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Abstract. In this article, HIV incidence density is estimated from preva-
lence data and then used together with reported cases of AIDS to estimate
incubation-time distribution. We used the deconvolution technique and the
maximum-likelihood method to estimate parameters. The effect of truncation
in hazard was also examined. The mean and standard deviation obtained with
the Weibull assumption were 12.9 and 3.0 years, respectively. The estimation
seemed useful to investigate the distribution of time between report of HIV in-
fection and that of AIDS development. If we assume truncation, the optimum
truncating point was sensitive to the HIV growth assumed. This procedure
was applied to US data for validating the results obtained from the Indian
data. The results show that method works well.

1. Introduction. Information on accurate population sizes of HIV-infected per-
sons and AIDS cases and the trend of these figures are requisite to the planning of
preventive policies and public-health management. Sophisticated statistical models
have been developed to facilitate provision of the information. Among the models,
a simple extrapolation method is easy to apply and useful for summarizing the
trend of the spread of infection, but it is difficult to clarify how long the obtained
trend stays unchanged. By comparison, mathematical models of the spread of sex-
ually transmitted diseases use information on sexual behavior in the population to
investigate the effect of behavioral change caused by a preventive program. But
mathematical models usually require detailed information on sexual behavior in the
population, which is not always available. In contrast, the back-calculation method
connects infection with HIV and the development of AIDS to incubation-time. Be-
cause of to the long incubation period, this method can provide a very reliable
prediction of future AIDS development from present HIV data.

Traditionally, back-calculation method is applied to estimate past HIV trends
and to predict future AIDS cases by using reported AIDS cases and the assumed
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incubation time distribution. Information on HIV incidence is not directly used in
the attempt. This is to be expected where detailed information on AIDS cases and
incubation time may be more easily obtained than figures about HIV incidence. But
there is another situation in which information on HIV incidence is more available
than information about incubation time. This is likely when HIV surveillance is
started but medical treatment is not generally available or is inadequate. In any
case it is useful and helpful to use all these data to obtain more reliable outcomes
especially when the quality of each kind of data is insufficient. A recent attempted
to effort to take advantage of the information on HIV in back-calculation is made
[1], but it required more detailed information on reported HIV.

Although the application of sophisticated methods to HIV/AIDS data was de-
layed, recently it has begun. The projection of AIDS [2] is useful, if all India level
transmission probabilities are available. However, in a population where the de-
pendable data as mentioned above are not accessible, researchers could assume a
reasonable set of scenarios for the behavioral and epidemiological parameters, so
that the scope of the epidemic could be determined. Modeling of this kind may not
be explicit, but it is important to note that such a model guides one to predict the
scope of the epidemic in the future, until dependable data become available. The
popular back-calculation approach [3, 4] that assumes the distribution of incubation
time of AIDS to be known and then through convolution projects the AIDS cases
is extensively used by researchers. Longitudinal studies on HIV-infected individu-
als with reliable infection dates are necessary to ascertain the incubation period of
AIDS. Unavailability of infection dates in India causes problems of left censoring;
methods to deal with such situations were developed and discussed in [5].

In such a situation, application of mathematical models is difficult to carry out.
Dynamic transmission models suggested so far have focused on the rate of new
infection in a population [6], and these also emphasized mixing patterns of the
uninfected and infected individuals in a population [7]; for review see Valerie Isham
[8]. Masayuki Kakehashi used a novel application of such models by incorporating
realistic epidemiological parameters [9, 10], and features of epidemiological models
in a basic and lucid way [11]. Network models studied the spread of sexually
transmitted infections and methods were developed to estimate basic reproductive
rates [12, 13]. A recently proposed deterministic model that recently proposed [14]
could be a dynamic way of estimating growth of disease in specific situations where
information on sexual behavior is available. Moreover, the Indian population is
relatively free of AIDS therapy, which reduces the complexity of the analysis.

