverse transcriptase inhibitor.

Our model is based in the circulatory, or peripheral, blood system, since we wish
to tie it as closely as possible to available data from blood samples. We include a
source term for new T cells entering the circulatory blood from other compartments
(such as the bone marrow, lymph nodes, and thymus). However, we assume that
preexisting T cells entering and exiting the blood due to diffusion give net changes
that are approximately zero. We also assume that the concentrations of T cells
infected with the various strains of virus are approximately proportional to the
concentration of free virus in the circulatory blood. This is a good approximation for
a system at or near equilibrium, and experimental support for this approximation
in the case of HIV appears in [13] and [27]. This assumption of an equilibrium
state will allow us to consider infected T cell populations, without including the
corresponding free virus populations. To make this assumption, we restrict our
model to the middle stages of HIV (after the acute phase) and before the initial
stages of AIDS.

We assume the T cells come into contact with virus in the blood in a random
fashion. Because the encounters take place in the blood, we use the “law of mass
action”, which says that the total number of encounters between members of the
two populations is proportional to the product of the sizes of the two populations.
See [9] for more discussion of the law of mass action.

3. Details and explanation of the model. We consider five populations of T
cells in the circulating blood system. The first is the population of T cells that
is uninfected with any HIV. The other four are T cells that are infected with
various populations of HIV, as described below. All cell populations are measured
in concentrations of cells per µl and are functions of time, t, which is measured in
days:

T = uninfected T cells,
I00 = T cells with drug-sensitive wild-type virus,
I01 = T cells with virus with mutations of type 1 and not of type 2,
I10 = T cells with virus with mutations of type 2 and not of type 1,
I11 = T cells with virus with mutations of types 1 and 2.
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The system of differential equations is given below, followed by explanations of
the terms:

dT

dt
= s + p T

(
1− T + I00 + I01 + I10 + I11

Tmax

)
− δT T

− (β00I00 + β01I01 + β10I10 + β11I11)T , (1)

dI00

dt
= β00I00T − δ00 I00 + κ00(1− µ01)(1− µ10)I00

+ κ01µ01I01 + κ10µ10I10 + κ11µ01µ10I11 , (2)

dI01

dt
= β01I01T − δ01 I01 + κ01(1− µ01)(1− µ10)I01

+ κ00µ01I00 + κ10µ01µ10I10 + κ11µ10I11 , (3)

dI10

dt
= β10I10T − δ10 I10 + κ10(1− µ01)(1− µ10)I10

+ κ00µ10I00 + κ01µ01µ10I01 + κ11µ01I11 , (4)

dI11

dt
= β11I11T − δ11 I11 + κ11(1− µ01)(1− µ10)I11

+ κ00µ01µ10I00 + κ01µ10I01 + κ10µ01I10 . (5)

Each equation represents the rate of change, with respect to time, of one of the
populations. The lowercase coefficients, or parameters, (e.g., s and µ01) are all
taken to be constants, as is Tmax. Later in this paper, we vary the parameter values
and examine the resulting changes in the system.

Figure 1 shows the cell population diagram for the system (1)–(5).
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Figure 1. Cell population diagram. In this figure, solid curves indicate changes
solely dependent on the originating population; dashed curves indicate changes
that depend not only on the originating population but also on the destination
population. The movement of uninfected T cells into the infected populations
takes place due to infection of the T cells by virus with the respective mutations.
Movement between the populations of T cells that are infected with various
strains of HIV occurs due to mutation in the viral genome.

We assume the changes in populations due to diffusion are approximately zero.
That is, we assume that the numbers of the various populations that move into
or out of other compartments (other than the peripheral blood) are approximately
equal. Thus, there are no terms in the equations for diffusion of T cells into or out
of the blood.

