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Abstract. This paper is motivated by the following simple question: how
does diffusion affect the competition outcomes of two competing species that
are identical in all respects other than their strategies on how they spatially
distribute their birth rates. This may provide us with insights into how species
learn to compete in a relatively stable setting, which in turn may point out
species evolution directions. To this end, we formulate some extremely sim-
ple two- species competition models that have either continuous or discrete
diffusion mechanisms. Our analytical work on these models collectively and
strongly suggests the following in a fast diffusion environment: where different
species have the same birth rates on average, those that do well are those that
have greater spatial variation in their birth rates. We hypothesize that this
may be a possible explanation for the evolution of grouping behavior in many
species. Our findings are confirmed by extensive numerical simulation work
on the models.

1. Introduction. Recently, Hutson et al. [9] proposed and analyzed the reaction
diffusion system

ut = d∆u + u[α(x)− u− v],
vt = d∆v + v[β(x)− u− v] (1.1)

on a bounded domain Ω, with homogeneous Neumann boundary conditions. Equa-
tions (1.1) were taken as a simple model of two species that are identical in all
respects, except for their birth rates. It is supposed that species u is a mutation of
species v, and thus the difference between α(x) and β(x) is viewed as small. The
limiting resource subject to competition is implicitly assumed to be constant (such
as habitable space) or has a dynamics much faster than that of the competition
mechanism [12]. In these cases, conventional competition models such as (1.1) are
plausible and can be employed to study issues related to how diffusion affect the
competition outcomes of competing species that are identical in all respects other
than their strategies on how they spatially distribute their birth rates. This may
provide us with insights into how species learn to compete in a relatively stable
setting, which in turn may point out species evolution directions.
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Two specific key ecological questions motivated the study of system (1.1) in [9];
(1) under what circumstances does the mutant u invade; and (2) if it does invade,
does it drive the original phenotype v to extinction, or will there be coexistence?
Some of the results proved in [9] about system (1.1) are rather striking. For ex-
ample, when α(x) = β(x) + τg(x), it was shown that for a large class of functions
g(x) and small τ , the stability of the two species varies in a complex manner; in
particular, stability can change back and forth many times as d is increased over
(0,∞). In fact, for any positive integer n, the function g(x) can be chosen (from
an open set of possibilities) such that the stability of the semitrivial equilibria (i.e.,
equilibria with one component zero and the other positive, sometimes known as
boundary equilibria) changes at least n times as d is increased from zero to infinity.
Competition between the species and the mutant thus depends in a particularly
delicate way on the balance between the diffusivity d and resource utilization as
described by the form of the reproduction rate β(x).

Another important result proved in [9] about system (1.1) is that there is no
optimal form of resource utilization if there is no upper bound on birth rate func-
tions. In other words, there is no birth rate β(x) for species v that is optimal in the
sense that an invading mutant u with birth rate β(x) + τg(x), subject to a fairness
assumption

∫
Ω

g(x) dx = 0, will necessarily die out. Said another way, given a par-
ticular value for the diffusivity and a particular spatially dependent birth function
β(x), there will always exist a birth rate α(x) for the mutant u that differs pointwise
from β(x) but is the same on average, such that u will invade.

The aim of the present paper is twofold. First, we continue the study in [9] by
proving some further results about system (1.1). One result we establish concerns
the case when β(x) = β, a constant. We prove that if α(x) is nonconstant but has
mean value β, and if the diffusivity d is sufficiently large, then automatically the
mutant u wins, driving v to extinction. This suggests that, for large diffusivities, if
v has a constant birth rate then the mutant u has only to vary its birth rate at dif-
ferent points in space while preserving the same mean to win the competition. This
is perhaps one possible explanation for the evolution of the aggregation (grouping
together) tendency of many animals. Second, we consider a two-patch model anal-
ogous to (1.1) and investigate its properties, elucidating in particular how exactly
the mutant must vary its birth rate to win the competition and drive the other to
extinction. The advantages of using a patch model are that the analysis can be
much more explicit than is possible for a nonautonomous reaction-diffusion system,
and also that patch-type models are particularly amenable to computation. The
dynamics of this two-patch model seems to agree with that of (1.1). Our analytical
work on these models collectively and strongly suggests the following in a fast dif-
fusion environment: where different species have the same birth rates on average,
those that do well are those that have greater spatial variation in their birth rates.
We hypothesize that this may be a possible explanation for the evolution of group-
ing behavior in many species. Our findings are confirmed by extensive numerical
simulation work on the models.

The paper is organized as follows. We formulate and perform some pointed
analysis of an extremely simple two-patch model for two similar competing species.
In section 3, we continue the study in [9] by proving some new results about sys-
tem (1.1). We conclude with a discussion section containing implications of our
findings, simulation results, and statements of open questions.
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2. A two-patch model. We propose the following simple two-patch system as a
model for two similar competing species:

du1
dt

= u1(α1 − u1 − v1) + d(u2 − u1),

du2
dt

= u2(α2 − u2 − v2) + d(u1 − u2),

dv1
dt

= v1(β1 − u1 − v1) + d(v2 − v1),

dv2
dt

= v2(β2 − u2 − v2) + d(v1 − v2),

(2.1)

in which all parameters are positive, vi is the number of species v in patch i, ui

is the same for the mutant u, and there is diffusion between the two patches with
diffusivity d. Naturally, we assume that vi(0) ≥ 0 and ui(0) ≥ 0, i = 1, 2. It is
easy to show that all such solutions exist globally and have nonnegative component
values. In fact, if u1(0) + u2(0) > 0, then one can easily show ui(t) > 0 for t > 0,
i = 1, 2. The same is true for vi, i = 1, 2. Notice that

du1

dt
+

du2

dt
≤ (u1 + u2){max{α1, α2} − 1

2
(u1 + u2)}.