Thus our analysis uses HIV/AIDS data from India and focuses on estimating the
incubation-time distribution from the reported AIDS cases and externally estimated
HIV incidence density, in contrast to the traditional back-calculation method. Con-
siderable differences in incubation-time distributions have been estimated in differ-
ent countries and regions. Progression from HIV to death is slower in developed
countries than in developing countries [15]. This work indicates that the median
time from HIV to AIDS is about ten years in developing countries. In the absence
of accurate country-specific progression rates from the date of HIV sero-conversion,
the above research outcomes could be both better and reliable alternative sources
of information (i.e. better in the absence of large scale clinical findings) to frame
the range of incubation distribution parameters. Thus it is worthwhile to estimate
the incubation-time distribution. In back-calculation, researchers have pointed out
considerable sensitivity of HIV incidence to incubation-time distribution[16]. Thus



INCUBATION-TIME DISTRIBUTION IN INDIA 265

Figure 1. Prevalence of HIV in different groups in India. Preg-
nant women, sex workers, and STI patients in rural as well as
urban areas, given in the UNAIDS for 2000 [18] are plotted in the
log-scale over the period.

it can be expected that determining HIV incidence density could reduce the esti-
mated range of plausible incubation-time distributions. The Weibull distribution,
commonly used as an incubation distribution, has an unrealistically assumes that
the hazard increases infinitely as time progresses. Hence, assuming the hazard of of
contracting AIDS from an HIV-infected individual could stabilize after some time,
we extended our study by estimating the parameters using a truncated incubation
distribution with a set of truncation points. Second, we estimated the parameters
of the non-truncated incubation distribution from the mean and truncated point of
truncated distribution.

2. HIV/AIDS surveillance in India and the data used. In 1986, the year
when first HIV was detected in India, the objective of HIV surveillance was to iden-
tify the geographical spread of HIV and the main modes of transmission through
established HIV testing centers and reference centers. The main mode of transmis-
sion of HIV is through heterosexual contact, and the latest figures show 81 % of the
reported AIDS cases in India acquired HIV through sexual contact. In 1992, the
Indian government designed NACO to combat the epidemic, and accordingly, Na-
tional AIDS Control Organisation (NACO) developed a sentinel surveillance system
and extended its activity in HIV/AIDS surveillance. From the available surveillance
data from almost all the states and union territories, NACO reports that the HIV
growth rate is increasing. Consequently, it established more sentinel sites during
1997 and 1998, covering all states and union territories. By 2001 there were 320
such sites from where national level data has been pooled. Because AIDS cases
are underreported, and the reported figure may be a fraction of the total AIDS
incidence. HIV prevalence in the city of Mumbai reached 3 % in 1999, and this city
has the highest percent (64%) of HIV prevalence among tested STD clinic patients.
Other major urban centers of Calcutta, Chennai, and New Delhi also exhibit an
increasing trend in HIV prevalence. Around 4% of the sero-positive individuals
screened acquired HIV through infected syringes and needles. Figure 1 gives HIV
prevalence in three selected populations over the period. Here, median prevalence
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rates are plotted in log-scale. Sex workers in urban areas showed neither increasing
nor a decreasing trend, but in the same population in rural areas, prevalence was
increasing untill the mid-1990s. The situation is opposite for pregnant women in
urban and rural areas. Interestingly, prevalence among the STI (sexually transmit-
ted infections) population has been decreasing since the mid-1990s. We discussed
this here briefly, and further details of this section can be seen elsewhere [17, 18].

Estimating India’s past HIV trend using back-calculation is complex, since the
incubation-time distribution is unknown. In addition, simultaneous estimation of
parameters of HIV density and incubation distribution could lead to problems of
nonidentifiability. NACO provides national level HIV estimates for the recent years
[17]. Though there were HIV estimates from the Global Programme on AIDS
(GPA), and the World Health Organization (WHO) during 1990 - 96 [17], neither
provides annual HIV incidence. Also, the data provided do not cast much light on
the incidence rates. The growth rate in the HIV numbers given by NACO [17] has
not increased in the past four years. Also, prevalence of HIV in STI populations in
rural areas has shown a declining trend since the mid-1990s (Fig. 1). The sample
size of the sentinel surveillance centers from which these prevalence rates are derived
is also large in comparison with that of the other groups [18]. Reported cases for
each year from 1986 to 1989 were taken from the HIV/AIDS Surveillance Database
2000, US Bureau of the Census, and for each year from 1990 to 1997 they were
taken from NACO [18] published data.

