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32 avenue Henri Varagnat, 93143 Bondy Cedex, France

Cheikh Sokhna

Laboratoire de Paludologie, Institut de Recherche pour le Développement
B.P. 1386, Dakar, Sénégal
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Abstract. A mathematical model representing the diffusion of resistance to
an antimalarial drug is developed. Resistance can spread only when the basic
reproduction number of the resistant parasites is bigger than the basic re-
production number of the sensitive parasites (which depends on the fraction
of infected people treated with the antimalarial drug). Based on a lineariza-
tion study and on numerical simulations, an expression for the speed at which
resistance spreads is conjectured. It depends on the ratio of the two basic re-
production numbers, on a coefficient representing the diffusion of mosquitoes,
on the death rate of mosquitoes infected by resistant parasites, and on the
recovery rate of nonimmune humans infected by resistant parasites.

1. Introduction. Malaria is a parasitic disease transmitted to humans by mos-
quito bites. Each year several hundred million malaria cases occur, causing around
two million deaths. Death can be avoided by the use of antimalarial drugs, but
their efficiency has been decreasing dramatically over the past few decades. Indeed,
parasites with particular genes of resistance to a drug can survive the treatment.
Because of this selective advantage and of the mobility of humans and mosquitoes,
the genes can spread in populations over large areas. As an example, a map show-
ing the spread of resistance to chloroquine (CQ), the most widely used antimalarial
drug, from the beginning of the 1960s to the end of the 1980s in South America,
Southeast Asia, and Africa appears in [1, p. 608]. The rise of resistance is re-
sponsible for a considerable increase in mortality [18]. In some areas with a high
percentage of resistance to CQ, health workers have used alternative drugs such as
sulphadoxine-pyrimethamine (SP), but again resistance to these drugs has emerged
[4]. Presently, artemisinine derivatives, which are produced from a traditional Chi-
nese plant, seem to be the most efficient antimalarial drugs left for the near future.
For public-health authorities, finding money to replace the inefficient drugs with
efficient (but more expensive) ones while trying to avoid or at least delay the ap-
pearance of resistance to these new drugs is a major concern.
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From a theoretical point of view, the introduction of new antimalarial drugs can
be seen as an optimal control problem of a complex dynamical system (includ-
ing humans, mosquitoes, sensitive parasites, and resistant parasites) with economic
constraints (prices of drugs, budget for malaria control) and a control variable (the
percentage of malaria cases treated with the new drug). Modeling these different
ingredients may be helpful for people who advise public-health authorities of coun-
tries where malaria is endemic. Epidemiological models for drug-resistant malaria
have already been developed in [2, 10], and the economic constraints were consid-
ered in [11]. But the models used in these papers either did not include space or
only included it in the form of two disjointed areas related by migration [10].

This paper presents a model for the spread of resistance in spatially inhomo-
geneous populations but leaves economic aspects aside. The model begins with
resistant parasites that have been introduced in an area by migrating humans but
then considers the area as closed to migration and focuses on the diffusion of resis-
tance due to the mobility of mosquitoes, which can explore a few square kilometers
during their lifetime. Since most bites occur at night (the period of activity of
anopheline female mosquitoes, the vector of malaria) and people generally sleep
in the same place each night, the mobility of humans can be neglected in a first
approximation. Of course, the spread of resistance involves many different phe-
nomena. Some of them were included in the model, but others had to be omitted
to keep the model mathematically tractable (e.g., the genetics related to the sexual
reproduction of parasites [7] and the genetic variability in the human population
[5]).

The model is a system of partial differential equations. The flight of the mosqui-
toes is supposed to be a Brownian motion so that a classical diffusion term appears
in the equations governing the mosquito density. The model is nonlinear because
of the “reaction” terms representing the transmission of the disease. Hence, the
model belongs to the family of “reaction-diffusion systems.” Such systems have
attracted much attention in mathematical biology. Early work can be traced to
Ronald A. Fisher [6], who was already focusing on the “wave of advance of advan-
tageous genes.” The topic developed greatly after this pioneering work, with more
complex models, new areas of application (morphogenesis, the geographical spread
of epidemics such as plague, and rabies [13]), and more sophisticated mathematical
tools [15]. However, we are not aware of any work in which this kind of modeling
has been used for the spread of resistance to antimalarial drugs, although a partial
integro-differential system for the spread of malaria epidemics (without resistance)
has been recently studied in [14].