A similar inequality holds for v1 +v2. Hence, we have the following uniform bound-
edness result.

Lemma 2.1. Solutions of (2.1) with positive initial values are uniformly bounded.
In fact

lim sup
t→∞

(u1(t)+u2(t)) ≤ 2 max{α1, α2}, lim sup
t→∞

(v1(t)+v2(t)) ≤ 2max{β1, β2}.

Notice also that
du1

dt
+

dv1

dt
≥ (u1 + v1){min{α1, β1} − d− (u1 + v1)}.

A similar inequality holds for u2+v2. Hence, we have the following patch population
persistence result.

Lemma 2.2. Assume d < min{min{α1, β1}, min{α2, β2}} in (2.1). Then popula-
tions in both patches persist. In fact, we have

lim inf
t→∞

(u1(t)+v1(t)) ≥ min{α1, β1}−d, lim inf
t→∞

(u2(t)+v2(t)) ≥ min{α2, β2}−d.

Except at the end of this section, we assume, without loss of generality, that

β2 > β1.

The following global stability result for d = 0 (which reduces (2.1) to a decoupled
system) is elementary. This result is useful for understanding Figure 1 in the
discussion section that depicts a bifurcation diagram of (2.1).

Lemma 2.3. Assume α1 < β1 < β2 < α2 and d = 0 in (2.1). Then

lim
t→∞

(u1(t), u2(t), v1(t), v2(t)) = (0, α2, β1, 0).

We study the dynamics of system (2.1) largely through the predictions of lin-
earized analysis of the boundary equilibria (equilibria in which one of u or v is
zero), together with numerical simulations to confirm these predictions. Linearized
analysis about the boundary equilibria is tractable because the Jacobian matrix at
a boundary equilibrium has a block diagonal structure. Unfortunately, it is very
difficult to analytically study the linear stability of a coexistence equilibrium.
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Let us first consider the boundary equilibrium with u1 = u2 = 0 (i.e., the
mutant is absent). Intuitively, one expects that the v1 and v2 components of such
an equilibrium would both be between β1 and β2, and indeed it can be shown that
the equilibrium equations v1(β1− v1)+ d(v2− v1) = 0, v2(β2− v2)+ d(v1− v2) = 0
admit precisely one such solution. After some algebra, one finds that the unique
boundary equilibrium (u1, u2, v1, v2) = (0, 0, v∗1 , v∗2) is determined by

v∗1 =
v∗2(v∗2 − β2)

d
+ v∗2 , (2.2)

where v∗2 is the largest real root of f(v2) = 0 with

f(v2) := −v3
2

d2
+

2
d

(
β2

d
− 1

)
v2
2+

(
β1

d
− 1−

(
β2

d
− 1

)2
)

v2+β1+β2− β1β2

d
(2.3)

(small values for d actually yield two roots of f(v2) = 0 between β1 and β2, but only
the larger one produces an admissible value for v1). For the subsequent analysis,
we need some information on the size of v∗2 . Now

f(β2) = β1 − β2 < 0,

while

f( 1
2 (β2 − d +

√
(β2 − d)2 + 4β1d)) = 1

2 (β2 + d)− 1
2

√
β2

2 − 2β2d + d2 + 4β1d

> 0, since β1 < β2.

Hence,

v∗2 ∈
(

1
2 (β2 − d +

√
(β2 − d)2 + 4β1d), β2

)
. (2.4)

Linearizing about the equilibrium (0, 0, v∗1 , v∗2) in the usual way, one finds that the
eigenvalue equation corresponding to trial solutions proportional to exp(λt) is
(
λ2 − (α1 + α2 − 2d− v∗1 − v∗2)λ + (α1 − v∗1 − d)(α2 − v∗2 − d)− d2

)

×(
λ2 − (β1 + β2 − 2d− 2v∗1 − 2v∗2)λ + (β1 − 2v∗1 − d)(β2 − 2v∗2 − d)− d2

)
= 0.
(2.5)

From the structure of the linearization matrix (Jacobian matrix) that led to equa-
tion (2.5), it is easy to appreciate that the second quadratic factor is associated
with perturbations from (0, 0, v∗1 , v∗2) in which the ui remain zero. We show that
the eigenvalues attributable to this second quadratic factor have negative real parts.
To do so, it suffices to show that the coefficient of λ and the constant term are both
positive. The coefficient of λ will be positive if v∗1 + v∗2 > 1

2 (β1 + β2) − d, which
is obviously true if 1

2 (β1 + β2) < d, and so it remains to consider the case when
1
2 (β1 + β2) > d. In this case, graphical considerations in the (v1, v2) plane reveal
that it is sufficient to check that the intersection of the line v1 +v2 = 1

2 (β1 +β2)−d

with the curve v1 = v2
2
d + v2(1− β2

d ) is at a value of v2 less than v∗2 . In other words,
we need to check that the positive root v2 of

g(v2) :=
v2
2

d
+ v2

(
2− β2

d

)
+ d−

(
β1 + β2

2

)
= 0

is less than v∗2 . Since we assume β2 > β1, we know that (2.4) holds. Therefore,
to show that the positive root of g(v2) = 0 is less than v∗2 , it is sufficient to show
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that the root is less than 1
2 (β2− d +

