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Abstract. A least squares technique is developed for identifying unknown
parameters in a coupled system of nonlinear size-structured populations. Con-
vergence results for the parameter estimation technique are established. Ample
numerical simulations and statistical evidence are provided to demonstrate the
feasibility of this approach.

1. Introduction. A typical direct problem for structured populations is to use the
knowledge of underlying mechanism at an individual level, such as growth, mortality
and reproduction rates, to deduce the behavior at population level. This approach
has been extensively studied for many kinds of models, including structured and
nonstructured populations. In practice, however, our knowledge of the vital rates
may be incomplete [40]. In fact, in many animal and plant populations the processes
at the individual level are not accessible to direct observation [47]. For example, for
nonlinear structured models, the dependence of reproduction and mortality rates on
the total population is sometimes unknown [37]. Even for linear structured models,
one may be unable to obtain the exact dependence of the vital rates on the age
or size structure [40]. In these cases, one resorts to an inverse problem approach,
using knowledge about the behavior at the population level (e.g, observations of
total population numbers) to deduce the underlying mechanisms at the individual
level.
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In recent years many researchers have focused their attention on developing
methodologies for solving inverse problems governed by structured population mod-
els (e.g, [1]–[3], [12]–[17], [19]–[23], [25]–[34], [40]–[49]). In what follows, we briefly
review some of the recent work on such inverse problems. For age-structured pop-
ulation models, several approaches have been developed to recover unknown indi-
vidual vital rates. For example, in [40, 43] a fixed-point iterative technique was
developed to determine the death rate from census data on the age distribution of
the population. These studies give conditions on the data that lead to a unique solu-
tion. In [26] the authors formulate the inverse problem as an operator equation and
then use the least squares method to compute its solution. Because the problem is
ill posed, a regularization technique was considered. In addition, the authors prove
that the resulting scheme has a convergence rate of the Hölder type. However, no
numerical results were reported. A least squares approach was also adopted in [19]
for a nonlinear age-structured population model to estimate unknown coefficients
from a set of fully discrete observations of the population. Although the conver-
gence of the computed minimizers to a minimizer of the least squares problem was
established and numerical results were presented, for many real populations it is
generally difficult to obtain discrete observations with respect to age, whereas other
quantities, such as total population number, are easily obtained. In [25], a model
describing the evolution in time of a size- and age-structured population was consid-
ered. A moving finite element method was used to study the identification problem
for such a model. Convergence results for the parameter-estimation technique were
reported. In [30], by writing a linear age-structured model using the cumulative
formulation approach (see, e.g., [24]), the authors studied the inverse problem of
identifying the birth and death rates from data on the total population size and
the cumulative number of births. They also provided conditions on the data that
guarantee the uniqueness of the solution to the inverse problem.

For size-structured population models, the least squares approach has been often
used for parameter identification. For example, it was used in [15, 16] to estimate
the growth-rate distribution in a linear size-structured population model. A sim-
ilar technique was subsequently applied to a semilinear size-structured model in
[34], where the mortality rate depends on the total population because of compe-
tition. In [2], an inverse problem governed by a phytoplankton aggregation model
was studied. Convergence and numerical results for identifying the coagulation
kernel were provided. Later in [1, 3], this technique was extended to identify pa-
rameters in a size-structured population model, where all the individual vital rates
(growth, mortality, and reproduction) depend on the total population level. There,
these parameters are identified from a set of observations corresponding to the to-
tal population number. A finite difference method is then used to approximate
the infinite-dimensional problem. Convergence results for the computed parameter
estimates to the true parameter are established. To our knowledge, [3] was the
first paper to provide convergence results for parameter estimates when the growth
rate is a nonlinear function of the total population (i.e., the size-structured model is
represented by a quasi-linear first-order hyperbolic initial boundary value problem).
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In this paper, we extend the discussion in [3] to the following coupled system of
quasi-linear size-structured populations model:

uI
t + (gI(x, P (t; q))uI)x + mI(x, P (t; q))uI = 0, (x, t) ∈ (0, L]× (0, T ],

gI(0, P (t; q))uI(0, t; q) = CI(t) +
N∑

J=1

∫ L

0

γI,JβJ(x, P (t; q))uJ(x, t; q)dx, t ∈ (0, T ],

uI(x, 0; q) = uI,0(x), x ∈ [0, L].
(1)

Here q = (q1, q2, . . . , qN ) with qI = (gI ,mI , βI , CI), I = 1, 2, . . . , N , the parame-
ters to be identified. The function uI(x, t; q), I = 1, 2, . . . , N , is the parameter-
dependent size density (number per-unit size) of individuals in the Ith population
having size x at time t, and

P (t; q) =
N∑

J=1

∫ L

0

uJ(x, t; q)dx (2)

is the total population at time t. The function gI denotes the growth rate of an
individual in the Ith population, mI denotes the mortality rate of an individual
in the Ith population, and βI is the reproduction rate of an individual in the Ith
population. The function CI represents the inflow rate of the Ith population of
zero-size individuals from an external source (e.g., in a tree population model seeds
moved by wind).

The model (1), which was developed by the authors in [4], is a generalization of
several size-structured population models (usually referred to as structured models
with rate distributions) that have been investigated in [14, 15, 16, 34]. Motivated
by the fact that in addition to observable characteristics such as age or size of the
individuals, nonobservable genetic characteristics may often play a crucial role in
the development of the individuals, researchers in [14] presented the first such gen-
eralization of the classic Sinko-Streifer model. This model, a linear version of (1),
has vital individual rates that are independent of the total population and distrib-
uted over an an infinite-dimensional admissible parameter space with a probability
measure. It was shown through numerical simulations in [14] that there is a crucial
difference between the dynamics of distributed rate size-structured population mod-
els and the classic Sinko-Streifer models. In particular, the classic Sinko-Streifer
model cannot have dispersion of the density of the population in age or size except
under biologically unreasonable conditions on the growth rate [15]. That is why the
classic Sinko-Streifer models conflict with field data collected by experimental biol-
ogists. These data sets show that a population with unimodal distribution evolves
into a bimodal distribution (see [14] and [41]). In [17], the authors used the least
squares approach to fit these distributed rate models to data obtained in [14]. The
resulting good fit indicates that the need for such modification is crucial if these
models are to be used as prediction tools.

In addition to extending the theory in [3] to the coupled quasi-linear system (1),
a main novelty of our current research is that we report on extensive numerical
simulations. These simulations are then used to obtain statistical results (in the
form of confidence intervals) that provide solid evidence on the feasibility of this
approach. It is worth pointing out that with the exception of [28], the above-
mentioned articles do not report on any statistical studies.
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As the use of numerical methods for estimating functional parameters becomes
more widely accepted in the biological sciences, it is becoming increasingly impor-
tant for investigators to support the efficacy of proposed numerical algorithms with
not only numerical simulation results but also confidence intervals on estimated
parameters. This can be done by calculating standard errors in a number of so-
phisticated ways (e.g., pointwise confidence intervals or bands as in [38, 39, 48],
uniform bands [32], and simultaneous confidence bands [31]). Here, we simply
compute the pointwise standard errors using the pointwise sample variances from
a large (1,000) number of inverse problem simulations. While in our efforts we
emphasize (regularized) ordinary least square estimators, the ideas and methods
presented in this paper can readily be used with maximum-likelihood estimators as
well as other standard estimators found in the statistical literature.