The present system of reaction-diffusion equations exhibits traveling-wave so-
lutions, which are supposed to mimic the geographical spread of resistance to an
antimalarial drug (CQ, SP, or others). The main purpose of this paper is to give an
expression for the speed of propagation v∗, an expression that can be used to study
its dependency on the parameters of the model—some of which can be controlled
by human decisions—particularly the fraction f of infected people treated with the
antimalarial drug. The result gives a quantitative expression for the well-known
qualitative property that v∗ is an increasing function of f .

We hope that this expression will help develop some understanding for the more
complex optimal control problem of finding the level of resistance above which
cheap but partially inefficient drugs should be replaced with expensive but efficient
ones—a question of more direct applicability and an active subject of dispute [3].
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The plan of the article is as follows: Section 2 presents the model. The steady
states, along with their stability, are studied in section 3. Linearizing the system,
an expression that describes the speed of traveling waves representing the spread
of resistance to antimalarial drugs, occurs in section 4. This expression is valid
provided the “linear conjecture” holds [19, 12]. Numerical simulations tend to
confirm that this conjecture holds for the present model; the results are discussed
in section 5. From a mathematical point of view, the style is rather informal and
closer to the one used in [13]. Future work will, one hopes, fill gaps in the proof.

2. The model. There are two independent variables: t (the time) and x (a one-
dimensional space variable). The reduction to one dimension means that we are
looking at the propagation of plane waves along one direction. The unknowns are

S(t, x): proportion of nonimmune noninfected humans;
I1(t, x): proportion of nonimmune humans infected by sensitive parasites;
I2(t, x): proportion of nonimmune humans infected by resistant parasites;
R(t, x): proportion of immune noninfected humans;
J(t, x): proportion of immune infected humans;
s(t, x): proportion of noninfected mosquitoes;
i1(t, x): proportion of mosquitoes infected by sensitive parasites;
i2(t, x): proportion of mosquitoes infected by resistant parasites.

The densities P , humans, and m, mosquitoes, are constants independent of t and
x. The main parameter of the model is f , the fraction of the nonimmune infected
humans treated with the antimalarial drug. Let us stress some of the simplifying
assumptions underlying this compartmental model:

1. Immunity is either present or absent (instead of being a slowly varying process)
and provides complete protection from malarial illness (instead of only partial
protection).

2. Only those humans who are ill because of malaria (hence only nonimmune
infected humans) take the antimalarial drug; this is of course a crude assump-
tion since the nonspecific symptoms of malaria often lead humans living in
endemic areas to take antimalarial drugs even when their illness is unrelated
to malaria.

3. Infected humans and mosquitoes are infected either by sensitive parasites or
by resistant parasites but not by both types at the same time.

One consequence of these assumptions is that it is unnecessary in the model to
distinguish between immune humans infected by sensitive parasites and those in-
fected by resistant parasites. Concerning the humans and their interactions with
the parasites, set

c: rate at which nonimmune infected humans become immune;
e: rate at which immune noninfected humans lose their immunity;
b: rate at which nonimmune infected humans recover if they use no antimalar-
ial drug or if they use the drug while infected by resistant parasites;
b̂: rate at which nonimmune infected humans recover if they use the drug
while infected by sensitive parasites (b̂ > b);
b̄: rate at which immune infected humans recover (b̄ > b);
T1 (resp. T2): latent period before infectiousness of sensitive (resp. resistant)
parasites in the human;
µ: death rate of humans;
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ν: malaria-related death rate of nonimmune infected humans.

The average recovery rate of nonimmune humans infected by sensitive parasites is
(1− f) b + f b̂. Set

b1 = (1− f) b + f b̂ + c + µ + ν , b2 = b + c + µ + ν.

Concerning the mosquitoes and their interactions with the parasites, set

d: diffusion of mosquitoes;
b′1: death rate of mosquitoes infected by sensitive parasites;
b′2: death rate of mosquitoes infected by resistant parasites;
T ′1 (resp. T ′2): latent period before infectiousness of sensitive (resp. resistant)
parasites in the mosquito.

Concerning the interaction between humans and mosquitoes, set

k: biting rate on humans by a single mosquito (the number of bites per person
per unit time is k m/P );
p (resp. p̄): probability for a mosquito bite between an infectious mosquito
and a nonimmune (resp. immune) noninfected human to lead to the infection
of the human (p̄ < p);
p′: probability for a mosquito bite between a noninfected mosquito and an
infectious human to lead to the infection of the mosquito.