√
(β2 − d)2 + 4β1d), and this will follow if g is

positive at the latter value. But

g(1
2 (β2 − d +

√
(β2 − d)2 + 4β1d)) = 1

2 (d + β1) + 1
2

√
β2

2 − 2β2d + d2 + 4β1d > 0

as desired. Thus v∗1 + v∗2 > 1
2 (β1 +β2)−d. Checking that (β1− 2v∗1 −d)(β2− 2v∗2 −

d)−d2 > 0 can be done similarly. Our conclusion at this stage is that the boundary
equilibrium (0, 0, v∗1 , v∗2) is locally stable to perturbations in which the ui remain
zero. It may of course be unstable to perturbations involving the introduction of
the mutant u, and this will depend on the relative sizes of the birth rates αi, βi

and the diffusivity d as we now show.
Considerations similar to those already described lead us to the existence of

another boundary equilibrium, (u∗1, u
∗
2, 0, 0), in which u∗1 and u∗2 are both between α1

and α2. This equilibrium is linearly stable to perturbations in which the vi remain
zero. Next, we prove the following result, which predicts for large diffusivities that
if the birth rates for the species v in the two patches are unequal, and if the mutant
u increases the disparity between the birth rates (but preserving the same mean),
then the mutant will win and drive the original species v to extinction.

Proposition 2.1. If β2 > β1 and α1 = β1− ε, α2 = β2 + ε with 0 < ε < β1, and d
is sufficiently large, then (0, 0, v∗1 , v∗2) is unstable and (u∗1, u

∗
2, 0, 0) is linearly stable.

Proof. To show that (0, 0, v∗1 , v∗2) is unstable, it is sufficient to show that the first
quadratic factor in the eigenvalue equation (2.5) yields an unstable eigenvalue (one
such that Re λ > 0). We shall in fact show that a real positive eigenvalue exists, by
proving that for d sufficiently large, the constant term in the first quadratic factor
is negative, i.e., that

(α1 − v∗1)(α2 − v∗2)− d(α1 + α2 − v∗1 − v∗2) < 0 (2.6)

(with α1 = β1 − ε and α2 = β2 + ε). This is not immediately clear since, as d→∞,
v∗1 and v∗2 both approach 1

2 (β1 + β2) so that the bracketed coefficient of d in (2.6)
approaches zero. However, a little asymptotic analysis yields that

v∗1 =
β1 + β2

2
− 1

4d
β1(β2 − β1) + O

(
1
d2

)
,

v∗2 =
β1 + β2

2
+

1
4d

β2(β2 − β1) + O

(
1
d2

)
;

so that after some algebra, the left hand side of (2.6) becomes

−
(

β2 − β1

2
+ ε

)2

+
(

β2 − β1

2

)2

+ O

(
1
d

)
,

which is negative for sufficiently large d, since β2 > β1 and ε > 0.
The characteristic equation of the linearization about (u∗1, u

∗
2, 0, 0) is

(
λ2 − (β1 + β2 − 2d− u∗1 − u∗2)λ + (β1 − u∗1 − d)(β2 − u∗2 − d)− d2

)

×(
λ2 − (α1 + α2 − 2d− 2u∗1 − 2u∗2)λ + (α1 − 2u∗1 − d)(α2 − 2u∗2 − d)− d2

)
= 0

(2.7)
with α1 = β1 − ε and α2 = β2 + ε, and this time we need to show for d sufficiently
large that both quadratic factors produce only eigenvalues λ with Re λ < 0. The
coefficients of λ in both factors are clearly positive for d sufficiently large (u∗1 and
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u∗2 depend on d but are always between α1 and α2). Thus, we need to show that
the constant terms are positive, i.e., that

(β1 − u∗1)(β2 − u∗2)− d(β1 + β2 − u∗1 − u∗2) > 0 (2.8)

and that

(β1 − ε− 2u∗1)(β2 + ε− 2u∗2)− d(β1 + β2 − 2u∗1 − 2u∗2) > 0. (2.9)

But for d large,

u∗1 =
α1 + α2

2
− 1

4d
α1(α2 − α1) + O

(
1
d2

)
,

u∗2 =
α1 + α2

2
+

1
4d

α2(α2 − α1) + O

(
1
d2

)
.

Since α1 = β1 − ε and α2 = β2 + ε the left-hand side of (2.8) becomes

1
4

(
(β2 − β1 + 2ε)2 − (β2 − β1)2

)
+ O

(
1
d

)
,

which is positive for d sufficiently large. Similarly, the left-hand side of (2.9) is
given asymptotically in d by (β1 + β2)d + O(1) > 0. The proof of Proposition 2.1
is complete.

In an entirely similar way, we obtain the following proposition:

Proposition 2.2. If β2 > β1 and α1 = β1 + ε, α2 = β2 − ε with ε > 0 but not too
large and d is sufficiently large, then (0, 0, v∗1 , v∗2) is linearly stable and (u∗1, u

∗
2, 0, 0)

is unstable.

For the case when the diffusivity d is large, our predictions thus far for model (2.1)
mirror the results described in [9] regarding the absence of an optimal form of
resource utilisation. It follows from Propositions 2.1 and 2.2 that, in system (2.1),
there is no optimal way for the species v to choose its birth parameters β1 and β2

(optimal meaning that the mutant would die out whatever the values of its birth
parameters α1 and α2, subject to a “fairness condition” α1+α2 = β1+β2). However,
Propositions 2.1 and 2.2 do throw more light on what the mutant’s strategy must
be for it to win. Essentially, if β1 and β2 are unequal and if the mutant widens
the disparity between these birth rates (i.e., adopts a higher birth rate in the patch
where the birth rate for v is already high, and a lower birth rate than v in the
other patch), then the mutant will win (if d is large enough). On the other hand, if
the species v has unequal birth rates and the mutant “closes the gap,” subject to
α1 + α2 = β1 + β2, then the mutant will become extinct if d is large.