3. Estimation of HIV incidence density. As mentioned above, we estimate
the incubation-time distribution from the reported data of AIDS cases and HIV
incidence by the back-calculation method. In this section, we explain how we esti-
mated the density function of HIV incidence used in our analysis. The explanation
consists of two parts: parametric form of incidence density function and parameter
estimation from available data.

In the beginning of the spread of infection, we theoretically expected that the
number of infected persons increases exponentially except at the very beginning
phase. This is based on the idea that the number of newly infected persons per-
unit time should be proportional to the number of already infected persons. But,
as infected persons increase, the growth rate will diminish because of the decrease
of susceptible persons. Thus, we used a quadratic exponential function to represent
the HIV incidence function

h(t) = exp
(
γ0 + γ1t + γ2t

2
)
, (1)

where t represents time and γ0, γ1, and γ2 are parameters to be estimated. To
express the dependence on the parameters explicitly, dependence can be denoted
as

h(γ, t) = exp
(
γ0 + γ1t + γ2t

2
)

(2)

where γ = (γ0, γ1, γ2). The parameter must be estimated from available HIV
incidence data. Unfortunately, as we see in the previous section, there are no
perfect data on HIV incidence in India. But what is essentially required here is
the trend of HIV incidence rather than the details of it. Among the available data
we noticed the median prevalence of HIV among STI patients outside major urban
centers. It had the minimum level of fluctuations, because it was the largest sample
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size. The incidence of HIV is presumably proportional to the prevalence rates (Fig.
1). Thus we estimated the parameters in (1) using standard regression analysis
from these data. In addition to the quadratic exponential function, we also tested
the sensitivity of the mean incubation period, assuming simple exponential growth.

4. Estimation of incubation time distribution. In this section, we briefly
review the idea of back-calculation and then, in more detail, describe our extended
method of estimating the incubation time distribution. Our notation is explained
first together with the idea of back-calculation.

The back-calculation method is based on the idea that the number of AIDS cases
can be calculated from the number of HIV-infected persons and the time schedule
of developing AIDS among HIV infected persons. We express the HIV incidence
density function as h(γ, t), as shown in the previous section. The cumulative number
of AIDS cases up to time t is denoted by A (γ, α, β, t). The parameters α and β are
inherited from the incubation-time distribution as explained below. The incubation
time distribution is denoted by F (α, β, t). Here, the parameters α and β specify the
distribution function. This is a probability for the incubation time of less than t.
The probability density function is given by f (= dF/dt). As to the incubation-time
distribution, a Weibull distribution is found to have a good fit and is widely used,
although possibly that the incubation period of AIDS follows no simple parametric
distribution function because of its long and variable nature [19]. Other researchers
have also applied the same form to represent the incubation distribution [4, 20, 21].
The scope and the estimation of the incubation period widened over time [22, 23].
In this work, we also assume the incubation-time distribution follows a standard
Weibull (3), as well as truncated version (4) and (5), given as

F (α, β, t) = 1− exp

{
−

(
t

α

)β
}

if t ≥ 0. (3)

Here α and β are scale and shape parameters. In this case, the hazard function
is assumed to increase infinitely as time passes, which may not be likely. Thus, we
use another candidate distribution, the truncated Weibull distribution, assuming
the hazard saturates at a constant level after a time point, say tc. This is expressed
as

F (α, β, tc, t) =





1− exp
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− (
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α

)β
}

if 0 < t < tc
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α
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(4)

The corresponding probability density function for equation (4) is

f (t, α, β, tc) =
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The above functional forms are used in the analysis, and results are discussed in
section 5. If tc = 0, then equation (4) is same as equation (3).