Set

π1 = p exp(−b′1 T ′1) , π̄1 = p̄ exp(−b′1 T ′1) , π′1 = p′ exp(−b1 T1) ,

π2 = p exp(−b′2 T ′2) , π̄2 = p̄ exp(−b′2 T ′2) , π′2 = p′ exp(−b2 T2) .

These parameters have the following meaning:

π1 (resp. π2): probability for a mosquito bite between a mosquito infected by
sensitive (resp. resistant) parasites and a nonimmune noninfected human to
lead to the infection of the human;
π̄1 (resp. π̄2): probability for a mosquito bite between a mosquito infected
by sensitive (resp. resistant) parasites and an immune noninfected human to
lead to the infection of the human (π̄1 < π1, π̄2 < π2);
π′1 (resp. π′2): probability for a mosquito bite between a noninfected mosquito
and a nonimmune human infected by sensitive (resp. resistant) parasites to
lead to the infection of the mosquito.

Additionally, the simplifying assumption is made that immune infected humans
cannot infect mosquitoes.

The model is sketched in Figure 1. It is of course very simplified, and many
details of the transmission cycle have been omitted. In particular, the egg and
larva periods of the mosquito life cycle have been omitted; instead, the eclosion of
new adult mosquitoes compensates for the deaths so that the density m of adult
mosquitoes is constant. However, the point here is to keep the model simple enough
for it to be mathematically tractable. To simplify the notations, set

a1 = k π1
m

P
, a′1 = k π′1 , ā1 = k π̄1

m

P
,

a2 = k π2
m

P
, a′2 = k π′2 , ā2 = k π̄2

m

P
.
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Figure 1. Compartments of the model, possible transitions (solid
lines) and parasite transmission (dotted lines).

The mathematical formulation of the model is a system of partial differential equa-
tions with the humans on one side

∂I1

∂t
= a1 S i1 − b1 I1 ,

∂I2

∂t
= a2 S i2 − b2 I2 , (1)

∂R

∂t
= c I1 + c I2 − (e + µ) R− ā1 R i1 − ā2 R i2 + b̄ J , (2)

∂J

∂t
= ā1 R i1 + ā2 R i2 − (b̄ + µ) J (3)

and the mosquitoes on the other

∂i1
∂t

= a′1 s I1 − b′1 i1 + d
∂2i1
∂x2

,
∂i2
∂t

= a′2 s I2 − b′2 i2 + d
∂2i2
∂x2

. (4)

Recall that S = 1− I1 − I2 −R− J and that s = 1− i1 − i2.

3. Steady states. Let us first study the x-independent steady states of the system.
First, there is the trivial steady state in which I1, I2, R, J , i1, and i2 equal 0, corre-
sponding to the situation where malaria has been eradicated. Its stability depends
on the signs of the eigenvalues of the matrix obtained by linearizing the system near
(0, 0, 0, 0, 0, 0), which is (if we put the unknowns in the order [i1, I1, R, J, i2, I2])




−b′1 a′1 0 0 0 0
a1 −b1 0 0 0 0
0 c −(e + µ) b̄ 0 c
0 0 0 −(b̄ + µ) 0 0
0 0 0 0 −b′2 a′2
0 0 0 0 a2 −b2




.

The eigenvalues are −(e+µ), −(b̄+µ), and the eigenvalues of the two submatrices
are ( −b′1 a′1

a1 −b1

)
,

( −b′2 a′2
a2 −b2

)
.

Define the basic reproduction numbers of the sensitive and the resistant parasites
by

α1 =
a1 a′1
b1 b′1

, α2 =
a2 a′2
b2 b′2

.
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The trivial steady state is stable (all the eigenvalues are negative) when α1 < 1
and α2 < 1, and it is unstable (at least one eigenvalue is positive) when α1 > 1 or
α2 > 1.

When α1 > 1, another steady state exists. Set

β1 =
b′1
a′1

, γ1 = β1
c

e + µ
, δ1 = γ1

ā1

b̄ + µ
, ε1 =

ā1

b̄ + µ

µ

e + µ
.