It is natural to wonder what happens if β1 = β2. The following proposition
predicts that in this case if the diffusivity is large then the mutant can win, driving
v to extinction, simply by introducing some disparity in its birth rate between the
two patches.

Proposition 2.3. Let β1 = β2 = β > 0 and α1 = β − ε, α2 = β + ε with ε of
either sign and |ε| < β. Then, if d is sufficiently large, (0, 0, v∗1 , v∗2) is unstable and
(u∗1, u

∗
2, 0, 0) is linearly stable.

Proof. The proof is similar to that of Proposition 2.1. Note that when β1 = β2,
v∗1 = v∗2 = β.
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3. The reaction-diffusion model. Motivated by the predictions in the analysis
for the two-patch model in the previous section, the purpose of this section is to
establish some results for the reaction-diffusion system (1.1), which complement
the results proved in [9].

Proposition 2.3 in particular leads us to wonder whether some analogous result
might hold for (1.1). Let us consider the system

ut = d∆u + u[β + εg(x)− u− v],
vt = d∆v + v[β − u− v] (3.1)

subject to ∂u/∂n = ∂v/∂n = 0 on ∂Ω, where n is the outward-pointing unit normal
on ∂Ω. In this section we will assume that

β > 0, ε 6= 0, g(x) is nonconstant and
∫

Ω

g(x) dx = 0. (3.2)

Clearly, system (3.1) has a boundary equilibrium (u, v) = (0, β) corresponding
to the mutant being absent, and another boundary equilibrium (ũ(x), 0) (original
species v is absent), in which ũ(x) is the solution of

d∆ũ + ũ[β + εg(x)− ũ] = 0, ∂ũ/∂n = 0 on ∂Ω. (3.3)

Assumptions (3.2) assure us of the existence of a unique positive solution ũ of (3.3).
We will prove the following result:

Proposition 3.1. Let (3.2) hold. Then, if d is sufficiently large, the equilibrium
(u, v) = (0, β) is unstable as a solution of (3.1), and the equilibrium (ũ(x), 0) is
linearly stable.

Proof. Linearizing (3.1) about (0, β) furnishes an eigenvalue problem from which
one equation decouples. To show that (0, β) is unstable, it is sufficient to show the
existence of a positive eigenvalue λ to the eigenvalue problem

λφ = d∆φ + εg(x)φ, ∂φ/∂n = 0 on ∂Ω (3.4)

that results from trial solutions with temporal dependence of the form exp(λt). Let
λ1 be the principal eigenvalue of (3.4) (the eigenvalue of greatest real part), and
φ1 > 0 be the corresponding eigenfunction (φ1 > 0 follows from Theorem 11.10
in [15]). Division by φ1 and integration over Ω yields

λ1|Ω| = d

∫

Ω

1
φ1

∆φ1 dx + ε

∫

Ω

g(x) dx

︸ ︷︷ ︸
=0

= d

∫

Ω

1
φ2

1

|∇φ1|2 dx > 0,

since φ1 is nonconstant (if φ1 were constant then g(x) would have to be constant).
Thus, λ1 > 0 and so (0, β) is unstable.

Next, we demonstrate that (ũ(x), 0) is linearly stable for sufficiently large values
of d. Linear stability of this equilibrium is determined by the eigenvalue problem

λφ = d∆φ + (β + εg(x)− 2ũ(x))φ− ũ(x)ψ,
λψ = d∆ψ + (β − ũ(x))ψ,
∂φ/∂n = ∂ψ/∂n = 0 on ∂Ω.

(3.5)

Certain facts concerning this eigenvalue problem follow from remarks on p464 of [9].
The eigenvalues can be examined using a suitable positive operator (see [6]), and it
can be established that (3.5) has a principal eigenvalue (a simple real eigenvalue that
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is larger than the real part of any other eigenvalue). Also, and very importantly, the
principal eigenvalue for (3.5) coincides with the principal eigenvalue of the scalar
problem

λψ = d∆ψ + (β − ũ(x))ψ, ∂ψ/∂n = 0 on ∂Ω (3.6)

(see [8]). To emphasize dependence on the large parameter d, let λd and ψd >
0 be the principal eigenvalue and corresponding eigenfunction of (3.6), with ψd

normalized such that ∫

Ω

ψ2
d dx = 1.

We aim to show that λd < 0. Multiplying λdψd = d∆ψd + (β − ũ(x))ψd by ψd and
integrating over Ω yields

λd = d

∫

Ω

ψd∆ψd dx +
∫

Ω

(β − ũ(x))ψ2
d dx

= −d

∫

Ω

|∇ψd|2 dx +
∫

Ω

(β − ũ(x))ψ2
d dx. (3.7)

But ũ(x) satisfies (3.3) and it is known from [7] that, as d→∞,

ũ(x)→ 1
|Ω|

∫

Ω

(β + εg(x)) dx = β uniformly for x ∈ Ω. (3.8)

Also, there is a well-known comparison theorem for eigenvalue problems of the
form λu = d∆u + a(x)u on homogeneous Neumann or Dirichlet boundary condi-
tions, which states that if a(x) ≥ ã(x) for all x ∈ Ω, then the principal eigen-
value of the problem with a(x) exceeds that of the corresponding problem in which
a(x) is replaced by ã(x) ([15], Thm 11.6). And if a(x) equals a constant a, then
the principal eigenvalue for the homogeneous Neumann problem is simply a itself.
From these facts, it follows that the principal eigenvalue λd of (3.6) is between
− supx∈Ω |β − ũ(x)| and supx∈Ω |β − ũ(x)|, and so, by (3.8),

λd → 0 as d →∞.