The first term on the right-hand side of equation (1) is a source term for new
T cells entering the blood system. We approximate this as being a constant, s,
during most of the intermediate stages of infection with HIV. The second term is
a logistic term with logistic growth rate p and limiting value Tmax, as originally
proposed in [14]. We use all of the T cell populations considered here (uninfected
and infected with HIV) in the logistic population count. The third term is the loss
due to the natural attrition in the T population. The factor δT is the death rate
constant of the T population, and is equal to the reciprocal of the average life span
of cells in the T population. In the absence of infection, these three terms maintain
homeostasis of the T cells in the peripheral blood [32].

The last four terms in equation (1) represent losses of T cells from the peripheral
blood due to interaction and subsequent infection with various types of HIV. Each of
these terms is in mass-action form, as they represent contributions due to encounters
between T cells and HIV occuring in the peripheral blood, which we assume is
well mixed. Recall that we assume the concentration of free virus of each type is
proportional to the concentration of T cells infected with each type of HIV. Hence,
βijIij includes a constant of proportionality that gives the concentration of free
virus of type ij , as well as the law of mass action constant, which incorporates
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the expected frequency of encounters between T cells and HIV, and the expected
fraction of these encounters that subsequently lead to infection by HIV.

We now examine the four equations (2)–(5), which describe the rates of change
of T cells infected with the four types of strains of HIV we consider here. In each of
these equations, the first term is a contribution that equals a loss term for T cells
in equation (1). For example, in equation (2), the first term is equal to the rate of
loss of T cells that become infected by wild-type HIV. The second term in each of
the four equations is a loss term δijIij due to the natural life span of T cells, with
δij the death-rate constant for T cells infected with HIV of type ij. We assume
that δij is at least as large as the death rate of healthy T cells, δT .

The constants µij , for ij = 01 or ij = 10, give the average mutation rates of the
mutations that lead to HIV with mutations of type 1 or type 2, respectively. These
mutations are assumed to be independent, and hence the mutation rate for HIV
with mutations of both type 1 and type 2 is given by µ01µ10. The factors (1−µ01)
and (1− µ10) give the fractions of virus that are expected not to mutate to strains
of type 1 or type 2, respectively, at any given time. The constants µij , for ij = 01
or ij = 10, represent the backward mutation rates. For example, µ01 represents
the mutation rate of strains of type 1 back to wild-type virus.

The constants κij are the net-gain scaling factors, or effective burst-rate con-
stants. These take into account the rate at which bursts release large numbers of
free virus, as well as the rate of any releases of smaller scales, which may be consid-
ered to take place continuously. As an example, the term κ00(1 − µ01)(1 − µ10)I00

in equation (3) gives the contribution to the I00 population due to the “bursting”
of the infected T cells I00 that do not mutate to one of the other types of strains
considered here. Similarly, the term κ01µ01I01 in equation (3) gives the contribution
to the I01 population due to the “bursting” of I01 T cells that mutate from strains
of type 1 to wild-type virus.

It is the assumption that the distribution of virions is at or near equilibrium
that allows us to avoid equations for the free virus. This assumption is used in the
last four terms of equation (1), when we use Iij in place of a constant times the
corresponding virus population. We also use this assumption in equations (2)–(5),
when we write the contribution terms from production of virions as if the “bursting”
of the infected T cells contributes directly to the infected T cell populations. In this
instance, the constants κij include factors that give the appropriate rate at which
virions could move from being produced by Iij to producing new infected cells Iij.

4. Discussion of parameter estimates and initial population values. The
values of the constants used in the system of differential equations above appear in
Table 1. This table gives a brief description of the constants, the values used as
initial estimates for the constants, the ranges that are used later in the paper, and
the units and references for the constants.
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Param. Description Value Range Used Units Reference

s T source term 0.048 (0, 0.5)
cells/µl

day
[19]

p T logistic rate const. 0.0045 (0, 0.5) day−1 [35], [27]

Tmax maximum T 2000 (1000, 2500) cells/µl [19]

δT T death rate const. 0.0014 (0, 0.8) day−1 [35]

δ00 I00 death rate const. 0.45 (0, 1) day−1 [30]