It is defined by i1 = i∗1, I1 = I∗1 , R = R∗1, J = J∗1 , i2 = 0, and I2 = 0, where i∗1 is
the positive root of

(δ1 + ε1 + β1 ε1) i21 +
(
1 + β1 + γ1 + ε1

( 1
α1

− 1
))

i1 +
1
α1

− 1 = 0 , (5)

and

I∗1 = β1
i∗1

1− i∗1
, R∗1 =

γ1 I∗1
β1 (1 + ε1 i∗1)

, J∗1 =
δ1 R∗1 i∗1

γ1
. (6)

This steady state corresponds to the situation in which all the parasites are sensitive.
Its stability depends on the signs of the eigenvalues of the matrix obtained by
linearizing the system near (i∗1, I

∗
1 , R∗1, J

∗
1 , 0, 0), which is




−(b′1 + a′1 I∗1 ) a′1 s∗1 0 0 −a′1 I∗1 0
a1 S∗1 −(b1 + a1 i∗1) −a1 i∗1 −a1 i∗1 0 −a1 i∗1
−ā1 R∗1 c −(e + µ + ā1 i∗1) b̄ −ā2 R∗1 c
ā1 R∗1 0 ā1 i∗1 −(b̄ + µ) ā2 R∗1 0

0 0 0 0 −b′2 a′2 s∗1
0 0 0 0 a2 S∗1 −b2




,

where for convenience we set s∗1 = 1−i∗1 and S∗1 = 1−I∗1 −J∗1 −R∗1. The eigenvalues
of the 2× 2 submatrix ( −b′2 a′2 s∗1

a2 S∗1 −b2

)
,

which are also eigenvalues of the full matrix, are

−1
2

(b2 + b′2)±
1
2

√
(b2 + b′2)2 − 4 [b2 b′2 − a2 a′2 s∗1 S∗1 ].

For this steady state, it is easily seen that s∗1 S∗1 = b1 b′1
a1 a′1

. So if α1 < α2, one
eigenvalue of the 2× 2 submatrix is positive, and the steady state is unstable.

Similarly, when α2 > 1, there is another steady state, defined by i1 = 0, I1 = 0,
R = R∗2, J = J∗2 , i2 = i∗2, and I2 = I∗2 . The formulas are the same as the previous
ones, except that a′1 should be replaced by a′2, b′1 by b′2, and ā1 by ā2 (β1, γ1, δ1,
and ε1 are replaced by β2, γ2, δ2, and ε2). This steady state corresponds to the
situation in which all the parasites are resistant. The linearization of the system
near this steady state shows that it is unstable when α1 > α2.

These results suggest that when α1 > 1 and α2 > 1, (i∗1, I
∗
1 , R∗1, J

∗
1 , 0, 0) is stable

if α1 > α2, and (0, 0, R∗2, J
∗
2 , i∗2, I

∗
2 ) is stable if α2 > α1.

Remark. In the simplified model where immunity is not taken into account
(c = 0, ā1 = 0), one obtains

i∗1 =
1− 1/α1

1 + β1
, I∗1 =

α1 − 1
α1 + 1/β1

.

These are formulas (14.5) and (14.6) in [1], where 1/β1 is called “Macdonald’s
stability index.”
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4. Traveling waves. When resistant parasites appear at some place, they will
start spreading because of the selective pressure caused by the use of the drug. The
purpose of this section is to compute the speed of propagation as a function of the
parameters. We suppose that α2 > α1 > 1. The trivial steady state and the steady
state (i∗1, I

∗
1 , R∗1, J

∗
1 , 0, 0) are unstable, while the steady state (0, 0, R∗2, J

∗
2 , i∗2, I

∗
2 ) is

stable. We focus on the evolution of a small perturbation (with compact support)
of the x-independent unstable equilibrium (i∗1, I

∗
1 , R∗1, J

∗
1 , 0, 0) so that I2(0, x) > 0

(or i2(0, x) > 0) for some x.
One can expect this small perturbation to spread over the whole domain in both

directions. Looking at only one direction of propagation, the “wave of advance” is
generally called a traveling wave. From a mathematical point of view, the system of
partial differential equations (1)–(4) admits traveling-wave solutions if there exist
nonnegative functions of one variable (still called I1, I2, R, J , i1, and i2 with an
abuse in notation) and v > 0 (in the case where the wave travels toward the positive
x) such that