It is also worth noting another connection between statistical methods and our
efforts in this paper. The models we use here involve a form of “mixing” distribu-
tions found in the literature on mixed effects, random effects, or hierarchial methods
(see, for example, [20, 21, 22, 35, 36, 46]). However, the models we investigate entail
mixing that cannot be decoupled into individual dynamics and thus result in fully
coupled dynamics (see section 4).

By a weak solution to problem (1), we mean a bounded and measurable function
u(x, t; q) = (u1(x, t; q), u2(x, t; q), . . . , uN (x, t; q)) satisfying

∫ L

0

uI(x, t; q)ϕ(x, t)dx−
∫ L

0

uI(x, 0; q)ϕ(x, 0)dx

=
∫ t

0

∫ L

0

(uIϕs + gIuIϕx −mIuIϕ)dx ds

+
∫ t

0

ϕ(0, s)

(
CI(s) +

N∑

J=1

∫ L

0

γI,JβJ(x, P (s; q))uJ(x, s; q)dx

)
ds

(3)

for t ∈ [0, T ], I = 1, 2, . . . , N , and every test function ϕ ∈ C1([0, L]× [0, T ]).
We first impose a condition on the initial data: for any I = 1, 2, . . . , N

(H1) uI,0 ∈ BV [0, L] and uI,0(x) ≥ 0.

Then let B =
N∏

I=1

BI with BI = C1([0, L]; Cb[0,∞)) × Cb(Ω) × Cb(Ω) × C[0, T ],

where Ω = [0, L] × [0,∞) and Cb(Ω) denotes the space of uniformly bounded con-
tinuous functions on Ω. We assume that our admissible parameter space QI is a
compact subset of BI satisfying (H2)–(H5) below.

(H2) βI(x, P ) is a nonnegative Lipschitz continuous function in x and P with a
Lipschitz constant L1. Furthermore, βI(x, P ) ≤ ω1, where ω1 is a positive
constant.

(H3) mI(x, P ) is a nonnegative Lipschitz continuous function in x and P with a
Lipschitz constant L2. Furthermore, mI(x, P ) ≤ ω2, where ω2 is a positive
constant.

(H4) gI(x, P ) is twice continuously differentiable with respect to x and satisfies
|gI(x, P )| + |gI

x(x, P )| + |gI
xx(x, P )| ≤ ω3, where ω3 is a positive constant.

Furthermore, gI(x, P ) > 0 for x ∈ [0, L) and gI(L, P ) = 0, and gI(x, P ) and
gI

x(x, P ) are Lipschitz continuous in P with a Lipschitz constant L3.
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(H5) CI(t) is a nonnegative Lipschitz continuous function with a Lipschitz constant
L4.

Let Q =
N∏

I=1

QI , then Q is a compact subset of B.

Depending on the values of the constants 0 ≤ γI,J ≤ 1, the model (1) may have
two different interpretations. If γI,I = 1 and γI,J = 0, I 6= J , the model represents
the dynamics of several populations competing for common resources. On the other
hand, if γI,J > 0, I, J = 1, 2, . . . , N , then the model may describe the dynamics of
one population consisting of N subpopulations, each with its own characteristics.
Hence, γI,J represents the probability that an individual of the Jth subpopulation
will reproduce an individual of the Ith subpopulation. Therefore, two ways for
observing data will be considered. These cause the following two least squares
functionals to be minimized: The first is based on the assumption that the model
(1) describes N different competing populations. Hence, observations ZI,k (which
correspond to the total number of individuals in the Ith population at time tk) are
assumed to be available (this case corresponds to γI,I = 1 and γI,J = 0, I 6= J).
We define the least squares cost functional for this case to be

J (q) =
∑

I

∑

k

∣∣∣∣∣log

(∫ L

0

uI(x, tk; q)dx + 1

)
− log(ZI,k + 1)

∣∣∣∣∣

2

, (4)

which is minimized over Q. The other case assumes that (1) models one species
that has been divided into N not readily distinguishable subpopulations. In this
case, we assume that we can only observe aggregate data Zk, the total number of
individuals at time tk (this case corresponds to γI,J > 0, I, J = 1, 2, . . . , N). We
define the least squares cost functional

J (q) =
∑

k

∣∣∣∣∣log

(∑

I

∫ L

0

uI(x, tk; q)dx + 1

)
− log(Zk + 1)

∣∣∣∣∣

2

, (5)

which is minimized over Q.
We remark that minimizing (4) over Q is equivalent to the maximum-likelihood

estimation of q if

εI,k = log

(∫ L

0

uI(x, tk; q)dx + 1

)
− log(ZI,k + 1)

are i.i.d.-normal, and minimizing (5) over Q is equivalent to the maximum-likelihood
estimation of q if

εk = log

(∑

I

∫ L

0

uI(x, tk; q)dx + 1

)
− log(Zk + 1)

are i.i.d.-normal.
The paper is organized as follows. In section 2, we present a finite difference

scheme for computing the solution of (1) and then provide convergence results for
the parameter-estimation technique. In section 3, we give ample numerical and
statistical results. Section 4 contains some concluding remarks.
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2. Approximation scheme and convergence theory. The following notation
will be used throughout the paper: ∆x = L/n and ∆t = T/l denote the spatial
and time mesh size, respectively. The mesh points are given by xj = j∆x, j =
0, 1, 2, . . . , n and tk = k∆t, k = 0, 1, 2, . . . , l. We denote by uI,k

j (q) and P k(q) the
finite difference approximation of uI(xj , tk; q) and P (tk; q), respectively, and we let

gI,k
j = gI(xj , P

k(q)), βI,k
j = βI(xj , P

k(q)),

mI,k
j = mI(xj , P

k(q)), and CI,k = CI(tk).

We define the difference operator

D−
h (uI,k

j ) =
uI,k

j − uI,k
j−1

∆x
, 1 ≤ j ≤ n

and the `1, `∞ and the BV norms of uI,k by

‖uI,k‖1 =
n∑

j=1

|uI,k
j |4x, ‖uI,k‖∞ = max

0≤j≤n
|uI,k

j |, ‖uI,k‖BV =
n∑

j=1

|D−
h (uI,k

j )|4x.

We then discretize the partial differential equation in (1) using the following implicit
finite difference approximation:

uI,k+1
j (q)− uI,k

j (q)
4t

+
gI,k

j uI,k+1
j (q)− gI,k

j−1u
I,k+1
j−1 (q)

4x
+ mI,k

j uI,k+1
j (q) = 0,

1 ≤ j ≤ n,

gI,k
0 uI,k+1

0 (q) = CI,k +
N∑

J=1

n∑

j=1

γI,JβJ,k
j uJ,k

j (q)4x,

P k+1(q) =
N∑

I=1

n∑

j=1

uI,k+1
j (q)∆x,

(6)

with the initial condition

uI,0
j =

1
4x

∫ j4x

(j−1)4x

uI,0(x)dx, j = 1, 2, . . . , n.