If the random variable T denotes the length of the incubation period, H the
time of sero-conversion, and A the time of diagnosis of AIDS cases, then A can be
treated as A = H + T . Assuming the independence of the two random variables H
and T , the distribution of A, that is, A (γ, α, β, t), is given by the convolution of
the functions that represent the density and the distribution functions of Hand T
as follows:

h(t) ∗ F (t) =
∫ ∞

−∞
h(γ, s)F (α, β, t− s)ds (6)

where the sign ′∗′ represents a convolution operation. If we assume there were no
HIV infections prior to T0 and TR is the last time point of the AIDS reported case,
then the above convolution (6) will be rewritten as an integration over a finite range
[0, TR] and is given as follows:

A (γ, α, β, t) =
∫ TR

0

h(γ, s)F (α, β, t− s)ds (7)

Equation (7) is the fundamental relation between three important components
in the method of back-calculation: cumulative number of AIDS, HIV incidence
density, and incubation-time distribution.

Usually the number of AIDS cases are reported annually. The framework ex-
plained above uses time as a continuous variable. Some modification is required in
the application to the available data. Let X1, X2, . . . , XR be the reported num-
ber of AIDS cases at the corresponding calender time intervals [T0 − T1) , [T1, T2) ,
..., [TR−1, TR). The conditional probability that an HIV infected individual who
diagnosed with full blown AIDS before TR actually developed AIDS in the time
interval [Ti−1, Ti) is

qi =

∫ Ti

0
h(γ, s)F (α, β, tc, Ti − s)ds− ∫ Ti−1

0
h(γ, s)F (α, β, tc, Ti−1 − s)ds

∫ TR

0
h(γ, s)F (α, β, tc, TR − s)ds

.(8)

Let Xi(i = 1, 2, ...R) follow a multinomial distribution with cell probabilities
qi(i = 1, 2 . . . , R), where

∑R
i=1 qi = 1. The likelihood function, L, is L(α, β, tc/x) =∏R

i=1 qxi
i . Here, α and β can be viewed such that α, β ∈ R+. We apply the

maximum-likelihood estimation technique, which is statistically robust and asymp-
totically efficient to estimate {α,β} in the log-likelihood (LL), logL(α, β, tc/x) =∑R

i=1 qilog qi for each truncation year between 8 and 25 and also without truncation
(i.e., tc = ∞), and hence, the shape of the incubation period curve is obtained.

Once the parameters of the Weibull distribution are estimated then by using the
truncation point, one can estimate the mean incubation period and other moments
of the Weibull distribution using (5). Other researchers have attempted to estimate
the moment generating function for the truncated density function presented in this
section [24]. The rth moment for this density functions when the shape parameters,
β = 1 and 2, are
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Figure 2. Likelihood values with respect to truncation. This is
based on each truncation points from 8 to 25 years, corresponding
to the maximum log-likelihood values plotted separately for (a)
quadratic exponential, (b) exponential = 0.40, and (c) exponential
= 0.50.

Tr1 = αr−12
[
Γ (r + 1)− γ

(
r + 1,

αφ + t

2α

)]
, (9)

Tr2 = αrγ
(r

2
+ 1, (

√
3− 1)2 h1

)
+ 3.5α−2 (

√
3− 1)r+1 Γ(r + 2, h). (10)

See the appendix for a brief description of the derivation that led to expressions
(9) and (10). A detailed mathematical analysis [24] is not in the scope of the present
work. But, for prediction purposes, we are interested in these density functions for
estimating parameters. One can calculate the non-truncated Weibull parameters
corresponding to maximum LL explained in this section from these moments. To
compare truncated versus nontruncated distributions, we finally give two sets of
incubation distribution parameters corresponding to the explanations as follows:

{α, β} : LL is maximum without truncation point
{α1, β1} : LL is maximum with truncation point

As an example, we projected AIDS cases using {α, β} . In addition to this es-
timate, we have assumed the shape of the HIV density in the past as a simple
exponential with growth rates θ0 = 0.40 and θ1 = 0.50 [25]. Again using the den-
sities in (7), we estimated the incubation-time distributions as explained in the
procedure above. See [26] for the discussion on parameters of Weibull distribution.