It is therefore easily seen from (3.7) that
∫

Ω

|∇ψd|2 dx → 0 as d →∞.

So, for large d, ψd approximates to a constant, ψd ≈ |Ω|−1/2 (by the normalization
condition), and it remains to show that λd < 0. But, from (3.7),

λd ≤
∫

Ω

(β − ũ(x))ψ2
d dx ≈ 1

|Ω|
∫

Ω

(β − ũ(x)) dx.

Finally, dividing (3.3) by ũ and integrating yields
∫

Ω

(β − ũ(x)) dx = −d

∫

Ω

∆ũ

ũ
dx = −d

∫

Ω

|∇ũ|2
ũ2

dx < 0,

since ũ(x) is nonconstant. Hence λd < 0.
Our next result, concerning the reaction-diffusion system (1.1), mirrors Propo-

sition 2.1 on the two-patch model. The result predicts that if the birth rate for
v is nonconstant and the mutant has a birth rate with higher variability but the
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same mean, then the mutant will win and drive v to extinction. For the purposes
of establishing this result, it will be convenient to write (1.1) as

ut = d∆u + u[β + δ2g(x)− u− v],
vt = d∆v + v[β + δ1g(x)− u− v],
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0,
∂u/∂n = ∂v/∂n = 0 on ∂Ω

(3.9)

in which

β, δ1, δ2 > 0, g(x) is nonconstant, and
∫

Ω

g(x) dx = 0. (3.10)

Cantrell and Cosner [2] established some results that have a similar flavor to those
of this section in that they involve hypotheses on the means of spatially varying
coefficients (see, in particular, Proposition 3.9 in [2], which deals with large diffu-
sivities). However, their theorems do not include system (3.9), because the birth
rates in (3.9) have exactly the same mean.

System (3.9) has a unique boundary equilibrium of the form (ũ(x), 0), where
ũ(x) > 0 satisfies

d∆ũ + ũ[β + δ2g(x)− ũ] = 0, ∂ũ/∂n = 0 on ∂Ω (3.11)

and a unique equilibrium of the form (0, ṽ(x)), with ṽ(x) > 0 satisfying

d∆ṽ + ṽ[β + δ1g(x)− ṽ] = 0, ∂ṽ/∂n = 0 on ∂Ω. (3.12)

We prove Proposition 3.2 below. Before doing so, we point out that Proposi-
tion 3.1, which effectively addresses the case δ1 = 0, is not a particular case of
Proposition 3.2. The proof of the latter leans heavily on the assumption δ1 > 0; it
is this fact that assures us that ṽ(x) is nonconstant, which is essential for the proof.

Proposition 3.2. Assume (3.10) holds and that δ2 > δ1. Then, if d is sufficiently
large, the equilibrium (0, ṽ(x)) is unstable as a solution of (3.9), and (ũ(x), 0) is
linearly stable.

Proof. We first show that (0, ṽ(x)) is unstable. The linearization about this equi-
librium leads to the following eigenvalue problem, corresponding to trial solutions
with temporal dependence exp(λt):

λφ = d∆φ + (β + δ2g(x)− ṽ(x))φ,
λψ = d∆ψ − ṽ(x)φ + (β + δ1g(x)− 2ṽ(x))ψ,
∂φ/∂n = ∂ψ/∂n = 0 on ∂Ω.

(3.13)

The principal eigenvalue of (3.13) coincides with the principal eigenvalue of the
problem

λφ = d∆φ + (β + δ2g(x)− ṽ(x))φ, ∂φ/∂n = 0 on ∂Ω. (3.14)

Let λ1 and φ1 > 0 be the principal eigenvalue and corresponding eigenfunction.
We wish to show that λ1 > 0. Let Θ = φ1/ṽ; then Θ satisfies

λ1ṽ
2Θ = d∇ · (ṽ2∇Θ) + [(δ2 − δ1)g(x)ṽ2]Θ, ∂Θ/∂n = 0 on ∂Ω. (3.15)

As in [9], λ1 is given by the variational characterization

λ1 = sup
{Θ∈W 1,2(Ω): Θ 6=0}

−d

∫

Ω

ṽ2|∇Θ|2 dx +
∫

Ω

(δ2 − δ1)g(x)ṽ2Θ2 dx
∫

Ω

ṽ2Θ2 dx

.
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(Note that [9] use a different notational convention; their −λ is our λ.) The choice
Θ = 1 yields

λ1 ≥
(δ2 − δ1)

∫

Ω

ṽ2g(x) dx
∫

Ω

ṽ2 dx

,

and therefore it suffices to show that
∫
Ω

ṽ2g(x) dx > 0. This can be shown using
the equation for ṽ, equation (3.12). Multiplying (3.12) by ṽ and integrating yields

δ1

∫

Ω

ṽ2g(x) dx = d

∫

Ω

|∇ṽ|2 dx +
∫

Ω

ṽ2(ṽ − β) dx.

We know from [7] that as d→∞,

ṽ(x)→ 1
|Ω|

∫

Ω

(β + δ1g(x)) dx = β uniformly for x ∈ Ω. (3.16)

Using also that ṽ is nonconstant, it follows that for d sufficiently large,

δ1

∫

Ω

ṽ2g(x) dx > β2

∫

Ω

(ṽ − β) dx

= dβ2

∫

Ω

|∇ṽ|2
ṽ2

dx

> 0 since ṽ is nonconstant.