If we define

dI,k
j = 1 +

4t

4x
gI,k

j +4tmI,k
j , j = 1, 2, . . . , n, I = 1, 2, . . . , N,

then (6) can be equivalently written as the following system of linear equations for

~uk+1(q) =
[
u1,k+1

0 (q), u1,k+1
1 (q), . . . , u1,k+1

n (q), u2,k+1
0 (q), u2,k+1

1 (q), . . . , u2,k+1
n (q),

. . . , uN,k+1
0 (q), uN,k+1

1 (q), . . . , uN,k+1
n (q)

]T

∈ RN×(n+1)

Ak~uk+1(q) = ~fk(q), (7)
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where

~fk(q) =


C1,k +

N∑

J=1

n∑

j=1

γ1,JβJ,k
j uJ,k

j (q)4x, u1,k
1 (q), . . . , u1,k

n (q),

C2,k +
N∑

J=1

n∑

j=1

γ2,JβJ,k
j uJ,k

j (q)4x, u2,k
1 (q), . . . , u2,k

n (q), . . . ,

CN,k +
N∑

J=1

n∑

j=1

γN,JβJ,k
j uJ,k

j (q)4x, uN,k
1 (q), . . . , uN,k

n (q)




T

and Ak is the following block diagonal matrix:

Ak =




A1,k 0 0 · · · 0
0 A2,k 0 · · · 0
0 0 A3,k · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · AN,k




with the lower triangular matrix

AI,k =




gI,k
0 0 0 · · · 0 0

−4t

4x
gI,k
0 dI,k

1 0 · · · 0 0

0 −4t

4x
gI,k
1 dI,k

2 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · − 4t

4x
gI,k

n−1 dI,k
n




.

Note that by using the assumptions on our parameters, one can easily show that
equation (7) has a unique solution satisfying ~uk+1(q) ≥ 0, k = 0, 1, . . . , l − 1.

The above approximation can be extended to a family of functions {U I
∆x,∆t(x, t; q)}

defined by

U I
∆x,∆t(x, t; q) = uI,k

j (q) for (x, t) ∈ [xj−1, xj)× [tk−1, tk),

j = 1, 2, . . . , n, k = 1, 2, . . . , l, I = 1, 2, . . . , N.

(8)

Since our parameter set is infinite dimensional, a finite-dimensional approxima-
tion of the parameter space is also necessary for computing minimizers. To this
end, we consider the following finite-dimensional approximations of (4) and (5),
respectively:

J∆x,∆t(q) =
∑

I

∑

k

∣∣∣∣∣log

(∫ L

0

U I
∆x,∆t(x, tk; q)dx + 1

)
− log(ZI,k + 1)

∣∣∣∣∣

2

(9)

and

J∆x,∆t(q) =
∑

k

∣∣∣∣∣log

(∑

I

∫ L

0

U I
∆x,∆t(x, tk; q)dx + 1

)
− log(Zk + 1)

∣∣∣∣∣

2

, (10)
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each of which is minimized over QM , a compact finite-dimensional approximation
of the parameter space Q. To establish the convergence results for the parameter-
estimation technique, we use an approach similar to that in [3], which is based on
the abstract theory in [18].

Theorem 2.1. Let qi = (q1,i, q2,i, . . . , qN,i), and suppose that for each I, qI,i → qI

in QI and ∆xi, ∆ti → 0 as i →∞. Let

U∆xi,∆ti(x, t; qi) = (U1
∆xi,∆ti

(x, t; qi), U2
∆xi,∆ti

(x, t; qi), . . . , UN
∆xi,∆ti

(x, t; qi))

denote the solution of the finite difference scheme, and let

u(x, t; q) = (u1(x, t; q), u2(x, t; q), . . . , uN (x, t; q))

be the unique weak solution of our problem with initial condition

u0(x) = (u1,0(x), u2,0(x), . . . , uN,0(x))

and parameter q; then U I
∆xi,∆ti

(x, t; qi) → uI(x, t; q) in L1(0, L) uniformly in t ∈
[0, T ].

Proof. Define uI,k,i
j = uI,k

j (qi). From the fact that QI is compact and from the
results of [4], there exist positive constants c1, c2, c3, and c4 such that for each

I = 1, 2, . . . , N , we have
N∑

I=1

‖uI,k,i‖1 ≤ c1, ‖uI,k,i‖∞ ≤ c2, ‖uI,k,i‖BV ≤ c3 and

n∑

j=1

∣∣∣∣∣
uI,r,i

j − uI,s,i
j

∆ti

∣∣∣∣∣ ∆xi ≤ c4(r − s), where r > s. Thus, for each I there exists a

BV ([0, L]×[0, T ]) function ûI(x, t) such that U I
∆xi,∆ti

(x, t; qi) → ûI(x, t) in L1(0, L)
uniformly in t. Hence, from the uniqueness of bounded variation weak solutions
stated in [4], we need only to show that û(x, t) = (û1(x, t), û2(x, t), . . . , ûN (x, t)) is
the weak solution corresponding to the parameter q. To this end, we multiply the
first equation of (6) by ϕk+1

j = ϕ(xj , tk+1), where ϕ ∈ C1([0, L]× [0, T ]), to obtain

uI,k+1,i
j ϕk+1

j − uI,k,i
j ϕk

j

∆ti
− uI,k,i

j

ϕk+1
j − ϕk

j

∆ti
− gI,k,i

j−1 uI,k+1,i
j−1

ϕk+1
j − ϕk+1

j−1

∆xi

+
gI,k,i

j uI,k+1,i
j ϕk+1

j − gI,k,i
j−1 uI,k+1,i

j−1 ϕk+1
j−1

∆xi
+ mI,k,i

j uI,k+1,i
j ϕk+1

j = 0.

Multiplying the above equality both sides by ∆xi∆ti and summing over j =
1, 2, . . . , n, k = 0, 1, . . . , l − 1, we find

n∑

j=1

(
uI,l,i

j ϕl
j − uI,0,i

j ϕ0
j

)
∆xi −

l−1∑

k=0

n∑

j=1

uI,k,i
j

ϕk+1
j − ϕk

j

∆ti
∆xi∆ti

+
l−1∑

k=0

gI,k,i
n uI,k+1,i

n ϕk+1
n − gI,k,i

0 uI,k+1,i
0 ϕk+1

0

∆xi
∆xi∆ti

−
l−1∑

k=0

n∑

j=1

gI,k,i
j−1 uI,k+1,i

j−1

ϕk+1
j − ϕk+1

j−1

∆xi
∆xi∆ti

+
l−1∑

k=0

n∑

j=1

mI,k,i
j uI,k+1,i

j ϕk+1
j ∆xi∆ti = 0.
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Since gI,k,i
n = 0 and qI,i → qI as i →∞ in QI , passing to the limit we have

∫ L

0

ûI(x, t)ϕ(x, t)dx−
∫ L

0

ûI(x, 0)ϕ(x, 0)dx

=
∫ t

0

∫ L

0

(
ûIϕs + gI ûIϕx −mI ûIϕ

)
dx ds

+
∫ t

0

ϕ(0, s)

(
CI(s) +

N∑

J=1

∫ L

0

γI,JβJ(x, P (s))ûJ (x, s)dx

)
ds.

Thus, û(x, t) is the weak solution corresponding to the parameter q.

Since the logarithm function is continuous on [1,∞), as an immediate conse-
quence of Theorem 2.1, we obtain the following:

Corollary 2.1. Let U∆x,∆t denote the numerical solution of (6) with parameter
qi → q and ∆xi, ∆ti → 0. Then

J∆xi,∆ti(q
i) → J (q), as i →∞.

In the next theorem, we establish the continuity of the approximate cost func-
tional, so that the computational problem of finding the approximate minimizer is
well posed.

Theorem 2.2. Let ∆x and ∆t be fixed. For each qI ∈ QI , let U I
∆x,∆t(x, t; q) denote

the solution of the finite difference scheme, and qI,i → qI as i → ∞ in QI ; then
U I

∆x,∆t(x, t; qi) → U I
∆x,∆t(x, t; q) as i →∞ in L1(0, L) uniformly in t ∈ [0, T ].