5. Results. The estimated values of the parameters of HIV incidence are γ0 =
−4.2787, γ1 = 0.6938, and γ2 = −0.0234. According to these values, HIV incidence
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Figure 3. Estimated incubation-time densities of AIDS in India.
This is from the shape and scale parameters for three scenarios
given in Table 2 (also explained in section 4 in the text). Weibull
densities are plotted.

Figure 4. HIV/AIDS estimates in India. Cumulative numbers
of AIDS and HIV are generated by

∫ t

0
h(t)dt and the convo-

lution equation
∫ t

0
h(s)F (t − s)ds and then are plotted against

the years. HIV and AIDS incidence is calculated by h(t), t =
0, 1, 2. . . . and F (t) − F (t − 1), t = 1, 2, 3. . . . Where h(t) =
exp

(−4.2789 + 0.6938t2 − 0.0234t2
)

and F (t) = 1 −
exp

(− t
13.6139

)8.7792

increased since the beginning of the epidemic, reaching a peak in 1995, and then
started to decline. The estimated parameters of the incubation-time distribution
without considering the truncation point are α = 13.6139 and β = 8.7792 (LL =
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Table 1. Prevalence of HIV among STI patients (out side major
urban areas) in India

Year Median Prevalence (%) Year Median Prevalence (%)
1986 - 1994 4.75
1987 0.2 1995 4.65
1988 0.71 1996 5.8
1989 1.47 1997 19.4
1990 2.14 1998 2.86
1991 3.48 199 2.4
1992 6.11 2000 -
1993 4.85

(Source: UNAIDS/WHO Epidemiological Fact Sheet, India 2000 update [18])

−2960.4). (The mean is 12.87 years; SD = 3.07.) When we tested the impact of
truncation on the shape of the incubation distribution, we found log-likelihood is
maximum at truncation point 15 (i.e., at year 15 after the first year) with LL =
−2960.3, and corresponding parameters are α1 = 13.6145 and β = 8.7706. Using
these values, we found that the mean incubation period is 13.69 years and SD
is 2.95. When the simple exponential densities with θ0 = 0.40 and θ1 = 0.50
were employed, mean incubation distribution periods were 12.77 and 8.30 years.
Through these statistics we reestimated parameters for the nontruncated Weibull
distribution as α0 = 14.6407 and β0 = 6.9981. These three sets of situations (one
quadratic exponential and two simple exponentials) indicate that the shape of the
HIV curve also explains the variability in incubation-time distribution.

Log-likelihood values increased proportionally with year of truncation, and after
reaching maximal value, they decrease with increasing year of truncation and again
approach that of the nontruncated Weibull. This is obvious, as the delay in sta-
bilization of the hazard of attaining full-blown AIDS will nullify the effect of year
of truncation. This situation is well represented in Figure 2. It is clear that global
minima and maxima varied in three situations.

Figure 3 shows the differences in the incubation-time densities that arose due
to the three situations. We did not find the difference in the densities (i.e., in
the disease progression process) when the hazard of AIDS is truncated and not
truncated. Figure 3 shows how the values with and without truncation are close.
The densities are close to the normal density curve, with the exception that the
normal density also takes values on the negative axis. This property of the Weibull
density approaching the normal density is also supported theoretically when the
shape parameter β of the Weibull density exceeds 3.6. The proportion of individuals
developing AIDS is flattened between 18 and 19 years, since the HIV infection when
the HIV curve follows quadratic exponential as well as simple exponential with
θ0 = 0.40. But in the case of θ1 = 0.50, the flattening started at year 14. This
could be due to the fact that the high growth rate of HIV did not match with the
trend in the diagnosed AIDS cases (see Fig. 4).

