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Abstract: This study examines a queueing—inventory system offering premium and non-premium
services for a single commodity, where both services have individual waiting areas with finite
capacities. To enhance premium service, the system includes an online reservation facility with a
limited level. An online client initially pre-books a spot in the premium waiting area (PWA) and,
after a random duration, either joins the PWA or cancels the reservation. An offline client directly
visits the system and chooses any one of the services based on their needs. The arrivals of both client
types follow independent Markovian arrival processes (MAPs). Further, the waiting times of a client
in the premium and non-premium waiting areas are derived using the Laplace—Stieltjes transform. The
steady-state probabilities are computed, and the system’s essential performance metrics are calculated.
Subsequently, the optimal total expected cost is determined through numerical analysis and visually
represented in a graph.
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1. Introduction

In our daily lives, we often encounter two distinct types of services: premium and non-premium.
These labels are not just about cost; they represent different levels of quality, features, and overall
user experience. Consider the following examples. Non-premium services: Imagine being at a local
coffee shop, ordering a regular cup of coffee. This straightforward service is an example of a non-
premium experience, offering the essential product without any frills. In this scenario, a caffeine fix is
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obtained quickly and at an affordable price. Non-premium services are akin to the economy class of
experiences—functional and cost-effective. Premium services: Imagine visiting a high-end specialty
cafe. Opting for a premium coffee experience means more than just receiving a beverage—it is an
investment in an elevated experience. The coffee beans are carefully selected, the brewing process is
meticulous, and the ambiance is crafted for comfort and luxury. Premium services often come with
added benefits, meticulous attention to detail, and a higher price tag. Across various industries, from
streaming platforms to airlines, the choice between premium and non-premium services depends on
individual preferences, needs, and budgets. Some individuals prefer the simplicity and affordability
of non-premium services, while others seek the added value and quality associated with premium
services. We recommend that readers refer to the works of Anbazhagan et al. [1], Krishnamoorthy et
al. [2], and Sivakumar et al. [3] for a more in-depth exploration of inventory systems integrated with
service facilities.

Many researchers have analyzed queueing—inventory systems (QISs) that incorporate various types
of services. Jeganathan et al. [4] analyzed a queueing—inventory system (QIS) where demands originate
from a finite homogeneous population, with a single server offering two types of services. Upon arrival,
clients can choose either type of service with predefined probabilities. Mathew et al. [5] examined
an inventory system with positive service time, featuring two types of service channels: Channel 1
operates as a single-server facility, while Channel 2 functions as a bulk service facility. Jeganathan et
al. [6] explored a QIS with a heterogeneous service rate, where the service rate depends on the current
queue length. Kocer and Ozkar [7] examined a QIS involving server breakdowns, which could be either
minor or major. After recovery, priority is given to higher-class customers for service. Jeganathan
et al. [8] considered a stochastic model combining interconnected queueing and queueing—inventory
systems, featuring dual service stations for non-commodity and commodity services. Bhuvaneshwari
et al. [9] investigated a QIS featuring multiple optional services, where arriving clients can initially
request a regular service and have the option to additionally request several services, such as type-i,
where i = 1,2, ..., N. Jeganathan et al. [10] analyzed an inventory system with two service channels in
a multi-server setup, where channel 1 contains n identical servers and channel 2 contains m identical
servers. This system features optional service connections that interconnect channel 1 and channel
2. In our proposed model, we consider two types of services: premium and non-premium, with each
service provided by a dedicated server having a heterogeneous service rate, where the premium service
rate is slower compared to the non-premium service rate.

Online reservation offers several advantages in a queueing—inventory system. First, it provides
convenience for clients to book services anytime and anywhere, eliminating the need to visit a physical
location. Second, it allows for easy comparison of available options and prices, enabling clients
to make more informed decisions. Additionally, online reservations often include features such
as real-time availability updates, confirmation notifications, and the flexibility to modify or cancel
reservations—each of which enhances client satisfaction. The reference [11-13] gave a brief idea
about online reservation and cancellation. Shajin et al. [14] analyzed a single-server QIS with the
ability to reserve services in advance for the next K time frames (days). Baron et al. [15] considered
clients who plan to book a service online and are provided with information about their position in
the queue at the time of booking. This enables them to decide whether to enter the queue based on
their travel time and anticipated waiting time. In our proposed model, an online reservation facility
is considered to pre-book the premium waiting area in order to avoid the loss of getting a premium
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service.

This study examines an online reservation facility with two types of clients: online and offline.
Client arrivals follow independent Markovian arrival processes. In many real-world scenarios, demand
does not strictly follow a renewal process. Consequently, the Markovian arrival process (MAP) is
particularly well-suited for modeling both renewal and non-renewal cases. In this system, the MAP
allows us to capture realistic arrival patterns, accounting for dependencies and correlations between
arrivals. Additionally, the MAP is applicable to both discrete and continuous cases, though we focus on
the continuous-time scenario. For a more comprehensive understanding of the MAP and its properties,
refer to Neuts [16] and Chakravarthy [17].