Thus
∫
Ω

ṽ2g(x) dx > 0, so λ1 > 0.
The above argument cannot be reversed to conclude that (0, ṽ(x)) is stable when

δ1 > δ2 (otherwise we could have inferred the stability properties of the other
boundary equilibrium (ũ(x), 0) without further effort). Therefore, we must study
the linear stability of (ũ(x), 0) separately, and a somewhat different strategy is
required to establish its linear stability under the condition δ2 > δ1, for sufficiently
large d. The eigenvalue problem resulting from the linearization about (ũ(x), 0) is

λφ = d∆φ + (β + δ2g(x)− 2ũ(x))φ− ũ(x)ψ,
λψ = d∆ψ + (β + δ1g(x)− ũ(x))ψ,
∂φ/∂n = ∂ψ/∂n = 0 on ∂Ω,

(3.17)

and as before, it suffices to consider the principal eigenvalue of the scalar problem

λψ = d∆ψ + (β + δ1g(x)− ũ(x))ψ, ∂ψ/∂n = 0 on ∂Ω. (3.18)

Let λ2 and ψ2 > 0 be the principal eigenvalue and eigenfunction of (3.18). We want
to show that λ2 < 0. Let Φ = ψ2/ũ; then Φ satisfies

λ2ũ
2Φ = d∇ · (ũ2∇Φ) + [(δ1 − δ2)g(x)ũ2]Φ, ∂Φ/∂n = 0 on ∂Ω. (3.19)

Define

C(d) = sup
{φ∈W 1,2(Ω):

R
Ω gũ2φ2<0}

∫

Ω

ũ2|∇φ|2 dx
∫

Ω

g(x)ũ2φ2 dx

. (3.20)

It can be shown that, for d sufficiently large,
∫
Ω

ũ2g(x) dx > 0. This means that
φ = const. is not an admissible function in (3.20), so, for all sufficiently large d,

C(d) < 0.
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Letting φ∗ be the actual extremizing function in (3.20), a standard argument of
variational calculus yields that φ∗ must satisfy

d∇ · (ũ2∇φ∗) + dC(d)gũ2φ∗ = 0. (3.21)

With the notation being used in this paper, λ2, as a function of δ1, is convex [10].
When δ1 = δ2, it follows from (3.19) that λ2 = 0 (with Φ = constant) and when
δ1 = δ2 + dC(d) (< δ2), λ2 is again zero by (3.21). By convexity, λ2 must be
negative (so that (ũ(x), 0) is linearly stable) for values of δ1 such that

δ2 + dC(d) < δ1 < δ2. (3.22)

The right-hand inequality in (3.22) holds by hypothesis. We show that the left
hand one holds for sufficiently large d, by demonstrating that

dC(d) → −∞ as d →∞. (3.23)

But we know that ũ → β as d →∞, uniformly in x. Therefore, as d →∞,

C(d) → sup
{φ∈W 1,2(Ω):

R
Ω gφ2<0}

∫

Ω

|∇φ|2 dx
∫

Ω

g(x)φ2 dx

, (3.24)

which is strictly negative (φ = const. is not admissible since
∫
Ω

g(x) dx = 0).
Thus (3.23) holds. The proof of Proposition 3.2 is complete.

In a similar way, we have the following proposition:

Proposition 3.3. Assume (3.10) holds and that δ2 < δ1. Then, if d is sufficiently
large, the equilibrium (0, ṽ(x)) is linearly stable as a solution of (3.9) and (ũ(x), 0)
is unstable.

Next, we demonstrate that, if d is sufficiently large, system (3.9) cannot pos-
sess a coexistence equilibrium. Doing so enables us to make statements on the
global dynamics of (3.9) by employing the powerful theory of monotone dynamical
systems [14].

Proposition 3.4. Let (3.10) hold, with δ2 6= δ1. Then, if d is sufficiently large,
system (3.9) has no coexistence equilibrium.

Proof. For a contradiction, suppose there exist sequences {di}, {ũi}, {ṽi} with
di →∞, ũi(x) > 0, ṽi(x) > 0, and

di∆ũi + ũi[β + δ2g(x)− ũi − ṽi] = 0,
di∆ṽi + ṽi[β + δ1g(x)− ũi − ṽi] = 0,
∂ũi/∂n = ∂ṽi/∂n = 0 on ∂Ω.

(3.25)

By the maximum principle,

‖ũi‖∞ ≤ β + δ2‖g‖∞, ‖ṽi‖∞ ≤ β + δ1‖g‖∞
so that ũi and ṽi are bounded independently of i. Now set φi = ũi/‖ũi‖∞. Then
φi satisfies

∆φi + φi

(
β + δ2g(x)− ũi − ṽi

di

)
= 0, ∂φi/∂n = 0 on ∂Ω.

By the regularity properties of solutions of elliptic equations in their dependence
on the equation coefficients [5], it follows that as i → ∞, φi → φ in C1(Ω), where
φ satisfies ∆φ = 0, ∂φ/∂n = 0 on ∂Ω and ‖φ‖∞ = 1. The solution of the latter
problem is simply φ = 1. Thus φi → 1, uniformly in x.
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Also, if we divide the equation for ũi in (3.25) by di and recall that ũi is bounded
independently of i, we conclude (again by elliptic regularity) that ũi(x) must ap-
proach, as i → ∞, a limit function ũ(x) satisfying ∆ũ = 0, ∂ũ/∂n = 0 on ∂Ω.
But solutions of this problems are constants. Thus, as i →∞, ũi(x) → µ for some
constant µ. Similarly, ṽi(x) → ν for some constant ν. If we now integrate the
equation for ũi in (3.25) and then divide by ‖ũi‖∞, we obtain

∫

Ω

φi(x)(β + δ2g(x)− ũi(x)− ṽi(x)) dx = 0.