I1(x, t) = I1(x− v t), I2(x, t) = I2(x− v t), R(x, t) = R(x− v t),
J(x, t) = J(x− v t), i1(x, t) = i1(x− v t), i2(x, t) = i2(x− v t),

with the boundary conditions

I1(z) → 0, I2(z) → I∗2 , R(z) → R∗2,
J(z) → J∗2 , i1(z) → 0, i2(z) → i∗2

as z → −∞ and the boundary conditions

I1(z) → I∗1 , I2(z) → 0, R(z) → R∗1,
J(z) → J∗1 , I1(z) → i∗1, i2(z) → 0

as z → +∞. Replacing these traveling-wave solutions in system (1)–(4), one gets

−v
dI1

dz
= a1 (1− I1 − I2 −R− J) i1 − b1 I1,

−v
dI2

dz
= a2 (1− I1 − I2 −R− J) i2 − b2 I2,

−v
dR

dz
= c I1 + c I2 − (e + µ)R− ā1 R i1 − ā2 R i2 + b̄ J,

−v
dJ

dz
= ā1 R i1 + ā2 R i2 − (b̄ + µ)J,

and

−v
di1
dz

= a′1 (1− i1 − i2) I1 − b′1 i1 + d
d2i1
dz2

,

−v
di2
dz

= a′2 (1− i1 − i2) I2 − b′2 i2 + d
d2i2
dz2

.

This system can be rewritten as a system of first-order ordinary differential equa-
tions by setting j1 = di1

dz and j2 = di2
dz . Traveling-wave solutions correspond to

nonnegative orbits of this new system, linking the steady state [i1 = i∗1, j1 = 0,
I1 = I∗1 , R = R∗1, J = J∗1 , i2 = 0, j2 = 0, I2 = 0] with the steady state [i1 = 0,
j1 = 0, I1 = 0, R = R∗2, J = J∗2 , i2 = i∗2, j2 = 0, I2 = I∗2 ]. Linearizing near the
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latter, one gets the matrix



0 1 0 0 0 0 0 0
a′1 I∗1 +b′1

d
−v
d

−a′1 s∗1
d 0 0 a′1 I∗1

d 0 0
−a1 S∗1

v 0 a1 i∗1+b1
v

a1 i∗1
v

a1 i∗1
v 0 0 a1 i∗1

v
ā1 R∗1

v 0 −c
v

ā1 i∗1+e+µ
v

−b̄
v

ā2 R∗1
v 0 −c

v−ā1 R∗1
v 0 0 −ā1 i∗1

v
b̄+µ

v
−ā2 R∗1

v 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 b′2

d
−v
d

−a′2 s∗1
d

0 0 0 0 0 −a2 S∗1
v 0 b2

v




.

For the orbits near this steady state to be positive, the eigenvalues of this matrix
should all be real. Now consider the eigenvalues of the submatrix


0 1 0
b′2
d

−v
d

−a′2 s∗1
d−a2 S∗1

v 0 b2
v


 ,

which are also eigenvalues of the full matrix. They are the roots of the polynomial
equation χ(λ) = 0, where

χ(λ) = −λ3 +
(b2

v
− v

d

)
λ2 +

b2 + b′2
d

λ +
b2 b′2
v d

(α2

α1
− 1

)
.

Proposition 1. There exists a unique v∗ > 0 such that the polynomial χ(λ) has a
double root when v = v∗. Set

y =
b2

b′2
, z =

α2

α1
− 1.

The polynomial

F (X) =
[
(1 + y)2 + 4 y z

]
X3 + 2

[
(1 + y)2 (2 + y) + 3 (3 + y) y z

]
X2

+ y2
[
(1 + y)2 − 6 z (3 + y)− 27 z2

]
X − 4 y4 z

has a unique positive root X∗ and

v∗ =
√

b′2 dX∗.

Proof. Set Λ = λ − 1
3

(
b2
v − v

d

)
. Then χ(λ) = −χ1(Λ), where χ1(Λ) is of the

form Λ3 + P Λ + Q, with P and Q dependent on the parameters and on v. The
polynomial χ1(Λ) has a double root if and only if 4P3 + 27Q2 = 0. Reordering
this condition, one finds that it is equivalent to F

(
v2

b′2 d

)
= 0. The proof that F (X)

indeed has a unique positive root is given in the appendix.
When v < v∗, the polynomial χ(λ) has complex eigenvalues, so the system

cannot exhibit traveling waves. This situation, compared to previous studies on
reaction-diffusion systems in which the minimum speed is the one actually selected
by the system [13], suggests the following:

Conjecture 1. The speed of traveling waves is v∗.