Wang et al. [18] examined Markov models with uniform service rates for two types of clients, each
with different service priorities. The arrivals for both client classes were modeled using independent
MAPs. Krishnamoorthy et al. [19] analyzed a QIS with a single server, where arrivals followed a
batch MAP and services were delivered in batches according to a batch Markovian service process.
Manuel et al. [20] considered two client types: ordinary and negative, both arriving according to an
MAP. An ordinary client enters the queue, while a negative client removes an ordinary client from
the queue instead of joining the queue. Hanukov [21] explored a QIS involving skeptical and trusting
clients. AlMagbali et al. [22] studied a QIS with multi-class customers and multi-server batch service
facilities. Melikov et al. [23] analyzed a QIS involving negative clients and warehouse catastrophes at
the service facility.

Ozkar et al. [24] analyzed a QIS with two client types: priority and non-priority clients.
Priority clients purchase commodity I, while non-priority clients purchase commodity II. Wang [25]
investigated a multi-server QIS with two classes of demand. The impatience of low-priority clients was
modeled using Bernoulli reneging probabilities. Jeganathan et al. [26] examined a QIS that provides
two priority levels for clients: first priority and second priority. Vinitha et al. [27] analyzed a QIS with
two distinct client classes: impulse clients, who enter the system without a predetermined purchase
plan, and ordinary clients, who arrive with a predefined plan to make a purchase. Harikrishnan et
al. [28] discussed a finite-source, stock-dependent QIS with multiple servers and a retrial facility,
where primary customers are served by multi-servers. queueing—inventory models involving various
customer types have been investigated by Otten et al. [29], Shajin et al. [30], Dissa et al. [31], and
Ozkar et al. [32].

This study reflects the author’s experience at a restaurant, particularly during a recent visit. The
restaurant offers two kinds of service: premium and non-premium. The premium services aim to
provide a top-notch dining experience, going beyond the basics, and include special attention, a fancy
atmosphere, and the use of technology, making clients lean toward choosing premium over non-
premium. Non-premium services are standard offerings without exclusive features, including regular
seating, no special reservations, and standard billing. Additionally, the premium service allows online
reservations for clients to book in advance. If a reserved client does not show up, the restaurant
supervisor cancels their reservation after a random time. The restaurant allows clients to select the
service that best suits their needs. These real-life experiences motivated the author to develop a
mathematical model that incorporates two types of service with online reservation facilities in a QIS.

Beyond the restaurant context, similar queueing—inventory structures are found in hospitals (e.g.,
scheduled vs. walk-in consultations), airport lounges (e.g., business-class vs. economy services), and
high-demand service centers (e.g., express vs. standard repair services). In each of these settings, the
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ability to pre-book premium services while managing inventory and balancing walk-in clients aligns
well with the proposed model’s structure and analysis.
This study makes the following key contributions:

e This study investigates two types of clients, two types of services for a single commodity, and an
online reservation facility.

e The arrivals of both client types follow independent Markovian arrival processes (MAPs), and the
service duration for both services follows independent exponential distributions.

e The steady-state probabilities are derived using the Gaver algorithm, and waiting time
distributions are obtained using the Laplace—Stieltjes transform.

e We determine the optimal total expected cost and the optimal expected waiting time based on the
variation of certain system parameters.

The paper is organized as follows: We present a descriptive investigation in Section 2. Steady-state
evaluation is discussed in Section 3. Section 4 presents the system performance metrics. Section 5
discusses the analysis of waiting time. Section 6 provides numerical illustrations, while Section 7
presents the conclusions about the proposed system.

2. Descriptive investigation

2.1. Notation and abbreviations

[D],n The (g,h)-th entry of matrix D
e : A column vector of ones with appropriate dimensions
GoH Kronecker sum of matrices G and H
GRH Kronecker product of matrices G and H
I Identity matrix
0 Zero matrix
W The set that consists of all whole numbers
vi {p,p+1,p+2,---,q}, where p,ge W
5 { 1, ifm= n,
0, otherwise
Onm 1 = Sum
H(z) { (1): t)ftkzleix(l)i’se is the Heaviside function
QIS queueing—inventory system
MAP Markovian arrival process
SR, Server 1
SR, Server 2
PWA Premium waiting area
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NPWA : Non-premium waiting area
OR : Online reservation
ONC : Online client
OFC : Offline client
FCEFS : First come, first serve
HEPL : Hyper-exponential
ERG : Erlang
NCR : Negative correlation

PCR : Positive correlation

2.2. Model overview

This study explores a queueing—inventory system that offers two types of services for a single
commodity, where the storage limit for the item is denoted by S. Two dedicated servers are assigned to
provide premium and non-premium services. Both services have individual waiting areas: the premium
waiting area (PWA) with a capacity of N; is allocated for premium service, and the non-premium
waiting area with a capacity of N, is allocated for non-premium service.