Taking the limit as i →∞ then yields
∫

Ω

(β + δ2g(x)− µ− ν) dx = 0.

Since
∫
Ω

g(x) dx = 0, it follows that

µ + ν = β.

Next, we derive some inequalities that will be needed later. Note that, for all i,
∫

Ω

(ũi(x) + ṽi(x)− β) dx = di

∫

Ω

|∇ũi|2
ũ2

i

dx > 0.

This follows by dividing the equation for ũi by ũi and then integrating. Further-
more, for large but finite i,

∫

Ω

ũi(x)g(x) dx > 0 and
∫

Ω

ṽi(x)g(x) dx > 0. (3.26)

To see the first of these inequalities (the second is derived similarly), integrate the
equation for ũi in (3.25), and let i be large but finite (so that di is large but finite)
to obtain

δ2

∫

Ω

ũi(x)g(x) dx =
∫

Ω

ũi(x)(ũi(x) + ṽi(x)− β) dx

∼ µ

∫

Ω

(ũi(x) + ṽi(x)− β) dx

> 0.

Define ui = ũi/ṽi. Then ui satisfies

di∇ · (ṽ2
i∇ui) + uiṽ

2
i (δ2 − δ1)g(x) = 0.

Multiplying this by ui, integrating, and then replacing ui by ũi/ṽi yields

di

∫

Ω

ṽ2
i |∇(ũi/ṽi)|2 dx =

∫

Ω

ũ2
i (δ2 − δ1)g(x) dx. (3.27)

Similarly,

di

∫

Ω

ũ2
i |∇(ṽi/ũi)|2 dx =

∫

Ω

ṽ2
i (δ1 − δ2)g(x) dx. (3.28)
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We arrive at a contradiction by considering (3.27) and (3.28) for large but finite i
so that ũ2

i ∼ µ2 and ṽ2
i ∼ ν2. Then ũ2

i ∼ (β − ṽi)2, and so (3.27) becomes

di

∫

Ω

ṽ2
i |∇(ũi/ṽi)|2 dx =

∫

Ω

(β − ṽi)2(δ2 − δ1)g(x) dx

=
∫

Ω

ṽ2
i (δ2 − δ1)g(x) dx− 2β(δ2 − δ1)

∫

Ω

ṽig(x) dx

= −di

∫

Ω

ũ2
i |∇(ṽi/ũi)|2 dx− 2β(δ2 − δ1)

∫

Ω

ṽig(x) dx

so that

di

∫

Ω

ṽ2
i |∇(ũi/ṽi)|2 dx + di

∫

Ω

ũ2
i |∇(ṽi/ũi)|2 dx = −2β(δ2 − δ1)

∫

Ω

ṽig(x) dx

︸ ︷︷ ︸
>0

,

which produces a contradiction if δ2 > δ1. It can be shown in a similar way that,
for large but finite i,

di

∫

Ω

ṽ2
i |∇(ũi/ṽi)|2 dx + di

∫

Ω

ũ2
i |∇(ṽi/ũi)|2 dx = −2β(δ1 − δ2)

∫

Ω

ũig(x) dx

︸ ︷︷ ︸
>0

,

which produces a contradiction in the case when δ1 > δ2. The proof of Proposi-
tion 3.4 is complete.

The nonexistence of a coexistence state for large values of the diffusivity d now
enables us to make stronger statements on the outcome of the competition between
u and v, by using results in [14] (Chap. 7). Before doing so, note that system (3.9)
is transformed by the introduction of the new variables u∗ = u, v∗ = −v into

u∗t = d∆u∗ + u∗[β + δ2g(x)− u∗ + v∗],
v∗t = d∆v∗ + v∗[β + δ1g(x)− u∗ + v∗],
u∗(x, 0) = u0(x) ≥ 0, v∗(x, 0) = −v0(x) ≤ 0,
∂u∗/∂n = ∂v∗/∂n = 0 on ∂Ω.

(3.29)

Solutions of (3.29) remain in the fourth quadrant, since solutions of (3.9) remain
positive by the maximum principle. Accordingly, system (3.29) is a cooperative
system, in the sense that the reaction part of the first equation is non-decreasing
with respect to v∗, while that of the second equation is non-decreasing with respect
to u∗ (note that v∗ ≤ 0). In abstract notation, the semiflow Φ defined by

Φt(φ) = (u∗(t, φ), v∗(t, φ)),

where (u∗(t, φ), v∗(t, φ)) is the solution of (3.29) satisfying (u∗(0, φ), v∗(0, φ)) = φ,
is strongly monotone ([14], p132). It follows that Φ is strongly order preserving
([14], p3). The trichotomy given in ([14], p17) then applies and states that, for the
original system (3.9), either a coexistence state exists, or solutions of (3.9) approach
one of the boundary equilibria. The nonexistence of a coexistence state leaves us
with just the latter alternative. In other words, knowledge of the equilibria and
their local stability, together with the powerful results in [14], enables us to make
statements about the global dynamics of (3.9). We thus have the following theorem
on the outcome of the competition between u and v for large values of d.

Theorem 3.1. Assume (3.10) holds, and let d be sufficiently large. Then,
1. if δ2 > δ1 and u0(x) 6≡ 0, the solution of (3.9) satisfies (u(x, t), v(x, t)) →

(ũ(x), 0) as t →∞;
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Figure 1. A bifurcation diagram of (2.1) with α1 = 1, α2 =
3, β1 = 1.5, β2 = 2.5, and initial condition (0.5, 0.5, 0.5, 0.5).