5.1. Validation of the method with US data. We have taken values from
the Centre for Disease Control (CDC) and The United Nations Program on AIDS
(UNAIDS) [18] sources for US data, and conducted similar analysis as explained in
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Table 2. Estimated parameters and descriptive statistics

Growth rate α β Mean Variance Tc LL
Quadraric 13.6145 8.7706 12.86 2.95 15 -2960.4

13.6139 8.7792 12.87 3.07 0 -2960.3
Exp (0.40) 14.1684 7.1572 12.98 3.74 13 -2945.4

13.8914 7.3355 12.77 3.47 0 -2945.9
Exp(0.50) 8.8730 5.3745 8.06 2.55 9 -2964.4

9.0131 5.2173 8.30 03.34 0 -2964.5
Note: Tc value indicates truncation values where LL is maximum corresponding

to the α, β and ’0’ indicates no truncation.

section 4. The estimated parameters of the incubation-time distribution without
taking a truncation point are α = 11.6713 and β = 4.812 (LL = −3050.2). (The
mean is 10.69 years; SD = 2.53). When we tested the effect of truncation on the
shape of the incubation distribution, we found that log-likelihood is maximum at
the truncation point 12 (i.e., at year 12 after the first year) with LL = −3120.4,
and the corresponding parameters are α1 = 11.9211 and β = 4.4500. Using these
values, we found the mean incubation period is 10.64 years and the SD is 2.50.
Estimated parameters for the non-truncated Weibull distribution were α0 = 14.6407
and β0 = 6.9981. These results show that the method worked well for the US
data, which are known to be accurate with respect to diagnosis, reporting, and
surveillance.

6. Discussion. HIV incidence density is estimated with the information on HIV
prevalence among the STI patients residing outside major urban areas in India,
unlike the regular back-calculation approach in arlier studies [4, 20, 21]. There
could be a more sophisticated method to estimate HIV incidence density, but the
degree of improvement will be small because the data contain significant ambiguity.
The regression method of estimating parameters of the HIV density seems to have
worked well. The HIV estimates given by NACO indicate that there was a decline
in the new HIV infections from 1997 to 2000. Also the explanations given in sec-
tions 2 and 3 provide some basis for the reduction in new HIV cases from 1995. The
peak of HIV incidence in the STI rural population occurred in 1995 (Fig. 1). Usu-
ally, the HIV peak in the general population occurs after the peak in the high-risk
population, and NACO’s HIV estimates support this typical epidemic behavior.
These arguments justify the quadratic exponential as a representative of HIV epi-
demic in India. Also, there is a good possibility that new infections in India will
decline in response to the significant prevention measures taken by the government.
We have suggested using a quadratic exponential for the HIV growth in India [25].
During the past decade, back-calculation approach with suitable improvements was
extensively applied in different populations throughout the world.