An offline client (OFC) directly visits the system and, based on their needs, either joins the PWA,
the NPWA, or balks (if dissatisfied with the system) with probabilities p, g, or r, respectively, where
p+q+r = 1. The system features an online reservation (OR) facility for pre-booking the spot in PWA,
and L (< M) is the maximum level of OR allowed in the PWA.

An online client (ONC) pre-books the PWA if there is a vacancy in the PWA and the current level of
OR is less than L; otherwise, the ONC client is considered lost. A reserved ONC either joins the PWA
or cancels their booking after a random duration, which follows independent exponential distributions
with rates g« or g8, respectively, where g; denotes the current level of OR.

The arrivals of both client types are governed by independent MAPs. In this system, the ONC
arrival process is denoted as (Ey, E;), where E, and E; are matrices of dimension m; X m,. Ey governs
transitions when no arrival occurs, while E; governs transitions when an arrival happens. The Markov
chain Rs(¢) has a generator E, which is a matrix of dimension m; X m; and is expressed as E = Ey + E|.
For an ONC, the stationary rate A; is defined as A, = n,E e. Here, the stationary row vector n; of
size 1 X m, is determined by 7, E = 0 and n;e = 1. Likewise, the OFC arrival process is denoted as
(Dy, D1). Do and D; are matrices of dimension m, X m,, where D, determines the transitions when
no arrival occurs, and D, determines the transitions when an arrival happens. The Markov chain Re(f)
has a generator D, which is a matrix of dimension m, X m,, expressed as D = Dy + D,. For an OFC,
the stationary rate A, is defined as A4, = n,D;e. Here, the stationary row vector 7, of size 1 X m, is
determined by 17,D = 0 and n,e = 1.

In this system, server-1 (S Ry) and server-2 (S R,) are assigned to serve clients in the premium and
non-premium waiting areas, with service times following independent exponential distributions with
rates u; and u, (> py), respectively. Here, the premium service rate is slower than the non-premium
service rate, even though both services offer the same commodity (e.g., in a restaurant, the premium
service is intentionally slower to provide a luxurious and memorable dining experience, in comparison
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with a non-premium service that focuses on speed and efficiency). In this context, clients in both
waiting areas are served on a first-come, first-served (FCFS) basis. Upon the completion of each
service, a single item is delivered to the client. The system operates under the (s, Q) ordering policy.
In accordance with this policy, when the inventory position decreases to its designated reorder point s,
an order is initiated for a quantity of Q (= (S — s) > s + 1) items. The replenishment time adheres to
an exponential distribution with the rate 7. A schematic overview of the proposed model is illustrated
in Figure 1.

Reservation Canceled

15

-
E, Online Online clients
Reservation joins
PWA SERER-I
Online Clients ) ;
1
Premium
Waiting Area
QO
D,
=~ \
90, W/

Offline Clients Non-Premium

Waiting Area
SERVER-2

Figure 1. Online Reservation queueing—inventory System with Two Distinct Services and
Client Types.

2.3. Matrix formulation

Let Ri(?), Rx(t), R3(t), R4(t), Rs(t), and Rq(r) denote, respectively, the current level of online
reservations in the PWA, the count of clients in the PWA, the count of clients in the NPWA,
the inventory count, the phase of the online client arrival process, and the phase of the offline
client arrival process at time t. The assumptions established regarding the birth and death process
of a QIS in the descriptive investigation (Subsection 2.2) constitute a stochastic process R(f) =
{(R1(),R,(1),R5(1),R4(1),R5(t),Rs(1)), t > 0}. This process is also referred to as a continuous-time
Markov chain (CTMC) with the following state space F:

F={(31.82.83.84:85:86) | 81 € Vi 82 € V) g3 € Vo 21g € Vi1 gs € V"1 g6 € VI
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This Markov chain forms a transition matrix in which the coordinates (g1, g2, g3, g4, &5, &6) and
(hy, ha, h3, hy, hs, he) represent the row and column indices, respectively.

Theorem 2.3.1. Let the infinitesimal generator matrix P with state space F and the CTMC {R(t),t > 0},

determined by

-1
where gy € Vy7,

[Aglgl+1]((g2,g3,g4)» (h2,h3,h4))

l:fgl € VlL’

[Agig1-11g2,83.20), (s )

AIMS Mathematics

0 1 2 ... L-1
AOO AOI 0 N 0
A]O A]] A12 0

0 A21 A22 0

0O 0 0 A1

0 0 0 A

E\®1L,,, h =g,

& € V(])Vl_l_gl g3 € VNZ, g4 € VS,

0 otherwise.

glalml ®Im2, ]’l2 =g + 1,
g € V(I)Vl_gl,
81BLy, ® IL,,, hy = g,
g € V(I)Vl—gl,
0 otherwise.