2. if δ2 < δ1 and v0(x) 6≡ 0, the solution of (3.9) satisfies (u(x, t), v(x, t)) →
(0, ṽ(x)) as t →∞.

4. Discussion. This paper has been inspired by the work of Hutson et al. [9]
and is motivated by the simple question of how diffusion affects the competition
outcomes of two competing species that are identical in all respects other than their
strategies on how they spatially distribute their birth rates. This may provide us
with insights into how species learn to compete in a relatively stable setting and
this in turn may point out species evolution directions. To this end, we formulated
some simple, though artificial, two-species competition models that incorporate
either continuous or discrete diffusion mechanisms. Our analytical work on these
models collectively and strongly suggests that, in a fast diffusion environment,
a species will have a higher chance of success if it tries to adopt greater spatial
variation in its birth rate than another competing species with a birth rate that
is the same on average. This suggests that, subject to species having the same
overall average birth rate over the domain, those species that adopt the greatest
spatial variation in their birth rates have the greatest chance of success, which may
in turn provide an explanation for the evolution of grouping behavior in animal
populations in high-diffusion situations. Our findings are confirmed by extensive
numerical simulation work on the models, and a main purpose of this section is to
report these informative numerical findings.

Specifically, in this section, we selectively present some numerical simulation
results that not only confirm but also complement the predictions of the analytical
results. We also attempt to state some biological implications of our analytical and
numerical findings. In addition, we mention a few open mathematical questions for
future work. The numerical simulations are carried out using the routines ode23s
and pdepe that are part of MATLAB.

Clearly, Figure 1 confirms the results of Lemmas 2.1– 2.2 and Proposition 2.1.
It also strongly suggests the following two conjectures.
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Figure 2. A bifurcation diagram of (4.1) with α1 = 1, α2 =
3, α3 = 5, β1 = 1.5, β2 = 3, β3 = 4.5, and initial condition (0.5,
0.5, 0.5, 0.5, 0.5, 0.5).

Conjecture 1. Assume in (2.1), β2 > β1 and α1 = β1 − ε, α2 = β2 + ε with
0 < ε < β1, and d is sufficiently large. If u1(0)+u2(0) > 0, then lim(u1, u2, v1, v2) =
(u∗1, u

∗
2, 0, 0).

Conjecture 2. Assume in (2.1), β2 > β1 and α1 = β1 − ε, α2 = β2 + ε with
0 < ε < β1. Assume d is small enough so that (2.1) has a positive steady state E∗.
If u1(0) + u2(0) > 0, v1(0) + v2(0) > 0, then lim(u1, u2, v1, v2) = E∗.

These conjectures, if true, suggest that the species that can concentrate its birth
in a single patch wins, if the diffusion rate is large enough (in Fig. 1 one needs
only d > 0.3, far less than the maximum birth rates of either species). In short,
the winning strategy is simply to focus as much birth in a single patch as possible.
Indeed, this is also numerically confirmed by a similar bifurcation diagram (Fig. 2)
for the following three-patch model of two similar species competition.

du1
dt

= u1(α1 − u1 − v1) + d(u2 + u3 − 2u1)/2,

du2
dt

= u2(α2 − u2 − v2) + d(u1 + u3 − 2u2)/2,

du3
dt

= u3(α3 − u3 − v3) + d(u1 + u2 − 2u3)/2,

dv1
dt

= v1(β1 − u1 − v1) + d(v2 + v3 − 2v1)/2,

dv2
dt

= v2(β2 − u2 − v2) + d(v1 + v3 − 2v2)/2,

dv3
dt

= v3(β3 − u3 − v3) + d(v1 + v2 − 2v3)/2.

(4.1)

Our work in the previous section strongly suggests that a similar winning strat-
egy holds for the continuous diffusion models (3.1) and (3.9). Specifically, the
winning strategy here is to concentrate birth in as small an area as possible. The
two simulation figures (Figs. 3 and 4) not only confirm the analytical results but
also provide glimpses of how the two species evolve into the two limiting scenarios:
extinction of one species and coexistence.
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Figure 3. Simulation of system (3.9) on the domain x ∈ [0, 1].
Parameter values were β = 2, δ1 = 1.3, δ2 = 1.4, and d = 0.01,
and we took g(x) = sin 2πx. For initial data, small numbers of the
mutant u were introduced throughout the domain initially inhab-
ited mainly by v. The outcome: u wins and v goes extinct.

Figure 3 shows the result of a simulation of (3.9) in a situation in which δ2 > δ1.
The simulation confirms the predictions of Proposition 3.2 and Theorem 3.1 in that
the mutant u wins in these circumstances with v going extinct. The simulation also
shows that the diffusivity d does not, in fact, have to be particularly large for the
mutant to win. Other numerical simulations, results of which are not included here,
support the theoretical predictions for the case when δ2 < δ1.

Figure 4 shows the effect of lowering the value of the diffusivity d. Parameter
values this time were the same as in Figure 3, except the diffusivity was lowered to
d = 0.0001 and the initial conditions for u and v were identical (to be certain of
not biasing the outcome). The result is that u and v can coexist at this value of d,
but they become spatially segregated.

In conclusion, we would like to emphasize that extensive work exists on patch
population dynamics (e.g., [16], [13], [11]) and on population models involving reac-
tion diffusion-equations (e.g., [1], [3], [4]), many of which deal with both competition
and predator-prey interactions.
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