The assumption of incubation-time distribution, such as the Weibull distribution,
has been justified from previous articles [4, 19, 22]. So far, no rigorous estimation
procedure of incubation distribution in India has been published. Hence, estimating
indirectly through the back-calculation approach may provide the most reliable
estimation to date. Our estimates give the maximum likelihood in the cross-section
ranges between mean incubation period 8 and 15 with SD=3, 4, 5, 6. From a
statistical point of view, theoretical limitations arise if one estimates the incubation
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distribution from the prevalent cohort of HIV individuals in India [5]. Earlier,
Peter Bacchetti, [16] estimated parameters of the incubation distribution by using
AIDS incidence and HIV estimates in the population through deconvoluting the
relationship given by back-calculation. This method will be direct if the AIDS
and HIV incidence in the population is quite clear, but this is not feasible in the
India due to a lack of infection data for a sufficient time period. We estimated
parameters using the maximum-likelihood method, rather than with nonparametric
estimation [27]. Back-calculation could also be used to estimate parameters of the
incubation distribution and incidence density simultaneously, but this approach
may lead to problems of nonidentifiability, as noted in section 3. If the actual
population incidence rates matched those of the back-calculation method, then
simultaneous estimation would not be objectionable. However, we found that these
two estimates of incidence are not close, which led us to use deconvolution as
a method to estimate parameters. Sensitivity analysis is conducted to see how
the incubation time changes due to the HIV curve in the past. The assumption
of a simple exponential for the future is not appropriate since HIV growth has
shown moderate stability, and preventive strategies taken by the government could
well arrest the incidence. Hence, we did not carry out the future analysis using
a simple exponential. It was found that only 11 % to 16 % of the AIDS cases
were being reported in India [25]; hence, by adjusting this to the current estimates,
the actual AIDS cases in the future can be obtained. We are not sure whether this
underreporting will also be constant in the future. The model may improve by using
adjusted AIDS case numbers in the wake of reliable estimates of underreporting in
the future. Even information on HIV clinical data along with reported AIDS cases
can allow further modeling of the HIV density function [28]. Application of back-
calculation to the Indian AIDS data in the future may lose reliability because of the
expected increase in the therapy and alternative medicines that prolong the time
between HIV infection and appearance of AIDS. In addition to this, information on
CD4 count decay and its parameters have been estimated. The lengthier incubation
period estimated in the Indian population is a good indication of longtime survival
of HIV-positive individuals. The absolute magnitude of HIV cases is large, but
the proportion of HIV-positive individuals is comparatively smaller than that of
some African and Asian countries. Also, the expected attainment of stability in the
first half of the current decade is a positive sign, in terms of HIV advocacy. If the
estimated trend of HIV is continued in the future, it will further systematize the
prevention policies undertaken by the government and nongovernmental bodies, and
will avoid the disorder in the public-health scenario that arose when HIV appeared
in the country. However, the decrease in new cases will not continue if governmental
and nongovernmental authorities reduce the effort to prevent HIV/AIDS. It will
take an additional fourteen to fifteen years to attain stability in the estimated
cumulative AIDS cases. Health-care professionals need a special understanding of
the rapid HIV/AIDS spread mechanism and hence must make better efforts to
lessen the public-health burden. There must be efforts to manage AIDS deaths and
other opportunistic-infection deaths that emerge due to AIDS.

No study in India so far gives the AIDS incubation period with some degree
of variation. Our estimates of incubation distribution assuming three sets of HIV
trends should provide an understanding of the nature of the AIDS incubation pe-
riod, if there is reasonable matching between AIDS and HIV numbers applied.
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Application of the back-calculation method on Indian data with theoretical ob-
servations and limitations provides a new look at a well-known old method. Our
estimate of time of developing AIDS is longer than the general belief [15]. An
increase of almost three years in the estimation could have occurred due to the
following errors: incidences of HIV and AIDS might not have matched perfectly;
diagnosed AIDS cases were not reported in time; and small delays could have caused
some the cases to be reported in the next year. Even lack of facilities or awareness
might delay diagnosis. Any combination of these causes might have stretched an
increase between two and three years in the mean incubation period. We do not
have any reliable information on the effect of Anti Retroviral Therapy (ART) and
Highly Active ART, on survival rates among Indian patients, or in the best case,
whether the population may naturally have a longer incubation period. Epidemio-
logical studies are needed to obtain accurate estimates of the incubation period. It
seems very important to establish the consistency of HIV/AIDS data, investigation
of the incubation time, or time between report of HIV and that of AIDS.

Remark. The method demonstrated here uses data and information obtained from
an Internet search in January 2002.
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Appendix: The rth moment for shape parameters ≤ 2. Let Tr denote the
r th moment for (5), then it is expressed as follows:

Tr =
∫ δ

0

yr β

α

( y

α

)β−1

e−( y
α )β

dy +
∫ ∞

δ

yr β

α
e

n
β
α ( t

α )β−1
(t−y)−( y

α )β
o(

t

α

)β−1

dy

+
∫ ∞

δ

yr β

α
e

n
β
α ( t

α )β−1
(t−y)−( y

α )β
o ( y

α

)β−1

dy. (11)

Evaluating integral (5) is not easy.