S oot

A
ArL

hs = g3,

h; = g3,
g € V)2,
hs = g3,
g € V)2,

hs = g4,
2.1)
hy = g4,
g1 € Vs,
hy = g4,
g, € VS 2.2)

Volume 10, Issue 8, 19460-19494.
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where g, € VL,

L, ®pDy hy=g +1, h3=gs, hs = g4,
& € V(I)Vl_l_gl, g3 € V(I)VZ, g4 € VS,
ily, ®1L,, hy=g,—1, h3=gs, hy =g4—1,

N1—-g1 N> S
g2€V1 , g3€V0, g4 € VY,

I, ®qD, hy =g, hy = g3+ 1, hy= gy,
gZEVéV]_gl, g3€V(1)V2_1, g4€VS,

[Agie Jigo.gs.80), oy = Mol ® Ly, ha = &2, hs=g3—1, hy=gs—1, (2.3)
& € V(I)vl_gl, g3 € Vi\’z’ g4 € VS,
Ny, ®1L,, hy =g, hs = g3, hy = g4+ 0,
g€ V(])Vl—gl’ g € V(I)Vz’ g4 € Vs,
a hy = g, hs = g3, hy = ga,

N —
g2€V0] gl, g3€V(1)V2, g4€VS,

0 otherwise.
Where,

a= (614 (Eo+ Svi—gngE1) + 016, E) ® Ly + Ly ® (S(v,—g1)0:PD1 + Onzg:gD1 + rDy + Dy)
—(H(s = ga)n + g1 + 813 + 00g, 004,11 + 00g;00,02) Iy ® L,

The generator matrix PP is constructed based on the transitions of the six-dimensional continuous-
time Markov chain (CTMC) representing the system state. Each sub-matrix Ag ¢ +1, Ag g1, and Ag
corresponds to specific transitions such as arrivals, reservation confirmations or cancellations, service
completions, and replenishment.

The block structure of P reflects the layered dynamics of the system:

e I ® I,,, captures the reservation arrival process from online clients.

e g, and g5 account for reservation confirmations and cancellations, respectively.
e pDy, gD, and rD, represent offline client joining decisions and arrival intensities.
e 41 and p, correspond to premium and non-premium service rates, respectively.

e 17 denotes the replenishment rate under the (s, Q) policy.

Proof. By the assumptions of the proposed model, let Ay ¢ .1, g1 € V§ ™', be a matrix with dimension
[(N; + 1) = g)(Ny + 1)(S + Dmymy] X [(Ny + 1) = (g1 + D)V, + 1)(S + 1)mymy]. The elements
of this matrix are determined by transitions resulting from online clients pre-booking the PWA with
phase-type parameter E; (ONC phase-type arrival rate), as follows:

Ey ®I,-,,2

(81,8283, 80) — (g1 + 1,82,83,84) 1 ©1 €VE g e VI8 e VI g e VS, (24)
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Equation (2.4) yields Eq (2.1).

Then, we have Agq,_1, g1 € VE, is a matrix with dimension [(N; + 1) — g)(N2 + 1)(S + Dmymy]
X [((Ny + 1) = (g1 — D)(Ny + 1)(S + 1)mym;]. Its elements represent transitions due to reserved ONCs
joining the PWA, governed by the parameter «,

glalml ®Im2

(81,82,83.80) ——— (g1 — 1,82+ 1,83,80) : 1€V g€ V) ™ gse V) gae V. (2.5)

and OR cancellations, governed by the parameter £,

glﬁlm1®lm2 L Nl_gl N S
(81,82,83,84) — (81— 1,82,83,.84) : &1€EV5 €V " g€V’ gaeVy.  (2.6)

From Eqgs (2.5) and (2.6), Equation (2.2) is obtained.
The diagonal matrix A, ., where g; € VOL, is a square matrix of order [(N; + 1 — g)(N, + 1)(S +
1)m;m,] and contains elements representing the transition rates, as detailed below.

e If OFCs wish to join the premium waiting area, their transition is governed by the parameter pD,
(where p is the probability and D is the OFC phase-type arrival rate), as follows:
1m|®pD1 L (N1—1)—g1 No S
(81,82, 83,84) — (81,82+ 1,83,84) : 1€V 82€ V) s 83e Vi gae V. (27)
e If OFCs wish to join the non-premium waiting area, their transition is governed by the parameter
gD, (where ¢ is the probability and D, is the OFC phase-type arrival rate), as follows:
Im1®qD1

(81,82,83.84) —— (81.82.83+ L.ga) : g1 €V} g € V(l)v'_gl; $eV) T geVs. (2.8

e The transition due to a client receiving premium service is governed by the parameter y; (premium
service rate), as follow :

ﬂllml ®Imz

(81,82,83,84) —— (g1, &2~ 1,83,84—1) : g1 € Vé? & € val_g'; 83 € VN2§ 84 € Vf- (2.9)
e The transition due to a client receiving non-premium service is governed by the parameter p,
(non-premium service rate), as follows:

/121m1 ®Im2

(81,8283, 80) —— (81,82.83— 1, ga— 1) : g1 €V g€ V)™ g3 € VI g4 € VI (2.10)

e The transition due to replenishment is governed by the parameter 1 (replenishment rate), as
follows:
nlml®lm2