Proof. Define {uI,k,i
j } and {uI,k

j } to be the solution of the finite difference scheme
with parameter qi and q, respectively. Let vI,k,i

j = uI,k,i
j − uI,k

j ; then vI,k,i
j satisfies

the following:

vI,k+1,i
j − vI,k,i

j

∆t
+ D−

h

[
gI,i(xj , P

k,i)uI,k+1,i
j − gI(xj , P

k)uI,k+1
j

]

+mI,i(xj , P
k,i)vI,k+1,i

j +
[
mI,i(xj , P

k,i)−mI(xj , P
k)

]
uI,k+1

j = 0,

(11)

for 1 ≤ j ≤ n, and

gI,i(0, P k,i)uI,k+1,i
0 − gI(0, P k)uI,k+1

0

= CI,i(tk)− CI(tk) +
N∑

J=1

n∑

j=1

γI,JβJ,i(xj , P
k,i)vJ,k,i

j ∆x

+
N∑

J=1

n∑

j=1

γI,J
[
βJ,i(xj , P

k,i)− βJ(xj , P
k)

]
uJ,k

j ∆x,

(12)
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where P k,i denotes P k(qi). Multiplying both sides of (11) by sgn(vI,k+1,i
j )∆x and

summing over j = 1, 2, . . . , n, we obtain

‖vI,k+1,i‖1 − ‖vI,k,i‖1
∆t

≤ −
n∑

j=1

D−
h

[
gI,i(xj , P

k,i)uI,k+1,i
j − gI(xj , P

k)uI,k+1
j

]
sgn(vI,k+1,i

j )∆x

−
n∑

j=1

mI,i(xj , P
k,i)

∣∣∣vI,k+1,i
j

∣∣∣ ∆x

−
n∑

j=1

[
mI,i(xj , P

k,i)−mI(xj , P
k)

]
uI,k+1

j sgn(vI,k+1,i
j )∆x.

(13)

Using the fact that for any aj with aj ≥ 0, j = 0, 1, 2, . . . , n, we have

n∑

j=1

D−
h (ajbj)sgn(bj)∆x ≥ an|bn| − a0|b0|,

and we obtain

−
n∑

j=1

D−
h

[
gI,i(xj , P

k,i)uI,k+1,i
j − gI(xj , P

k)uI,k+1
j

]
sgn(vI,k+1,i

j )∆x

= −
n∑

j=1

D−
h

(
gI,i(xj , P

k,i)vI,k+1,i
j

)
sgn(vI,k+1,i

j )∆x

−
n∑

j=1

D−
h

[(
(gI,i(xj , P

k,i)− gI(xj , P
k)

)
uI,k+1

j

]
sgn(vI,k+1,i

j )∆x

≤ gI,i(0, P k,i)|vI,k+1,i
0 |+ sup

1≤j≤n

∣∣gI,i(xj , P
k,i)− gI(xj , P

k)
∣∣ ‖uI,k+1‖BV

+ sup
1≤j≤n

∣∣D−
h

(
gI,i(xj , P

k,i)− gI(xj , P
k)

)∣∣ (‖uI,k+1‖∞ + (‖uI,k+1‖1
)
.

(14)

By (12), we have

gI,i(0, P k,i)|vI,k+1,i
0 |

≤
∣∣gI,i(0, P k,i)− gI(0, P k)

∣∣ uI,k+1
0 +

∣∣CI,i(tk)− CI(tk)
∣∣

+ω1

N∑

J=1

‖vJ,k,i‖1 + max
1≤J≤N

sup
1≤j≤n

∣∣βJ,i(xj , P
k,i)− βJ (xj , P

k)
∣∣

N∑

J=1

‖uJ,k‖1.

(15)
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Summing (13) over I = 1, 2, . . . , N , and using (14) and (15), we obtain

N∑
I=1

‖vI,k+1,i‖1 −
N∑

I=1

‖vI,k,i‖1
∆t

≤ max
1≤I≤N

sup
1≤j≤n

∣∣D−
h

(
gI,i(xj , P

k,i)− gI(xj , P
k)

)∣∣
N∑

I=1

‖uI,k+1‖1

+N max
1≤I≤N

sup
1≤j≤n

∣∣D−
h

(
gI,i(xj , P

k,i)− gI(xj , P
k)

)∣∣ max
1≤I≤N

‖uI,k+1‖∞

+N max
1≤I≤N

sup
1≤j≤n

∣∣gI,i(xj , P
k,i)− gI(xj , P

k)
∣∣ max
1≤I≤N

‖uI,k+1‖BV

+N max
1≤I≤N

∣∣gI,i(0, P k,i)− gI(0, P k)
∣∣ max
1≤I≤N

‖uI,k+1‖∞

+N max
1≤J≤N

sup
1≤j≤n

∣∣βJ,i(xj , P
k,i)− βJ(xj , P

k)
∣∣

N∑

J=1

‖uJ,k‖1

+N max
1≤I≤N

∣∣CI,i(tk)− CI(tk)
∣∣ + Nω1

N∑

I=1

‖vI,k,i‖1

+ max
1≤I≤N

sup
1≤j≤n

∣∣mI,i(xj , P
k,i)−mI(xj , P

k)
∣∣

N∑

I=1

‖uI,k+1‖1.

Noting that
∣∣gI,i(xj , P

k,i)− gI(xj , P
k)

∣∣
≤

∣∣gI,i(xj , P
k,i)− gI,i(xj , P

k)
∣∣ +

∣∣gI,i(xj , P
k)− gI(xj , P

k)
∣∣ ,

we have from (H4) the following:

max
1≤I≤N

sup
1≤j≤n

∣∣gI,i(xj , P
k,i)− gI(xj , P

k)
∣∣

≤ L3

N∑

I=1

‖vI,k,i‖1 + max
1≤I≤N

sup
1≤j≤n

∣∣gI,i(xj , P
k)− gI(xj , P

k)
∣∣ .

Similarly, we can show that

max
1≤I≤N

sup
1≤j≤n

∣∣βI,i(xj , P
k,i)− βI(xj , P

k)
∣∣

≤ L1

N∑

I=1

‖vI,k,i‖1 + max
1≤I≤N

sup
1≤j≤n

∣∣βI,i(xj , P
k)− βI(xj , P

k)
∣∣

and

max
1≤I≤N

sup
1≤j≤n

∣∣mI,i(xj , P
k,i)−mI(xj , P

k)
∣∣

≤ L2

N∑

I=1

‖vI,k,i‖1 + max
1≤I≤N

sup
1≤j≤n

∣∣mI,i(xj , P
k)−mI(xj , P

k)
∣∣ .
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Furthermore, straightforward computations yield
∣∣D−

h

[
gI,i(xj , P

k,i)− gI(xj , P
k)

]∣∣

=
∣∣∣∣

1
∆x

∫ 1

0

d

dr

(
gI,i(rxj + (1− r)xj−1, P

k,i)− gI(rxj + (1− r)xj−1, P
k)

)
dr

∣∣∣∣

=
∣∣∣∣
∫ 1

0

gI,i
x (rxj + (1− r)xj−1, P

k,i)dr −
∫ 1

0

gI
x(rxj + (1− r)xj−1, P

k)dr

∣∣∣∣

≤
∫ 1

0

∣∣gI,i
x (rxj + (1− r)xj−1, P

k,i)− gI,i
x (rxj + (1− r)xj−1, P

k)
∣∣ dr

+
∫ 1

0

∣∣gI,i
x (rxj + (1− r)xj−1, P

k)− gI
x(rxj + (1− r)xj−1, P

k)
∣∣ dr.