δ01 I01 death rate const. 0.5 (0, 1) day−1 est. fr. δ00

δ10 I10 death rate const. 0.5 (0, 1) day−1 est. fr. δ00

δ11 I11 death rate const. 0.55 (0, 1) day−1 est. fr. δ00

β00 I00, T encounter const. 3× 10−5 (0, 0.001)
day−1

cells/µl
[35], [10]

β01 I01, T encounter const. 2.8× 10−5 (0, 0.001)
day−1

cells/µl
est. fr. β00

β10 I10, T encounter const. 2.8× 10−5 (0, 0.001)
day−1

cells/µl
est. fr. β00

β11 I11, T encounter const. 2.5× 10−5 (0, 0.001)
day−1

cells/µl
est. fr. β00

κ00 I00 effect. burst const. 0.45 (0, 1)
day−1

cells/µl
estimated

κ01 I01 effect. burst const. 0.42 (0, 1)
day−1

cells/µl
estimated

κ10 I10 effect. burst const. 0.42 (0, 1)
day−1

cells/µl
estimated

κ11 I11 effect. burst const. 0.41 (0, 1)
day−1

cells/µl
estimated

µ01 mut. rate to type 1 2.5× 10−5 (0, 0.01) — estimated
µ10 mut. rate to type 2 3× 10−5 (0, 0.01) — [16]
µ01 mut. rate fr. type 1 2.5× 10−5 (0, 0.01) — est. fr. µ01

µ10 mut. rate fr. type 2 3× 10−5 (0, 0.01) — est. fr. µ10

Table 1. Parameter information

We use the following initial values for the populations, where t = 0 is the starting
time for the model:

T (0) = 1,200 cells/µl,
I00(0) = 20 cells/µl,
I01(0) = 5 cells/µl,
I10(0) = 5 cells/µl,
I11(0) = 2 cells/µl.

The value we use for s, the source term for the uninfected T population, is
calculated using data from [19]. In the data collected from subjects with HIV, the
average contributions from a source were found to be 0.025 CD4+ cells per µl per
day, and 0.023 CD8+ cells per µl per day. This gives a net contribution of 0.048
cells per µl per day, which we use as the source term for the population,T .
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We base our logistic growth rate p on the same calculation used in [35]. Namely,
we choose p so that it agrees with the increase by 95 cells per µl in six weeks in
[27], assuming that treatment is highly effective. Here, we are taking into account
that s = 0.048.

For Tmax, the expected maximum number of uninfected T cells per µl, we note
that Hiroshi Mohri et al. [19] found average numbers of CD4+ plus CD8+ cells to
be close to 1,700 cells per µl in healthy patients. The highest count they found was
2,017 cells per µl, so we use 2,000 as our best estimate, with a range that allows
values up to 2,500 cells per µl.

The value we use for the death rate constant, δT , of uninfected T cells is the
same as that used in [35], which assumes that T cells live approximately two years
on average. For the death-rate constants δij for the infected T cell populations, we
use values close to the mean reported in [30] for patients with HIV. We assume that
the T cells infected with wild-type virus have the lowest death rate of the four.

The values for βij are based on several estimates. We start with the estimate in
[35] that the ratio of virions to infected T cells in the peripheral blood is approx-
imately 112. We make very rough estimates of mass-action encounter rates, as in
other T cell–pathogen models, such as [10]. Finally, we incorporate the estimated
infectivity rate of 3.43× 10−8 in [35].

For the mutation rates, Louis Mansky and Howard Temin [16] showed that the
forward mutation rate for strains of HIV resistant to RTIs is approximately 3×10−5

per base pair per cycle. As in other models of drug-resistant mutations (e.g., [3]
and [35]), we assume the forward and backward mutation rates are the same. With
this assumption, the pressure for forward mutations occurs because of the increased
fitness of the drug-resistant strains under treatment conditions. We also assume
that µ01 < µ10. There is some evidence that mutations resistant to RTIs are more
prevalent than mutations resistant to PIs. (See, for example, [1] and [2].) Although
this could alternatively be achieved by assuming that RTI-resistant virions have
higher fitness than PI-resistant virions (i.e., that ηRTI < ηPI), our simulations favor
the former assumption, namely that µ01 < µ10.