(8158283, 84) — (81,82,8384+ Q) : g1 €EVE g€ V)™ g3 VI gae V5. (2.11)

e The diagonal elements are filled as follow :

(81,82, 83,84) — (81,82,8584) © ©1EVE g2 e V)™, g3 e VI gy e V. (2.12)

where a is the sum of the corresponding rows of entries in A, ,,, Ag,¢,+1, and A, . _1, ensuring that each
row of the matrix P sums to zero. From Equations (2.7)—(2.12), Equation (2.3) is obtained. As a result,
each sub-matrices derived from the various transitions together makes up the infinitesimal generator
matrix P of order [%(2N1 —L+2)J(N, + 1)(S + Dmym,. O
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3. Steady-state evaluation

From the structure of the infinitesimal generator matrix P, the CTMC {R(t), t > 0} on the finite state
space F is irreducible, aperiodic, and non-null-persistent. Consequently, the limiting distribution

(81-82:83:84.85:86) — tlg}l.o Pr[Ri(t) = g1, Rx(t) = g2, R3(t) = g3, Ra(t) = g4, Rs(t) = g5, Re() = g
IR1(0), R2(0), R3(0), R4(0), R5(0), Rs(0)]

exists and is independent of the initial state. Let the probability vector ¥ = {¢/@, ¢V, .. gD y®)
satisfy the following equations:

YP

I
S

3.1
and
Ye = 1. (3.2)

Further, the vector «ﬁ(g v, g1 € VOL is partitioned as follows,

0 ,1 N1 — L
‘/,(gl) — {!ﬁ(gl )"p(gl )’ m’,/,(gl I 81)}’ g1 € VE,
) _ ,82,0 ,82,1 ,22,N. L Ni—
l)0(81 g2)  — {¢(81 82 )’,/,(gl 82 ), “_,‘/,(gl 22 2)}, gieVk g€ VOI gl’
,82s _ ,82,83,0 ,82,83,1 ,82,83,5 L Ni— N,
lﬁ(gl 82,83)  — {¢(81 82,83 )’¢(81 82,83 )’m,‘/,(gl 82,83 )}’ geVE g€ VOI gl’ g eV 2,
Qp(gl,gz,gs,g@ {.ﬁ(gl,gz,gs’gml) !/,(gl,gz,g3,g4’2) ‘p(gl,gz,g3,g4,m1)}

L Ni—g1 N> S
gleVO,gzeVO , 8 €V’ g eV,
l/,(gl,<g’z,g3,<g'4,gs) — {w(gl,gz,gs,gmgs,l) ¢(g1,gz,g3,g4,gs,2) w(gn,gz,gs,gmgs,mz)}
9 9 9

Ni—gi

g1 € VL, & € VO , &3 € VNZ, 84 € VS, g5 € V;nl

Our infinitesimal generator matrix P shares the same structure as described in Gaver [33], allowing
us to utilize similar arguments to derive the limiting probability vectors. Here, we describe the Gaver
algorithm.

1. Initialize Z, and determine the matrices Z, recursively, as follows:
* Zo = Aoo,
* Ly = App + Ann—l(_Z,:_ll)An—lm ne VlL

2. Obtain the limiting probability vectors,

Y =P A(=Z), ne Vi

3. Determine the system of equations

Y7, = 0; (3.3)
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L

Z Y ™e = 1. (3.4)

n=0

In Eq (3.3), the vector ¢'¥ can be found distinctively up to a multiplicative constant. This constant

L
is determined by solving ¢ = ¢y "*VA,,1,(-Z;"), n€ Vi and Y, y™e=1.
n=0

4. System performance metrics

In this section, we derive various important measures to analyze the system’s characteristics.

e Expected inventory count: Let E; denote the expected inventory count of the system in steady
state. It is defined using the vector ¥ along with the positive inventory levels as follows:

L Ni-g1 M

E, = Z Z Z i g4‘/,(g1,gz,g3,g4)e.

81=0 g2=0 g3=0g4=1

e Expected reorder rate: Let Er denote the expected reorder rate in the steady state. This
metric captures how frequently the inventory level reaches the reorder point s and triggers a
replenishment process. The reorder is initiated whenever the inventory level drops from s + 1 to
s following a service completion (either premium or non-premium).

L Ni-g1 M

Ep = Z Z Z ‘p(gl,gz,gz,sﬂ)(ﬂllml ® I,,,)e

81=0 g2=1 g3=0
L Ni-g1 Ny

+ Z Z Z l/,(glygz,g3,s+1)(#21ml ®Im2)e.

81=0 g=0 gz=1

The first term accounts for reorder triggers caused by a premium service completion when
inventory is at s + 1, while the second term captures reorder events due to a non-premium service
completion. It can be calculated at both premium and non-premium services.

e Expected count of online reservations in the PWA: The maximum capacity of the online

reservation is L. Let Eog be the expected count of online reservations in the PWA. Subsequently,
we have

L
Eor = Zglaﬁ(g‘)e.
g1=1

The formula multiplies each possible reservation count g; by the steady-state probability of the
system being in a state with that count. The result is the Eyg under steady-state conditions.
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e Expected count of clients in the PWA: Let Epy4 denote the expected count of clients in the PWA
under steady-state. This includes clients who are waiting for premium service, excluding those
who have only reserved but not yet arrived.