Hence, from (H4) we obtain

max
1≤I≤N

sup
1≤j≤n

∣∣D−
h

[
gI,i(xj , P

k,i)− gI(xj , P
k)

]∣∣

≤ L3

N∑

I=1

‖vI,k,i‖1 + max
1≤I≤N

sup
1≤j≤n

∫ 1

0

∣∣gI,i
x (x̄j , P

k)− gI
x(x̄j , P

k)
∣∣ dr,

where x̄j = rxj + (1− r)xj−1. Set

δk = L3

(
N max

1≤I≤N
‖uI,k+1‖∞ +

N∑

I=1

‖uI,k+1‖1
)

+ NL1

N∑

I=1

‖uI,k‖1 + Nω1

+NL3

(
max

1≤I≤N
‖uI,k+1‖BV + max

1≤I≤N
‖uI,k+1‖∞

)
+ L2

N∑

I=1

‖uI,k+1‖1

and

ρk,i =
N∑

I=1

‖uI,k+1‖1 max
1≤I≤N

sup
1≤j≤n

∫ 1

0

∣∣gI,i
x (x̄j , P

k)− gI
x(x̄j , P

k)
∣∣ dr

+N max
1≤I≤N

‖uI,k+1‖∞ max
1≤I≤N

sup
1≤j≤n

∫ 1

0

∣∣gI,i
x (x̄j , P

k)− gI
x(x̄j , P

k)
∣∣ dr

+N max
1≤I≤N

‖uI,k+1‖BV max
1≤I≤N

sup
1≤j≤n

∣∣gI,i(xj , P
k)− gI(xj , P

k)
∣∣

+N max
1≤I≤N

‖uI,k+1‖∞ max
1≤I≤N

∣∣gI,i(0, P k)− gI(0, P k)
∣∣

+N

N∑

I=1

‖uI,k‖1 max
1≤I≤N

sup
1≤j≤n

∣∣βI,i(xj , P
k)− βI(xj , P

k)
∣∣

+N max
1≤I≤N

∣∣CI,i(tk)− CI(tk)
∣∣

+
N∑

I=1

‖uI,k+1‖1 max
1≤I≤N

sup
1≤j≤n

∣∣mI,i(xj , P
k)−mI(xj , P

k)
∣∣ .

Then, we have
N∑

I=1

‖vI,k+1,i‖1 −
N∑

I=1

‖vI,k,i‖1
∆t

≤ δk

N∑

I=1

‖vI,k,i‖1 + ρk,i.
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Since for each k, ρk,i → 0 as i → ∞, the desired result easily follows from this
inequality.

Theorem 2.3. Suppose that QM is a sequence of compact subsets of Q. Moreover,
assume that for each q ∈ Q, there exists a sequence of qM ∈ QM such that qM → q
as M → ∞. Then the functional J∆x,∆t has a minimizer over QM . Further-
more, if qi

M denotes a minimizer of J∆xi,∆ti
over QM and ∆xi, ∆ti → 0, then any

subsequence of qi
M has a further subsequence which converges to a minimizer of J .

Proof. The proof of this theorem is a direct application of the abstract theory in
[18], based on the convergence of J∆xi,∆ti

(qi) → J (q).

3. Numerical results. In this section, we present numerical simulations and sta-
tistical results. In all of the simulations below, we assume L = 1, T = 1, and
CI(t) = 0 for I = 1, 2, . . . , N .

In sections 3.1 and 3.2, we assume N = 1 and that all the parameters are known
except for β. To estimate β, we use data that are generated computationally as
follows: Let

u0(x) = 3 exp(−2(x− 0.5)2), g(x, P ) = 5(1− x) exp(−3P ),
m(x, P ) = exp(4(x− 0.4)2) exp(0.2P ), β(x, P ) = 6x(1− x) exp(−3P ),

and we solve (6) and (8) for U∆x,∆t(x, t). We set Zk = (1 + εk)
∫ 1

0

U∆x,∆t(x, tk)dx,

where εk is a random sample from a normal random number generator with mean
zero and standard deviation σ = 0.02.

3.1. 1−D linear estimation problem for finite-dimensional parameter
space when N = 1. In our first example, we assume that β is of a separable
form given by β(x, P ) = b(x) exp(−3P ), where b(x) = µx(1 − xν) with µ and ν
two unknown constants to be identified. Hence, the solution to our least squares
problems involves identifying the two constants µ and ν from a compact subset of
R2

+ so as to minimize the least squares cost functional

J∆x,∆t(q) =
m∑

k=1

∣∣∣∣log
(∫ 1

0

U∆x,∆t(x, tk; q)dx + 1
)
− log(Zk + 1)

∣∣∣∣
2

.

To test the performance of the parameter-estimation technique when no infinite-
dimensional effects are present, in Figure 1 we choose ∆x = ∆t = 0.005 both for
generating the data and for the numerical solution (8) in the least squares problem.
This avoids the infinite-dimensional effect of the partial differential equation given
in (1). In fact, if the noise is removed from the data, and the parameters µ and ν
are known, then numerically solving our model produces the exact data.

In Figure 2, we use ∆x = ∆t = 0.005 to generate the data while we use ∆x =
∆t = 0.01 for the numerical solution (8) in the least squares problem. Thus, in this
case the data are not exactly attained by our model, even if the noise is removed
(an error is present due to the finite-dimensional approximation of our infinite-
dimensional model). The results of Figure 2 are obtained by using the same values
for the rest of the parameters as those of Figure 1.

A similar format for presenting the results of 1,000 inverse problem calculations
was used in Figures 1 and 2. The left part of each of the figures represents the
S (for our case S = 1, 000) numerical results for the estimated parameter bs(x)
(s = 1, 2, . . . , S) versus the exact b(x), where these 1,000 distinct numerical results
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graphed were obtained by solving 1,000 inverse problems, each of which corresponds
to a given noise sample {εk}. The right part represents the figure of the correspond-
ing 95% confidence interval (dashed line) versus the exact b(x) (solid line), where
the 95% confidence interval is obtained by choosing the band between the upper
2.5% and lower 2.5% of these 1,000 numerical results. Table 1 provides statistical

results for the corresponding graphs, where AB(x) =
1
S

S∑
s=1

(bs(x) − b(x)) denotes

the average bias for all approximations at x, RAB(x) = 100
AB(x)
b(x)

denotes the

relative average bias for all approximations at x, and

SE(x) =

[
1

S − 1

S∑
s=1

(bs(x)− b(x)−AB(x))2
] 1

2

denotes the sampling standard error at the point x. Note that this is simply the
usual asymptotic formula for the pointwise standard error (e.g., see [21, pp. 28, 37]
and [45, p. 308]).

Although the estimates in both figures are good, the results in Figures 1 and
2 and Table 1 suggest that infinite-dimensional effects can lead to a slightly un-
derbiased estimator. We suspect this bias depends on the choice of the numerical
scheme used for solving the infinite-dimensional partial differential equation model.
Here, we are using an upwind scheme for approximating the model and a right-hand
sum for approximating all the integrals involved. This biased estimator may be im-
proved if, for example, a centered finite difference approximation is used together
with a trapezoidal rule for integration.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 1. ∆x = ∆t = 0.005 to generate the data and solve the
least squares. For the left part of the figure, each of the grey lines
(....) denotes a distinct result for a given sample {εk}.