In [19], the average baseline concentration of CD4+ plus CD8+ T cells in HIV
patients was approximately 1,200 cells per µl, which we use for T (0). We arbitrarily
choose the initial values of the infected T cells, with the assumption that there are
more infected with wild-type than with resistant strains.

5. Analytic results. To study the behavior of the system of differential equations,
we first show how to use the system to get a (nonlinear) second-order ordinary
differential equation (ODE) in T , with two initial conditions. This ODE is used
later to obtain the fixed points of the complete system. Once we find any fixed
points, we can examine the stability at each of them.

5.1. Transformation to single differential equation in T . We first rename
the constants. Let q = 1

Tmax
and let αij = p

Tmax
+ βij . Then equation (1) becomes

dT

dt
= s + p T (1− q T )− δT T − (α00I00 + α01I01 + α10I10 + α11I11) T . (6)

For ease in later computations, we write this equation in vector form as

dT

dt
= s + p T (1− q T )− δT T −α•IT , (7)
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where we use bold type to indicate the vectors α = (α00, α01, α10, α11) and I =
(I00, I01, I10, I11).

Next, we rewrite the four equations (2)–(5) in matrix form as shown:

d

dt
I = A I + T B I. (8)

Here, T = T (t) is the healthy T cell population as before, I = I(t) is the vector
defined above, and A and B are the following constant matrices:

A =




k00 κ01µ01 κ10µ10 κ11µ01µ10

κ00µ01 k01 κ10µ01µ10 κ11µ10

κ00µ10 κ01µ01µ10 k10 κ11µ01

κ00µ01µ10 κ01µ10 κ10µ01 k11


 , (9)

B =




β00 0 0 0

0 β01 0 0

0 0 β10 0

0 0 0 β11




, (10)

where

k00 = κ00(1− µ01)(1− µ10)− δ00 ,

k01 = κ01(1− µ01)(1− µ10)− δ01 ,

k10 = κ10(1− µ01)(1− µ10)− δ10 ,

k11 = κ11(1− µ01)(1− µ10)− δ11 .

Let M(t) = A + T (t)B. Since A is in M4×4(R), there exists an invertible
matrix P ∈ M4×4(R) such that P−1AP = J , where J ∈ M4×4(R) is the Jordan
canonical form of A. So A = P J P−1, and we can rewrite the matrix M(t) as
follows: M(t) = P J P−1 + T (t)B. The only assumption we make to proceed here
is that β00 ≈ β01 ≈ β10 ≈ β11 ≈ β. This gives the following:

M(t) ≈ P J P−1 + T (t)β I
= P (J + T (t) β I)P−1, (11)

where I is the 4 × 4 identity matrix. This allows us to rewrite equation (8) as
follows:

d

dt
I(t) = P (J + T (t) β I)P−1 I(t), or (12)

P−1 d

dt
I(t) = (J + T (t) β I)P−1 I(t) . (13)

Since A is a constant matrix, P does not depend on t, so

d

dt
[P−1 I(t)] = P−1 d

dt
[I(t)] = (J + T (t)β I) [P−1 I(t)] . (14)

Letting X(t) = P−1 I(t), we get

d

dt
[X(t)] = (J + T (t)β I) [X(t)] . (15)
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In general, J is diagonal, since the the set of diagonalizable matrices is dense
in the set of real n × n matrices. We will assume that this is the case so that the
diagonal entries of J are the eigenvalues of A. We will denote these eigenvalues by
λ1, λ2, λ3, and λ4. Note that the method below still works if J is not diagonal, since
we can still find the eigenvalues of A, but the calculations are more cumbersome.