L Ni-g1

Epwa = Z Z e,

81=0 g=1

e Expected count of clients in the NPWA: Let Eypy4 denote the expected count of clients waiting
for non-premium service under steady-state conditions. This includes all clients physically
present in the NPWA.

L Ni-g1 M

Enpwa = Z Z Zg3‘p(g1,gz,g3)e_

81=0 £2=0 g3=1

e Expected count of online clients lost in the system: Let Eqy; denote the expected count of online
clients lost in the system under steady-state conditions. These losses occur when either the PWA
1s full or the reservation limit L is reached.

L-1 N

Eont = _[ Z Z Z w(gl N1-81.83 g4)(E1 ®Im2)e

21=0 g3=0g4=0
-L Ny S

+ Z Z Z lﬁ(ng .83 g4)(E1 ®Im2)e

82=0 g3=0 g4=0

First term: Captures the expected loss of online clients when the number of reservations g is less
than L, but the PWA is already full.

Second term: Accounts for the loss when the reservations limit L has been reached and additional
online reservations cannot be accommodated.

e Expected count of online reservations being canceled: Let Epgc denote the expected count of

online reservations canceled by clients before they arrive at the PWA. These cancellations occur
when clients abandon their reservations at a given cancellation rate 8 prior to utilizing the service.

L Ni—-g1 Na
Eorc Z Z Z Z w(gl 182:83 g4)(g B, ®Im2)e

g1=1 =0 g3=0g4=0

e Expected count of offline clients lost in the system: Let Eyp; represent the expected count of
offline clients lost in the system under steady-state conditions.
—81

1 L Npi-1 N> S
Eorr, = /l_[ Z Z Z Z ¢(glagz,g3,g4)(1ml ® rDl)e
2 g1=0 g>=0 g3=0g4=0
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L Np—
+ Z Z Z ‘p(gl N1—81,83, g4)(1 ® rDl)e
81=0 g3=0 g4=0
L N
+ Z Z l//(gl,N|—g1,N2,<g’4)(Iml ® D))e]|.
81=0 g4=0

Offline clients are considered as lost in the following situations 1. When there is no available
space in either PWA or NPWA or both upon their arrival. 2. Even when there are vacancies in
both waiting areas, a customer may abandon the system with probability r.

5. Waiting time analysis

In this section, we derive the waiting time for a client in both the PWA and NPWA using the
Laplace—Stieltjes Transform (LST). The time interval between a client’s arrival and the instant their
service is completed is called the waiting time.

5.1. Waiting time for a client in the PWA

Let W, be a continuous-time random variable representing the waiting time for a client in the PWA.
To derive the distribution of Wy, we consider a Markov chain at an arbitrary time t, and the state space
F is redefined as follows: Fy = {(g1, 82,8384 85.86) | 81 € Viig2 € V" ™*'583 € Vo184 € V5185 €
Vi ge € VI

1 > 86 1 I

Theorem 5.1.1. The probability that a client does not wait in the PWA is given as

L Ni-1-g1 N, mp  mp

P{W, = =1-= Z Z Z Z Z Z w(gl,gz,ga,gzt,gs,gc) (5.1)

21=0 =0 g3=0g4=0gs=1 ge=1

Proof. The sum of the probabilities of zero waiting time and positive waiting time is equal to one.
Then,

P{W, =0} + P{W, >0} = 1. (5.2)

From Eq (5.2), the probability of a positive waiting time is obtained as follows:

L Ni-1-g1 N,

P{W, > 0} Z Z Z Z Z Z w(gl,gz,gs,gmgs,gs) (5.3)

81=0 £2=0 g3=0g4=0 gs=1 ge=1

By substituting Eq (5.1) into Eq (5.2), we obtain Eq (5.3).
O

In order to derive the distribution of W;, some auxiliary variables are defined. Consider a Markov
chain at an arbitrary time ¢, and assume that it is in a state (g, g2, g3, 4> &5 86)- &2 > O.

1. Wi(g1, &2, g3, 84, &5, 8¢) Tepresents the time until the demand of a tagged client is satisfied.
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2. Wi(x) = E[e""] be a corresponding LST for unconditional waiting time (UCWT).
3. Wi(g1, 82, 83, §4» &5, 86)(x) = E[e*W181:82:83:84.85:80)] be a corresponding LST for conditional waiting
time (CWT).

Theorem 5.1.2. The LST{WT(gla 82,83, 84> 85, gﬁ)(x)a (gla 82,83, 84585, 86) € Fi}’ where Fi = Fl U {C}
satisfies the following system:

Zi(x)Wi(x) = —uie(g1, 82, 835 84- 855 86) (5.4)

where g, € VE, g, € VI8, g3 € V), gy € V3, g5 € VI, gs € VI™.