The above statistical results (essentially on how measurement error affects es-
timates) are based on a large number of numerical simulations (somewhat in the
spirit of Bayesian-based MCMC calculations used to estimate means and variances
in a probability distribution from “experimental” data). Any estimate of model
parameters from data can also be accompanied by an estimate of uncertainty using
standard regression formulations from statistics [21]. Thus, in the remaining part
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Figure 2. ∆x = ∆t = 0.005 to generate the data and ∆x = ∆t =
0.01 to solve the least squares. For the left part of the figure, each
of the grey lines (....) denotes a distinct result for a given sample
{εk}.

Table 1. Statistical results for Figures 1 and 2

Figure 1 Figure 2
x AB(x) RAB(x) SE(x) x AB(x) RAB(x) SE(x)

0.1 -0.0037 -0.6870 0.0749 0.1 -0.0390 -7.2314 0.0747
0.2 -0.0092 -0.9580 0.0993 0.2 -0.0651 -6.7812 0.1053
0.3 -0.0107 -0.8463 0.0975 0.3 -0.0768 -6.0949 0.1130
0.4 -0.0079 -0.5497 0.0860 0.4 -0.0763 -5.2995 0.1124
0.5 -0.0021 -0.1427 0.0798 0.5 -0.0666 -4.4422 0.1138
0.6 0.0049 0.3378 0.0852 0.6 -0.0511 -3.5460 0.1188
0.7 0.0110 0.8707 0.0926 0.7 -0.0331 -2.6236 0.1202
0.8 0.0138 1.4425 0.0882 0.8 -0.0162 -1.6830 0.1075
0.9 0.0110 2.0444 0.0605 0.9 -0.0039 -0.7294 0.0706

of this subsection, we present a statistically based method to actually compute the
variance in the estimated model parameters q = (µ, ν).

To perform this analysis, we need to compute the sensitivity matrix

X(q) =




Pµ(t1; q)
1 + P (t1; q)

Pν(t1; q)
1 + P (t1; q)

Pµ(t2; q)
1 + P (t2; q)

Pν(t2; q)
1 + P (t2; q)

· · · · · ·
Pµ(tm; q)

1 + P (tm; q)
Pν(tm; q)

1 + P (tm; q)




. (16)

Note that we cannot compute P (t; q), Pµ(t; q), or Pν(t; q) directly from our model.
Therefore, we use the difference scheme (6) to obtain the following approximation
of P (t; q):

P̂ (t; q) =
∫ 1

0

U∆x,∆t(x, t; q)dx.
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Then, we use a forward difference approximation for the derivative Pµ(t; q) and
Pν(t; q) given by

P̂µ(t; µ, ν) =
1

∆µ

(
P̂ (t; µ + ∆µ, ν)− P̂ (t;µ, ν)

)

and
P̂ν(t; q) =

1
∆ν

(
P̂ (t; µ, ν + ∆ν)− P̂ (t; µ, ν)

)
.

Substituting P̂ (ti; q), P̂µ(ti; q), and P̂ν(ti, q) for P (ti; q), Pµ(ti; q), and Pν(ti; q) in
(16), respectively, we obtain the following approximation of X(q):

X̂(q) =




P̂µ(t1; q)

1 + P̂ (t1; q)

P̂ν(t1; q)

1 + P̂ (t1; q)
P̂µ(t2; q)

1 + P̂ (t2; q)

P̂ν(t2; q)

1 + P̂ (t2; q)
· · · · · ·

P̂µ(tm; q)

1 + P̂ (tm; q)

P̂ν(tm; q)

1 + P̂ (tm; q)




.

Under standard assumptions of classic nonlinear regression theory, we know that
if ε̂i ∼ N (0, σ2), where ε̂i is the difference between observation and model at time
ti, then the least squares estimate q∗ is expected to be asymptotically normally
distributed. In particular, for large samples, we may assume

q∗ ∼ N [q0, σ
2{XT (q0)X(q0)}−1], (17)

where q0 is the true vector of parameters and σ2{XT (q0)X(q0)}−1 is the true co-
variance matrix (see [21, chap. 2]).

Since q0 and σ2 are not available, we follow a standard statistical practice [5]:
substitute the computed estimate q∗ for q0 and approximate σ2 by

σ̂2 =
1

m− 2

m∑

j=1

(
log

(
P̂ (tj ; q∗) + 1

)
− log(Zj + 1)

)2

(18)

in (17) to obtain the standard deviation for our estimates. In particular, if

V = σ̂2{X̂T (q∗)X̂(q∗)}−1 =
[

V11 V12

V21 V22

]
,

then we take
√

V11 and
√

V22 to be the standard deviation for parameters µ and
ν, respectively. The following two tables are the standard deviation of µ and ν for
the results of the first eight numerical simulations of Figures 1 and 2, respectively.

Table 2. Standard deviation for the results of the first eight nu-
merical simulations in Figure 1

µ 1.1613 1.0494 1.0451 1.1109 1.0864 1.4684 1.1605 1.0512
ν 1.2124 0.3073 0.2999 0.2741 0.2701 1.5555 0.2482 0.2390

Table 4 provides the average standard deviation of µ and ν for the results of
all the 1,000 numerical simulations of Figures 1 and 2, respectively. We note that
in most practical situations using experimental data, one does not expect to have
1,000 experiments performed. But the above procedures will produce estimates of
variances even with only a single data set.
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Table 3. Standard deviation for the results of the first eight nu-
merical simulations in Figure 2

µ 1.7066 1.5636 1.6192 1.7974 1.6389 2.8009 1.8619 1.3893
ν 0.7716 0.3238 0.4838 0.1812 0.3426 2.8685 0.3828 0.4136

Table 4. Average of standard deviation for all the results of the
numerical simulations in Figures 1 and 2

Figure 1 Figure 2
µ 1.1921 1.9197
ν 0.4566 0.8572

3.2. 1−D linear estimation problem for infinite-dimensional parameter
space when N = 1. In this example, we assume that β is of a separable form
given by β(x, P ) = b(x) exp(−3P ), where b(x) is an unknown parameter that we
want to identify.

Let

D = {f ∈ C[0, 1] : |f(x)− f(y)| ≤ K|x− y|, f(0) = f(1) = 0}.

Choose the parameter space Q = D. Clearly, by the Arzela-Ascoli theorem [33], Q
is compact in C[0, 1]. We approximate the infinite-dimensional parameter space as
follows: For M , a positive integer, and b ∈ Q, we set

(IMb)(x) =
M−1∑

i=1

b

(
i

M

)
φi

M (x; 0, 1),

where φi
M (x; 0, 1) are the linear spline functions on a uniform mesh of the interval

[0, 1]. These are defined by

φi
M (x; 0, 1) =





1− i +
x

h
, (i− 1)h ≤ x ≤ ih,

1 + i− x

h
, ih ≤ x ≤ (i + 1)h, i = 1, 2, . . . , M − 1,

0, |x− ih| ≥ h,

where h =
1
M

. It can be readily argued that lim
M→∞

IMb = b in C[0, 1], uniformly in

b [44]. Hence, if bM ∈ QM = IM (Q) is given by

bM (x) =
M−1∑

i=1

λi
Mφi

M (x; 0, 1),

then the solution of our finite-dimensional identification problem involves identi-
fying the M − 1 coefficients {λi

M}M−1
i=1 from a compact subset of RM−1

+ so as to
minimize the least squares cost functional (9).
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To indirectly implement the compactness constraints of Q, we use a regularized
least squares cost functional of the form

J∆x,∆t(q) =
m∑

k=1

∣∣∣∣log
(∫ 1

0

U∆x,∆t(x, tk; q)dx + 1
)
− log(Zk + 1)

∣∣∣∣
2

+α

∫ 1

0

∣∣∣∣
d

dx
bM (x)

∣∣∣∣
2

dx,

where α > 0 is the regularization parameter.
The left part of each of the following figures again represents the S (=1,000)

numerical results of the estimated parameter versus the exact parameter b(x). The
right part represents the figure of the corresponding 95% confidence interval (dashed
line) versus the exact b(x) (solid line). The tables provide statistical results for the
corresponding graphs.