Now, we will focus on solving (15). Once we solve (15), we will know X(t) in
terms of T (t), and hence we will know I(t) in terms of T (t). We can then substitute
the expression for I(t) in terms of T (t) back into equation (8), to obtain a system
of ordinary differential equations in one variable (T ), which we can then solve.

Again, using the assumption that β00 ≈ β01 ≈ β10 ≈ β11 ≈ β, we can consider

d

dt
[X(t)] = (J + T (t)B) [X(t)] . (16)

Using commutative properties of diagonal matrices and the fact that the exponential
of a diagonal matrix is a diagonal matrix, it can be checked that

X(t) = etJ e(
∫ t

0
T (τ)dτ B)C (17)

is a solution to equation (16), where τ is a dummy variable and C is a constant
vector. To find C, we plug in t = 0 to (17) to get X(0) = C and recall that
X(t) = P−1 I(t). So C = P−1 I(0), and

X(t) = etJ e(
∫ t

0
T (τ)dτ B) P−1 I(0) . (18)

From this expression for X(t) and the fact that I(t) = PX(t) we get

I(t) = P etJ e(
∫ t

0
T (τ)dτ B) P−1 I(0) . (19)

Let F (t) =
∫ t

0
T (τ)dτ . Then

I(t) = P etJ e(F (t)B)P−1 I(0)

= P




eλ1 t+β00 F (t) 0 0 0
0 eλ2 t+β01 F (t) 0 0
0 0 eλ3 t+β10 F (t) 0
0 0 0 eλ4 t+β11 F (t)


P−1 I(0) . (20)

Let βij = β2i+j+1 and Iij = I2i+j+1 for i, j = 0, 1. Also, let eλk t+βk F (t) = Ek for
k = 1, 2, 3, 4, and let

P =




P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44


 and P−1 =




Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44


 .

Then

I(t) =




∑4
l=1

∑4
k=1 P1k Qkl Ek Il(0)∑4

l=1

∑4
k=1 P2k Qkl Ek Il(0)∑4

l=1

∑4
k=1 P3k Qkl Ek Il(0)∑4

l=1

∑4
k=1 P4k Qkl Ek Il(0)


 . (21)

Plugging this expression for I = I(t) into equation (7) and letting αij = α2i+j+1

gives
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dT

dt
= s + p T (1− q T )− δT T −

4∑
m=1

4∑

l=1

4∑

k=1

αm Pmk Qkl Il(0) Ek T . (22)

We use a Taylor series to expand the exponential factors Ek as

Ek = eλk t+βk F (t) ≈ 1 + λk t + βk F (t) (23)

and plug these back into (22):

dT

dt
= s + p T (1− q T )− δT T

−
4∑

m=1

4∑

l=1

4∑

k=1

αm Pmk Qkl Il(0) (1 + λk t + βk F (t)) T . (24)

For T 6= 0, we can divide both sides by T :

1
T

dT

dt
=

s

T
+ p (1− q T )− δT

−
4∑

m=1

4∑

l=1

4∑

k=1

αm Pmk Qkl Il(0) (1 + λk t + βk F (t)) . (25)

Recall that we defined F (t) =
∫ t

0
T (τ)dτ . By the fundamental theorem of calcu-

lus, we have F ′(t) = T (t). We will use this as we take the derivative of both sides
of (25):

− 1
T 2

(
dT

dt

)2

+
1
T

d2T

dt2
= − s

T 2

dT

dt
− p q

dT

dt

−
4∑

m=1

4∑

l=1

4∑

k=1

αm Pmk Qkl Il(0) (λk + βk T ) . (26)

Multiplying both sides by −T 2 and rearranging, we get
(

dT

dt

)2

− T
d2T

dt2
− (s + p q T 2)

dT

dt
= c1 T 2 + c2 T 3 , (27)

where

c1 =
4∑

m=1

4∑

l=1

4∑

k=1

αm Pmk Qkl Il(0) λk and

c2 =
4∑

m=1

4∑

l=1

4∑

k=1

αm Pmk Qkl Il(0) βk . (28)