Z1(x) = (A—xI), where the matrix A is determined from P by removing the state (g1, 0, g3, 84, &5, ¢),
g1 €V g€ Vévz, g1 € V3, gs € VI", g € V™. Let {c} be the absorbing state of the system, which
occurs if the tagged client demand is satisfied.

Proof. We apply the first-step argument to determine the CWT as follows:

Forg, e Vi, g, € V{V]_g‘, g3 € V(])VZ, g+=0,¢g5¢€ Vi"', g6 € VI, m = mym,. Then,

alWi (g1, 82,830, 85, 86)()] = Ony .00 lmy ® PD1W; (81,82 + 1, 83,0, 85, 86)(x)
Oy Iy ® gDIWT (81,82, 83 + 1,0, 85, 86)(X) = 014,08, —g10, E1 ® L, Wi (g1 + 1, 82,83, 0, 85, 86)(X)
—g1al, Wi(g1 — 1,82+ 1, 3,0, g5, 86)(x) — 2181, Wi (g1 — 1, 82, 83,0, &5, 86)(x)

1, Wi (g1, 82,83, O, &5, 86)(x) = 0,(5.5)

a :(XIm+5N1—g1g2[m1 ®pD1+5N2g3Im1 ® QDl +5Lg18N1—g1g2E1 ®Im2 +g1CL’Im +g1,81m+771m)'

Ni— N
Forg e Vi, g eV, g3€V,?, g4 € Vi, gs e V", go € VI, m=mmy,

bW (g1, 82, 835 84» &5 86)(X)] — ONy—g 100 Ly ® PD1IWS (81,82 + 1, 83, 84. &5, 86)(X)
—Onsg3 i, ® GD1W( (81, 82,83 + 1, 84 85, 86)(X) = OLg, 0wy, E1 © L, Wi (g1 + 1, 82, €3, 84 &55 86)(X)
—g1al,Wi(g1 — 1,8+ 1, 83,84, 85, 86)(%) — 8181, Wi(g1 — 1, 82, g3, 84, &5, 86)(X)
—H(s — gonl,W; (81,82, 83,84 + 0, 85, 86)(X) — S1tt1 LW (81,82 — 1, 83,84 — 1, 85, 86)(X)
—00gs 2l W1 (81, 82,83 — 1,84 — 1, 85, 86)(%) = 1 1,,(5.6)

b= (le + 5N1—g1g21m1 ®pD1 + 5N2g31m1 ® QDl + SLglgNl—glngl ®Im2 + glalm
+81BLn + H(s — ga)nly + pii Ly + S1gopt1 Ly + S0 tia 1)
From Eqgs (5.5) and (5.6), we obtain a coefficient matrix for the unknowns, which is block tri-diagonal,
yielding the stated result. O
Theorem 5.1.3. The n™™ moments of CWT are expressed as
n+1 n

) d
Zl(x)MWI (x) —(n+ Ddx”

Wi(x)=0 (5.7)
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and

n+1

Wwf(gl . £2: 838485, 86) (D=0 = E[W[*' (1. 82, £3. 84 85 861, (5.8)

(g1, 82,83, 84, 85, 86) € FY.

Proof. The Egs (5.5) and (5.6) can be exploited to get a recursive algorithm to compute moments for
both CWT and UCWT.

By differentiating Eqs (5.5) and (5.6) (n + 1) times and then evaluating the results at x = 0, we
obtain the following expressions:

N_
Forg e Vi, g e V'™ g€ Vévz,g4 =0,85€ V", go € V", m=mmy,

alEIW* (g1, 82,8350, 85, 86)]| — Ony—g1g0 Ty ® PDIEIW] (81,82 + 1, 83,0, g5, 86)]

—Onse Dy ® gDIEIW] ' (81, 82,83 + 1,0, 85, 86)] — 016,08 -1 E1 ® L, EIW} ' (g1 + 1, 82, 83, 0, 85, 86)]
~g1al, E[W (g1 — 1,82+ 1,830, 85, 86)] — 1B EIW]" (g1 — 1, 82, 83,0, g5, 86)]
—nLEIW (81,82, 83, Q. 85, 86)]

= (n+ DE[W{(g1, 82,830, g5, 86)1(5.9)

a= (SNl_gngIml ®le + 5Nzgalml ® qDl + 5L815N1_glg2E1 ® Imz + gla'Im + gl:BIm + 77Im)-

Ni— N
Forg e Vi, g e V"™ g3e V2, ga€ Vi, gs € V", g6 € V", m = mimy,

b|EIW] (g1, 82, 83+ 84> 85, 86)] | = Ony—g100Tm; ® PDVEIW (g1, 82 + 1, 83, 84, 85 86)]