INCUBATION-TIME DISTRIBUTION IN INDIA 275

Take β = 1 in (11), then we get the following expressions:

Tr1 =
1
α

∫ δ

0

yre−( t
α )dy +

2
α

∫ ∞

δ

yre{ 1
α (t−y)−( y

α )}dy

=
1

2rα

∫ φ

−t/α

(αw + t)r
e−(αw+t

2α )dw +
1

2r−1α

∫ ∞

φ

yre−wdw

= αr−12
[
Γ (r + 1)− γ

(
r + 1,

αφ + t

2α

)]
.

(12)

In 12 please note that
(

y
α

) − 1
α (t− y) = w, as y → 0 ⇒ w → −t/α and

y → δ ⇒ w → 2δ−t
α (say φ). Equation (12) can be used for getting the moments of

(5) in this special condition.
The lower incomplete gamma function can be written in terms of confluent hy-

pergeometric functions [29]. In such a case,

γ(r + 1,
t

α
) = (r + 1)−1

(
t

α

)r+1

e−
t
α M(1, r + 2,

t

α
). (13)

In (13), M is called Kummer’s function.
Take β = 2. If we substitute y = −t + t

√
3 in (11) and change the limits

accordingly (as y → 0 then t → 0, as y →∞ then t →∞, and as y → δ then t →
1.37δ (say, h), then the terms of (11) can be written as follows:

∫ δ

0

yr β

α

( y

α

)β−1

e−( y
α )β

dy

=
∫ h

0

tr (
√

3− 1)r 2
α

(
(
√

3− 1) t

α

)
e−( (

√
3−1)t
α )2

dt. (
√

3− 1)

=
2 (
√

3− 1)r+2

α2

∫ h

0

tr+1e−(
√

3−1)2( t
α )2

dt.

Taking t2/α2 = k and changing the limits and simplifying, then the above inte-
gral becomes

(
as t → 0 then k → 0 and as t → h then k → h2δ2/α2 = 1.88δ2/α2

(say, h1))

=
(
√

3− 1)r+2

α2

∫ h1

0

(kα)r
e−(

√
3−1)2kα2dk

= αrγ
(r

2
+ 1, (

√
3− 1)2 h1

)
(14)

= αr (
√

3− 1)r+2
h

r
2 +1
1

(r

2
+ 1

)−1

e−(
√

3−1)2h1M(1,
r

2
+ 2, (

√
3− 1)2 h1).

(15)

Now consider the second term in (11) and substitute β = 2, then we get,
∫ ∞

δ

yr 2
α

e

n
2
α ( t

α )(t−y)−( y
α )2

o(
t

α

)
dy. (16)

Substituting y = t(
√

3− 1) in (16), changing the limits accordingly, and simpli-
fying, we get (17)



276 A. S. R. S. RAO AND M. KAKEHASHI

2 (
√

3− 1)r+1

α2

∫ ∞

h

tr+1dt (17)

=
2 (
√

3− 1)r+1

α2
Γ(r + 2, h). (18)

Now consider third term in (11) and substitute β = 2. Then we get,
∫ ∞

δ

yr 2
α

e

n
2
α ( t

α )(t−y)−( y
α )2

o ( y

α

)
dy. (19)

Substituting y = t(
√

3− 1) in (19), changing the limits accordingly, and simpli-
fying, we get

2 (
√

3− 1)r+2

α2

∫ ∞

h

tr+1dt (20)

=
2 (
√

3− 1)r+2

α2
Γ(r + 2, h). (21)

Now the rth moment Tr2 when β = 2 is the sum of (14),(18), and (21) is given by

Tr2 = αrγ
(r

2
+ 1, (

√
3− 1)2 h1

)
+ 3.5α−2 (

√
3− 1)r+1 Γ(r + 2, h). (22)

Here h = 1.37 and h1 = (hδ)2/α2. For β values higher than 2, it will be very
complex to evaluate the rth moments.
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