We let T (0) = T0, which gives one initial condition. To get a second initial
condition, we use equation (22) and the fact that F (0) = 0:

dT

dt
(0) = s + p T0 (1− q T0)− δT T0 −

(
4∑

m=1

4∑

l=1

4∑

k=1

αm Pmk Qkl Il(0)

)
T0 . (29)

Equation (27) and the two initial conditions T (0) = T0 and (29) give a well-posed
ODE initial value problem. Once we obtain T values (by solving analytically or
numerically), we then can use (20) or (21) to find I(t).
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5.2. Equilibrium analysis. We now set each of the five derivatives in (1)–(5)
equal to zero and solve for T and Iij, for i, j = 0, 1. This gives the fixed points, or
equilibrium solutions; that is, it gives values of T and Iij for which the system will
no longer change (since all of the derivatives, or rates of change, will be zero).

We first consider the equilibrium solution(s) for which Iij = 0, for i, j = 0, 1. In
this case, equation (1) implies that

T = Th :=
Tmax

2 p

(
p− δT +

√
(p− δT )2 +

4 p s

Tmax

)
. (30)

This is the unique healthy equilibrium, which we denote by W0 = (Th, 0, 0, 0, 0).
For other equilibria, if I 6= 0, we use (8) to get

0 = A I + T B I ,

A I = −T B I . (31)

Since we assume that the βij’s are nonzero, B is invertible, and we have the following
eigenvalue problem:

C I = −T I , (32)

where C = B−1A, I 6= 0. We will assume that T 6= 0, since T = 0 is outside of the
biologically relevant region we wish to consider.

The matrix C is a 4×4 matrix with real-valued entries, and so it has eigenvalues
that we will denote by σ1, σ2, σ3, and σ4. From (32), we know that the values taken
by −T must be σk, for k = 1, 2, 3, 4. (Recall that we have set T ′(t) = 0, so T is
now a constant.) Let

Vk =




V1k

V2k

V3k

V4k


 (33)

be an eigenvector associated with eigenvalue σk. Since any nonzero multiple of Vk

will also be an eigenvector with eigenvalue σk, we have



I00

I01

I10

I11


 = rk




V1k

V2k

V3k

V4k


 , (34)

for 0 6= rk ∈ R.
Since T ′(t) = 0, equation (7) implies that

0 = s + p T (1− q T )− δT T −α•IT

= s− p σk (1 + q σk) + δT σk

+σk rk (α00 V1k + α01 V2k + α10 V3k + α11 V4k) , (35)

which implies that

rk =
p σk (1 + q σk)− s− δT σk

σk (α00 V1k + α01 V2k + α10 V3k + α11 V4k)
. (36)

With this value of rk, we now have enough information to find the specific eigen-
vector rkVk for the eigenvalue σk for the eigenvalue problem above. From this, we
get a total of four possible fixed points, given by
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Wk =




T k

Ik
00

Ik
01

Ik
10

Ik
11




=




−σk

rkV1k

rkV2k

rkV3k

rkV4k




, (37)

for k = 1, 2, 3, 4.

5.3. Stability analysis. To determine the behavior of the cell populations near
the equilibrium solutions, we need to compute the linearization of the system, which
is obtained from the Jacobian matrix of the system. See, for example, [6, p. 446]
for more information about such calculations. If we let A =

(
akl

)
, then for the

system of equations (1)–(5) the Jacobian Df is the following matrix:


p− δT − 2p q T −α•I −α00 T −α01 T −α10 T −α11 T
β00 I00 β00 T + a11 a12 a13 a14

β01 I01 a21 β01 T + a22 a23 a24

β10 I10 a31 a32 β10 T + a33 a34

β11 I11 a41 a42 a43 β11 T + a44




. (38)