Such a conjecture is generally called a “linear conjecture” for the reaction-
diffusion system, since it has been obtained by linearizing the nonlinear system of
partial differential equations near one steady state. Other studies [8] have demon-
strated that for some models, such a conjecture holds only for a certain range of



THE SPREAD OF RESISTANCE TO AN ANTIMALARIAL DRUG 235

parameter values. In [19], some sufficient conditions were given for the “linear con-
jecture” to hold for cooperative systems. In [12], these conditions were applied to
a competition system that could be transformed through a change of unknowns
into a cooperative system. Although the present competition model can also be
transformed into a cooperative system as in [12], the sufficient conditions of [19]
applied here become rather intractable.

Figure 2 shows the adimensional speed v∗/
√

b′2 d =
√

X∗ as a function of α2/α1

for different values of y = b2/b′2, found by solving numerically the third-order poly-
nomial equation F (X) = 0 to get its unique positive root. Notice that v∗/

√
b′2 d

seems to be an increasing function of α2/α1. For y ¿ 1, one obtains the approxi-
mate expression

X∗ ∼
y→0

−1 + 18 z + 27 z2 +
√

(−1 + 18 z + 27 z2)2 + 64 z

8
y2 .

The figure also shows the result of some numerical simulations of the nonlinear sys-
tem of partial differential equations. Truncating the space to −L < x < L, starting
from an initial condition in the form of a step function given by the stable equilib-
rium with resistant parasites for x < −L/2 and by the unstable equilibrium with
sensitive parasites for x > −L/2, and waiting for the traveling wave to stabilize,
the speed could be estimated numerically. The points in the figure correspond to
f = 30%, f = 50%, f = 70%, and f = 100%. The other parameter values are the
same as in section 5 (in particular, y = 0.04). To use the same grid with L = 1, 000
km and dx = 0.5 km for the different simulations, the speed had to be estimated
at different times when f varied (namely, after 50, 30, 20, and 15 years). For each
case, the difference between the numerical speed and the speed from the conjecture
was less than 1%. The details of the program (written for the software Scilab,
www.scilab.org) can be found at www.bondy.ird.fr/∼bacaer/linearconjecture.sci.

1 2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

◊

◊

◊

◊

Figure 2. The adimensional speed
√

X∗ = v∗/
√

b′2 d as a func-
tion of α2/α1 for different values of y = b2/b′2, namely, y = 0.04
(below) and y = 0.1 (above). The points correspond to numerical
simulations of the nonlinear system of partial differential equations.
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Hence, these simulations tend to confirm the validity of the linear conjecture for
the present model or at least for a certain range of paramater values including the
ones used for the simulations.

5. Discussion. The main characteristics of the model are as follows:
1. Resistance can spread only if the basic reproduction number α2 of the resistant

parasites is bigger than the basic reproduction number α1 of the sensitive
parasites.

2. The ratio
α2

α1
=

exp(−b′2 T ′2)
exp(−b′1 T ′1)

× exp(−b2 T2)
exp(−b1 T1)

× b1 b′1
b2 b′2

is an increasing function of the fraction f of nonimmune infected humans who
have access to the antimalarial drug, since b1 = b+c+µ+ν +f (b̂−b). When
f = 0, α2/α1 < 1 holds since parasites resistant to a drug are rare before
the widespread use of that drug (the drug was designed for this reason). If
α2/α1 > 1 for f = 100%, then there is a threshold f∗ such that resistance
can spread only if f > f∗.

3. The speed v∗ at which resistance spreads depends on the ratio α2/α1, on the
death rate b′2 of mosquitoes infected by resistant parasites, on the recovery
rate b2 of nonimmune humans infected by resistant parasites, and on the
diffusion coefficient of the mosquitoes. It is an increasing function of α2/α1.

4. The speed v∗ does not depend on the parameters concerning immune humans
(ā1, ā2, e, and b̄). This could be expected since no selective pressure is put
on the parasites when they are hosted in immune humans.