3.2.1. Effect of infinite-dimensional model on parameter estimate. In Figure 3, we
use ∆x = 0.005 and ∆t = 0.005 to generate the data and the numerical solution
(8) for the least squares problem. This removes the infinite-dimensional effect
of the partial differential equation given by (1). However, in Figure 4, we use
∆x = ∆t = 0.005 to generate the data and ∆x = ∆t = 0.01 to compute (8). Thus,
in this case the data are not exactly attained by our model even if the noise is
removed. We observe that while the estimates in both figures are good, the results
in Figures 3 and 4 and Table 5 suggest that infinite-dimensional effects can lead to
a slightly underbiased estimator.
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Figure 3. M = 10, α = 3e−5. Each of the grey lines (....) of the
left part of the figure denotes a distinct result for a given sample
{εk}.

3.2.2. Effect of regularization parameter α on parameter estimate. In Figures 5
and 6, we change the parameter α while keeping the rest fixed. Clearly, the low
regularization parameter leads to relatively bad estimates, although the estimator
in this case seems to be the least biased (see Figure 5 and left part of Table 6).
Increasing the value of α leads to better parameter estimates, but the estimator
becomes more underbiased (see Figure 6 and right part of Table 6). If this value
is increased further, the estimator is more biased, and the parameter estimate
becomes less accurate than before. This suggests, not surprisingly, that there is an
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Table 5. Statistical results for Figures 3 and 4

Figure 3 Figure 4
x AB(x) RAB(x) SE(x) x AB(x) RAB(x) SE(x)

0.1 -0.0778 -14.4108 0.0723 0.1 -0.1236 -22.8940 0.0667
0.2 -0.0816 -8.5015 0.1070 0.2 -0.1571 -16.3628 0.1040
0.3 -0.0400 -3.1727 0.1012 0.3 -0.1284 -10.1885 0.1141
0.4 0.0110 0.7636 0.0834 0.4 -0.0785 -5.4485 0.1130
0.5 0.0386 2.5745 0.0818 0.5 -0.0440 -2.9329 0.1110
0.6 0.0283 1.9621 0.0868 0.6 -0.0446 -3.0966 0.1049
0.7 -0.0124 -0.9880 0.0779 0.7 -0.0754 -5.9875 0.0885
0.8 -0.0559 -5.8206 0.0556 0.8 -0.1059 -11.0334 0.0624
0.9 -0.0623 -11.5426 0.0280 0.9 -0.0939 -17.3949 0.0323

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

b

approximate
exact

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

b

Figure 4. M = 10, α = 3e−5. Each of the grey lines (....) of the
left part of the figure denotes a distinct result for a given sample
{εk}.

optimal choice for the parameter α that produces the best results for the parameter
estimates.

Table 6. Statistical results for Figures 5 and 6

Figure 5 Figure 6
x AB(x) RAB(x) SE(x) x AB(x) RAB(x) SE(x)

0.1 -0.1277 -23.6389 0.1206 0.1 -0.1241 -22.9816 0.0506
0.2 -0.1648 -17.1644 0.1791 0.2 -0.1621 -16.8881 0.0842
0.3 -0.1284 -10.1938 0.1618 0.3 -0.1432 -11.3627 0.1011
0.4 -0.0599 -4.1591 0.1221 0.4 -0.1050 -7.2906 0.1078
0.5 -0.0072 -0.4806 0.1169 0.5 -0.0791 -5.2736 0.1087
0.6 0.0026 0.1788 0.1274 0.6 -0.0837 -5.8139 0.1009
0.7 -0.0253 -2.0101 0.1126 0.7 -0.1077 -8.5443 0.0847
0.8 -0.0631 -6.5678 0.0780 0.8 -0.1288 -13.4165 0.0602
0.9 -0.0642 -11.8944 0.0427 0.9 -0.1042 -19.3027 0.0313
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Figure 5. M = 10, α = 1e−5. Each of the grey lines (....) of the
left part of the figure denotes a distinct result for a given sample
{εk}.
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Figure 6. M = 10, α = 5e−5. Each of the grey lines (....) of the
left part of the figure denotes a distinct result for a given sample
{εk}.

3.3. 1−D linear estimation problem for infinite-dimensional parameter
space when N = 2. In this section, we assume N = 2 and that all the parameters
are known except for β1 and β2. To estimate β1 and β2, we assume that they are of
a separable form given by β1(x, P ) = b1(x) exp(−P ) and β2(x, P ) = b2(x) exp(−P ),
respectively, where b1(x) and b2(x) are unknown parameters to be identified. To
estimate b1(x) and b2(x), we use data that are generated computationally as follows:

Let γI,J =
{

1, I = J
0, I 6= J

for Figure 7 and γI,J = 0.5, I, J = 1, 2 for Figure 8,

uI,0(x) = 3 exp(−2(x − 0.1)2), and for the parameters gI , mI , and βI , we use the
following choice of functions:

g1 = 2(1− x) exp(−0.8P ), g2 = (1− x)(1 + 2P ) exp(−P ),
m1 = exp(2(x− 0.4)2) exp(0.2P ), m2 = exp(2(x− 0.4)2) exp(0.2P ),
β1 = 6(1− x)x exp(−P ), β2 = 6(1− x)x exp(−5(x− 0.5)2) exp(−P ),
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and solve (1) for U I
∆x,∆t(x, t), I = 1, 2. We set ZI,k = (1+ εI,k)

∫ 1

0

U I
∆x,∆t(x, tk)dx,

I = 1, 2 for Figure 7 and Zk = (1 + εk)
2∑

I=1

∫ 1

0

U I
∆x,∆t(x, tk)dx for Figure 8, where

εI,k and εk each are the random sample from a normal random number generator
with mean zero and standard deviation σ = 0.02.

We choose the parameter space Q = D × D. Clearly, Q is compact in C[0, 1] ×
C[0, 1]. We approximate the infinite-dimensional parameter space as follows: For
M1, M2 positive integers and any (b1, b2) ∈ Q, we set

(IMJ
bJ)(x) =

MJ−1∑

i=1

bJ

(
i

MJ

)
φi

MJ
(x; 0, 1), J = 1, 2.