We first consider stability of the fixed point W0 = (Th, 0, 0, 0, 0). In this case,
the Jacobian Df(W0) is the following matrix:



p− δT − 2p q Th −α00 Th −α01 Th −α10 Th −α11 Th

0 β00 Th + a11 a12 a13 a14

0 a21 β01 Th + a22 a23 a24

0 a31 a32 β10 Th + a33 a34

0 a41 a42 a43 β11 Th + a44




. (39)

For this fixed point, using the parameter values in Table 1 and the expression for
Th given in equation (30), one of the eigenvalues of this matrix is positive. This is
still true even when various combinations of the parameter values are varied over
an order of magnitude or so. This indicates that the healthy equilibrium is unstable
for this model, as is the case in patients: a small viral load is expected to eventually
lead to full-blown AIDS.

We numerically compute the other possible fixed points, W1, W2, W3, and W4,
using the parameter values in Table 1. To do this, we first compute the eigenvalues
and eigenvectors σ1, σ2, σ3, and σ4 and V1, V2, V3, and V4, respectively, of the
matrix C = B−1A, where A and B are defined as in (9) and (10). We plug these
into equation (36) and then compute the equilibrium solutions Wk as in (37). We
find there is exactly one equilibrium value, which we will denote by W+, that has a
nonnegative value for each of the cell populations. In this case, the I00 population
dominates all others. The eigenvalues of the Jacobian for the solution W+ all have
negative real parts for a wide range of parameter values tested, so we conclude that
this equilibrium is asymptotically stable. This matches the behavior shown by the
numerical solutions in Figure 2.

6. Model with treatment. Here, we consider the same model as above but with
treatment. We let ηRTI denote the efficacy of treatment with a reverse transcriptase
inhibitor and let ηPI denote the efficacy of treatment with a protease inhibitor. Since
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reverse transcriptase inhibitors block new infection and protease inhibitors block
the production of new virions, we have the following model:

dT

dt
= s + p T

(
1− T + I00 + I01 + I10 + I11

Tmax

)
− δT T

− [(1− ηRTI)β00I00 + (1− ηRTI)β01I01 + β10I10 + β11I11] T , (40)

dI00

dt
= (1− ηRTI)β00I00T + (1− ηPI)κ00(1− µ01)(1− µ10)I00 − δ00 I00

+ κ01µ01I01 + (1− ηPI)κ10µ10I10 + κ11µ01µ10I11 , (41)

dI01

dt
= (1− ηRTI)β01I01T + κ01(1− µ01)(1− µ10)I01 − δ01 I01

+ (1− ηPI)κ00µ01I00 + (1− ηPI)κ10µ01µ10I10 + κ11µ10I11 , (42)

dI10

dt
= β10I10T + (1− ηPI)κ10(1− µ01)(1− µ10)I10 − δ10 I10

+ (1− ηPI)κ00µ10I00 + κ01µ01µ10I01 + κ11µ01I11 , (43)

dI11

dt
= β11I11T + κ11(1− µ01)(1− µ10)I11 − δ11 I11

+ (1− ηPI)κ00µ01µ10I00 + κ01µ10I01 + (1− ηPI)κ10µ01I10 . (44)

7. Numerical results.

7.1. Without treatment. First, we show graphs of the solution curves to equa-
tions (1)–(5), with no treatment. All parameter values are those that appear in
Table 1, unless otherwise noted. All T cell counts are per µl along the vertical axes,
and the horizontal axes show time in days.
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Figure 2. Qualitative T cell population behavior in the absence of treatment.
Uninfected T cells are shown in black, T cells infected with wild-type virus are
shown in purple, T cells infected with strains resistant to type 1 treatment are
blue, those resistant to type 2 treatment are green, and those resistant to both
types of treatments are red. Cells per µl are on the vertical axis, and days are on
the horizontal axis for this and all following graphs.
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In agreement with our analytic results in section 5.3, we see that T cells infected
with the wild-type virus dominate all others and approach a stable equilibrium
value.