5. Finally, v∗ does not depend on the intensity of transmission k m/P .
The qualitative result that resistance spreads faster in areas with better access

to drugs is supported by fieldwork. In Senegal, for example, a country with a
population of about ten million, one million malaria cases occur each year, causing
8,000 deaths. Resistance to CQ appeared in 1988 in Dakar, the capital city, and it
has been increasing and spreading since then [16, 17]. In the study area of Mlomp,
where an active control program promoting CQ had been conducted for many years
(f ' 100%), the emergence of resistance to CQ was particularly fast: no resistance
in 1989, 10% in 1990, 51% in 1991, 71% in 1997. In the study area of Bandafassi in
contrast, where no such program existed, emergence was much slower: first cases
in 1993, 12% in 1994, 16% in 1995.

These data can serve as a comparison with our model. Some orders of magni-
tude for the parameters necessary to compute the speed v∗ are shown in Table 1
(mortality has been neglected). Notice that infectiousness appears earlier (T2 < T1)
in humans infected by resistant parasites, as suggested by the experimental results
reviewed in [9]. For the parameters to accord with the fact that α2/α1 is less than 1
when f = 0, mosquitoes infected by resistant parasites must have a higher mortality
(b′2 > b′1). The mortality of infected mosquitoes is also higher than the estimates
for the mortality of uninfected mosquitoes (' 0.1 day−1) from [1]. The diffusion
coefficient was estimated by the formula d = L2/t, where L ' 1 km is the radius
of the area a mosquito can explore during t ' 1 day.

With the estimates from Table 1, y = b2/b′2 = 0.04. If f = 100%, then α2/α1 '
9.1 and v∗ ' 86 km/year. If f = 30% (an average estimate for Senegal [20]), then
α2/α1 ' 1.66 and v∗ ' 14 km/year. Hence, with these choices for the parameters,
resistance spreads six times faster in an area with f = 100% than in an area
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Table 1. Crude estimates for the parameters necessary to com-
pute the speed v∗

Parameter Symbol Estimation
Mortality of i1-mosquitoes b′1 0.12 day−1

Mortality of i2-mosquitoes b′2 0.2 day−1

Recovery rate for nonimmunes b 0.005 day−1

Recovery rate with the drug b̂ 0.1 day−1

Rate of acquisition of immunity c 0.003 day−1

Latent period in mosquitoes T ′1, T ′2 10 days
Latent period in I1-humans T1 10 days
Latent period in I2-humans T2 8 days
Mosquito diffusion d 1 km2/day

with f = 30%. The threshold value f∗ (corresponding to α1 = α2) above which
resistance can spread is 17.6% (an estimate much more reasonable than the 89%
found in [10, Fig. 3]).

Finally, it should be stressed that the model is intended to be only one step
toward the development of more realistic spatial models of the diffusion of resis-
tance to antimalarial drugs. Precise numerical values should be looked at without
forgetting the numerous simplifying assumptions of the model, some of which may
be relaxed in future work. Another direction not already mentioned would be to in-
clude spatial inhomogeneities between cities and countryside and temporal changes
in the total human and mosquito population densities. For the mosquito density in
particular, we did not consider seasonal variations, an important factor in Senegal,
where mosquito density is highly related to rainfall.

Appendix. The fact that there is a unique positive root for F (X) follows from
elementary calculus, using that y > 0 and z > 0 (this last inequality is equivalent
to α2 > α1). Indeed, let c3, c2, c1, and c0 be the coefficients of X3, X2, X, and
1 in F (X). Notice that c3 > 0, c2 > 0, and c0 < 0. The derivative F ′(X) is
3 c3 X2 + 2 c2 X + c1. Simple inequalities can prove, using y > 0 and z > 0, that
the discriminant of F ′(X), that is, c2

2 − 3 c1 c3, is positive. Let X1 and X2 be the
real roots of F ′(X). Then X1 + X2 = −2 c2/(3 c3) < 0 and X1 X2 = c1/(3 c3).

If c1 ≥ 0, then X1 X2 ≥ 0; so, X1 < 0 and X2 ≤ 0. In this case, F (X) is
monotone for X > 0 with F (0) = c0 < 0, F ′(0) = c1 ≥ 0, and F (X) → +∞ when
X → +∞. Thus, there is a unique positive root of F (X).

If c1 < 0, then X1 X2 < 0; so, X1 < 0 and X2 > 0. Hence F ′(X) changes its
sign only once when X > 0. But F (0) = c0 < 0, F ′(0) = c1 < 0, and F (X) → +∞
when X → +∞. So there is also a unique positive root of F (X) in this case too.
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