Clearly, lim
MJ→∞

IMJ
bJ = bJ in C[0, 1], uniformly in bJ , J = 1, 2. Hence, if bJ

MJ
∈

QMJ
= IMJ

(Q) is given by

bJ
MJ

(x) =
MJ−1∑

i=1

λJ,i
MJ

φi
MJ

(x; 0, 1), J = 1, 2,

then the solution of our finite-dimensional identification problem involves identify-
ing the M1 +M2−2 coefficients {λJ,i

MJ
}MJ−1,2

i=1,J=1 from a compact subset of RM1+M2−2
+

so as to minimize the least squares cost functional (9) or (10).
To indirectly implement the compactness constraints of Q, we still use the reg-

ularized least squares cost functional. For Figure 7, we use the form

J∆x,∆t(q) =
2∑

I=1

m∑

k=1

∣∣∣∣log
(∫ 1

0

U I
∆x,∆t(x, tk; q)dx + 1

)
− log(ZI,k + 1)

∣∣∣∣
2

+
2∑

I=1

αI

∫ 1

0

∣∣∣∣
d

dx
bI
MI

(x)
∣∣∣∣
2

dx,

and for Figure 8, we use the form

J∆x,∆t(q) =
m∑

k=1

∣∣∣∣∣log

(
2∑

I=1

∫ 1

0

U I
∆x,∆t(x, tk; q)dx + 1

)
− log(Zk + 1)

∣∣∣∣∣

2

+
2∑

I=1

αI

∫ 1

0

∣∣∣∣
d

dx
bI
MI

(x)
∣∣∣∣
2

dx,

where αI > 0, I = 1, 2 are the regularization parameters, and m = 100 for Figures
7 and 8.

In the rest of our simulations, we use ∆x = ∆t = 0.005 to generate the data and
∆x = ∆t = 0.01 to solve the least squares. Thus, in these cases the data are not
exactly attained by our model even if the noise is removed.

The upper-left part and the lower-left part of the following two figures represent
the S (=1,000) numerical results of the estimated parameters b1

M1
(x) and b2

M2
(x)

versus the exact parameters b1(x) and b2(x), respectively. The upper-right part
and the lower right part represent the figures of the corresponding 95% confidence
interval (dashed line) versus the exact b1(x) and b2(x) (solid line), respectively. The
tables provide statistical results for the corresponding graphs.
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Note that the results in Figure 7 and Table 7 are slightly better than those in
Figure 8 and Table 8. This is expected since in Figure 7 we are sampling data for
each of the two populations, which provides more information than sampling the
sum of the two populations only, as is the case in Figure 8. Also note that in both
of these figures we let M = M1 = M2 = 10.
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Figure 7. M = 10, α1 = 5e − 5, α2 = 5e − 5. Each of the grey
lines (....) of the left part of the figure denotes a distinct result for
a given sample {εI,k}.

Table 7. Statistical results of b1(x) and b2(x) for Figure 7

b1(x) b2(x)
x AB(x) RAB(x) SE(x) x AB(x) RAB(x) SE(x)

0.1 -0.0187 -3.4717 0.0880 0.1 0.1684 69.4034 0.0959
0.2 -0.0004 -0.0447 0.1276 0.2 0.1628 26.5887 0.1528
0.3 0.0334 2.6514 0.1053 0.3 0.0487 4.7244 0.1483
0.4 0.0562 3.9007 0.0493 0.4 -0.0728 -5.3114 0.0946
0.5 0.0449 2.9941 0.0548 0.5 -0.1134 -7.5604 0.0464
0.6 -0.0040 -0.2805 0.0860 0.6 -0.0437 -3.1871 0.0860
0.7 -0.0683 -5.4239 0.0836 0.7 0.0931 9.0282 0.1053
0.8 -0.1101 -11.4644 0.0576 0.8 0.2039 33.3052 0.0819
0.9 -0.0929 -17.2091 0.0272 0.9 0.1954 80.5164 0.0402

4. Concluding remarks. In this paper, we have developed a numerical technique
for identifying unknown parameters in a general size-structured population model.
A main focus of the paper is on a statistical study of the parameter-estimation
technique. This was carried out by calculating pointwise standard errors on the
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Figure 8. M = 10, α1 = 5e − 5, α2 = 5e − 5. Each of the grey
lines (....) of the left part of the figure denotes a distinct result for
a given sample {εk}.

Table 8. Statistical results of b1(x) and b2(x) for Figure 8

b1(x) b2(x)
x AB(x) RAB(x) SE(x) x AB(x) RAB(x) SE(x)

0.1 -0.0687 -12.7279 0.0765 0.1 0.1926 79.3867 0.1066
0.2 -0.0790 -8.2334 0.1096 0.2 0.2106 34.4018 0.1757
0.3 -0.0572 -4.5419 0.0891 0.3 0.1187 11.5041 0.1784
0.4 -0.0402 -2.7920 0.0435 0.4 0.0178 1.2960 0.1208
0.5 -0.0537 -3.5800 0.0588 0.5 -0.0069 -0.4598 0.0549
0.6 -0.0980 -6.8075 0.0871 0.6 0.0665 4.8565 0.0915
0.7 -0.1490 -11.8273 0.0846 0.7 0.1889 18.3112 0.1157
0.8 -0.1694 -17.6443 0.0596 0.8 0.2704 44.1765 0.0915
0.9 -0.1255 -23.2483 0.0296 0.9 0.2239 92.2680 0.0459

estimated parameters (functions) through the use of thousands of numerical exper-
iments.

Several conclusions can be drawn from our studies:
1. The method discussed above seems to perform well and produce good confi-

dence intervals for the parameters.
2. When the infinite-dimensional effects of the model and the parameter space

are removed, the resulting numerical and statistical values suggest that the
least squares technique produces very good unbiased parameter estimates.

3. The type of numerical scheme used for approximating the infinite-dimensional
model as well as the parameter space may influence the bias in the parameter-
estimation technique.
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4. The commonly used regularization term is crucial for enforcing compactness
and for obtaining better estimates. However, it may also introduce more bias
in the estimator.

We note in closing that the system (1) investigated in this paper is a special case
of the measure-dependent aggregate dynamics problems formulated in [6], wherein
individual (uncoupled) dynamics are not available. Inverse problems for such sys-
tems have been investigated in a number of applications, including cellular level
HIV modelling [7], hysteresis in viscoelastic materials [8, 9], shear waves in biotissue
[10], and electromagnetic interrogation in complex materials [11]. In a more general
formulation (currently under investigation by the authors), one has a probability
distribution F of individual parameters q(x, P ) = q = (g,m, β,C) on an admissible
set Q. The system (1) is replaced by a continuum of systems for u(x, t; q(x, P ))
with the total population P (t; F ) given by

P (t; F ) =
∫

Q

[∫ L

0

u(x, t; q)dx

]
dF (q) =

∫

Q

[∫ L

0

u(x, t; q)dx

]
f(q)dq;

the latter equality holds if F has a density f . The aggregate dynamics for u
depend explicitly on F through the dependence of the individual rate parameters
(g, m, β,C) on the total population P .

If F is a discrete measure with N atoms at qJ of mass fJ , then we have

P (t; F ) =
N∑

J=1

fJ

∫ L

0

u(x, t; qJ)dx.

Moreover, if F is uniformly and discretely distributed (fJ =
1
N

), this becomes

P (t; F ) =
1
N

N∑

J=1

∫ L

0

u(x, t; qJ)dx,

which is simply a scaled (by
1
N

) version of (2). Of course, even in this simple case,

the system does not decouple (i.e., individual dynamics are not available). This
will be the case any time the individual parameters for subpopulations depend on
the total population. It is also clear that inverse problems with such measure-
dependent dynamics are a generalized version of the estimation problems discussed
in the statistical literature in the context of hierarchial or mixed effects modelling
[20, 21, 22].
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