7.2. With treatment. Next, we show numerically computed solution curves for
various treatment protocols.
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Figure 3. T cell populations with constant-dose treatment. Here, we set ηPI = 0.1
and ηRTI = 0.25. Uninfected T cells are black, those infected with wild-type virus
are purple, those resistant to type 1 are blue, those resistant to type 2 are green,
and those resistant to both are red.
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Figure 4. T cell populations with stronger constant-dose treatment. Here, κ00 =
0.57, κ01 = 0.44, and κ10 = 0.44, and we set ηPI = 0.2 and ηRTI = 0.25. Uninfected
T cells are black, those infected with wild-type virus are purple, those resistant to
type 1 are blue, those resistant to type 2 are green, and those resistant to both are
red.
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Figure 5. T cell populations with stronger dosing. Here, we substitute the fol-
lowing values for those in Table 1: s = 0.45, p = 0.2, Tmax = 2, 200, δT = 0.1,
δ00 = 0.5, δ01 = 0.55, δ10 = 0.55, δ11 = 0.65, β00 = 0.00065, β01 = 0.00055,
β10 = 0.00055, β11 = 0.0005, β00 = 0.00065, µ01 = 0.0025, µ10 = 0.003,
µ01 = 0.0025, and µ01 = 0.003. We also set ηPI = 0.2 and ηRTI = 0.25. Un-
infected T cells are black, those infected with wild-type virus are purple, those
resistant to type 1 are blue, those resistant to type 2 are green, and those resistant
to both are red.
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7.3. Discussion of results of numerical analysis. The results of the numerical
analysis in the previous section are representative of the variety of behaviors under
different treatment regimes, and with various parameter values. The behavior of
the graphs could vary greatly if parameter values were varied, even if by only a
few percentage points, regardless of the treatment scheme. Surprisingly, we found
that structured treatment interruptions (STIs) did not differ qualitatively from
constant-dose treatments. The numerical solutions obtained using STIs are very
similar to those with constant dosing schemes, as shown in Figures 3–5. We found
this to be true for STIs of varying lengths, from cycles of seven days on and seven
days off, to cycles of 120 days on and 120 days off.

For comparison, we cite two studies that confirm such results in the clinic. The
retrospective clinical study by José Moltó et al. [20] found no statistically signifi-
cant difference after forty-eight weeks in outcome between a group of patients that
had undergone STIs (six cycles of two weeks off and four weeks on) and a group
that had been on constant-dose therapy without STIs. A study by Annette Oxenius
and Bernard Hirschel [26] compared cohorts on STIs with those not on STIs. Their
findings also indicate that STIs does not lead to a statistically significant difference
in outcome for patients who started STIs during the chronic phase of HIV infec-
tion. However, they did find statistically significant differences in outcome between
cohorts in the acute phase of infection, with STI patients faring better. This indi-
cates that our model would need to be changed to model the acute phase of HIV
infection accurately.

8. Conclusions. We have proposed a new model for HIV with two different types
of resistance to treatments. We have performed the preliminary mathematical
analysis on the model, and have tested the model qualitatively using numerical
simulations. Data collection to determine more of the unknown parameter ranges
would enhance the results. This model could also be used and refined to include
other aspects of HIV dynamics interaction. One example is the incorporation of
the effects of immune system-boosting treatments in patients with HIV.

Having this model now allows us to set up the optimal drug-dosing problem for
PI and RTI treatments, which is the subject of our next paper. Given estimates
of the mutation rates of HIV, the most effective dosing levels over time can be
predicted for treatments. In the case of unlimited resources, optimal dosing could
substantially increase the period in which a patient remains healthy, which is es-
pecially important for treatments to which diseases eventually develop resistance.
Since drugs for HIV can cost thousands of dollars per month, a constrained optimal
dosing solution, for limited resource scenarios, would be valuable as well. Further
work predicting optimal combinations of PIs and RTIs would also be of great benefit
in the treatment of HIV.
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