~ONsgs Ly ® gD1E[W] (g1, 82,85 + 1, 84, 85, 86)]
~0L00N 010 E1 © L, EIWT (81 + 1, 82, 83, 84, 85, 86)]
—g1al, EIW (g1 — 1,82 + 1, 83, 84, 85, 86)] — G1BL.EIW] (g1 — 1,82, 83, 84, 85, &6)]
—H(s — gl EIW" (g1, 82, 83,84 + Q. 85, 86)]
~S10, 1 L EIW] (81,82 — 1, 83,84 — 1,85, 86)]
—S0g 2l EIW ' (g1, 82,83 — 1,84 — 1, 85, 86)]
=+ DE[W{(g1,82, 83,84, 85:86)),  (5.10)

b= (5N1—g1g21m1 ®pD1 + 5N2g3lm1 ® C]Dl + SLglgNl—glngl ® Imz + glozlm + gl,BIm
+H(s = gy + 1,1 Ly + pi Ly + Sogsftaln).

The Egs (5.9) and (5.10) enable us to ascertain the unknowns E[W{”l(gl,gz,g3,g4,g5,g6)],

(81,82,83,84-85.8¢) € F{ based on the moments of one order less. Noticing that
E[W{(g1, 82,83, 84,85,86)] = 1 for n = 0, we can obtain the moments up to the desired order in a
recursive way. O
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Theorem 5.1.4. The LST of UCWT for a client in the PWA is expressed as

L (Ni-D-g1 N, my mp

Wl*(x) =1-= Z Z Z Z Z Z w(81s82583’g4,85’86) (5.11)

£1=0 g2—0 83=0 g4=0 gs=1 g6=1
L (Ni-D-g1 Ny my - mp

+ Z Z Z Z Z Z w(gl,gz’ghgz;,gs,ge)w (21,8 + 1,83, 24, g5, 6)(X).

81=0  £=0 g3=0g4=0gs5=1ge=1

Proof. Employing the Poisson arrival time average property, the LST of W is determined as follows:

Wik(x) = ‘p(gl)Wl*(glng + 15 83,84, 85, g6)(x)9 (512)

where g, € V5, g, € Vév‘_l_g‘, g3 € Vévz, ga€Vy,gs€ V", go€ V™.
By Eq (5.12) Wj(x) is obtained for given x. This enables the use of the Euler and Post-Widder
algorithms as detailed by Abate and Whitt [34], for the numerical inversion of Wi (x).
O

Corollary 5.1.1. The n™ moments of UCWT can be expressed as

E[W!] = (5on + (1 = 6on)

L (Ni-)-g1 M mp - mp

Z Z Z Z Z Z w(gl,gz,g%g4,g5,g6)E[W”(g1,g2 +1 g3,g4,g5,g6)]) (513)

g1=0  g2=0 g3=0g4=0gs5=1g6=1

Proof. The moments of W; can be computed by differentiating Theorem 5.1.4 n times and evaluating
the result at x = 0. This approach gives the n" moments of UCWT in terms of the CWT of the same
order. m]

Corollary 5.1.2. The expected waiting time of a client in the PWA is expressed as,

L (Ni-D-g1 N, my mp

EWil=> > % Z D D WSS EW (g, + 1,83, 80,85, 8] (5.14)

81=0 £=0 g3=0g4=0gs5=1g6=1
Proof. Substituting n = 1 into equation (5.13) in Corollary 5.1.1, we get the result as equation (5.14).
O

5.2. Waiting time for a client in the NPWA

Let W, be a continuous-time random variable representing the waiting time for a client in the
NPWA. To derive the distribution of W,, we consider a Markov chain at an arbitrary time t, and the
state space F is redefined as follows: F, = {(g1, g2, 83, 84,85-86) | &1 € V0 182 € VNl Eligs € V1 184 €
VO’gS € Vl ;86 € V 1

AIMS Mathematics Volume 10, Issue 8, 19460-19494.



19476

Theorem 5.2.1. The probability that a client does not wait in the NPWA is given as

Ni—g1 No— my nyp

P(W,=0}=1- Z Z Z Z Z Z y(81:82:83.84:85.86), (5.15)

81=0 g2=0 g3=0 g4=0gs5=1 g6=1
Proof. The approach used to prove this theorem is similar to that of Theorem 5.1.1. O

Theorem 5.2.2. The LST{W;(gl’gZa 83,84, 85, 86)(x), (gnga 83,8485, g6) € Fg}’ where F; = F2 U {C},
satisfies the following system:

ZZ(X)W;(X) = _IUZe(gl’gZa 83, 84, 85, g6)a (516)

wheregleVL,gZEV'g],g eVt g e Vs, gs eV goe V™

Z>(x) = (B—xI), where the matrix B is determined from P by removing the state (g1, £2,0, g4, &5, £6),
g€Vt g, € Vév‘_g', g4 € V]S, gs € V"', g6 € V{". Let {c} be the absorbing state of the system, which
occurs if the tagged client demand is expired.

Proof. The approach used to prove this theorem is similar to that of Theorem 5.1.2.

O
Theorem 5.2.3. The n'* moment of CWT is expressed as
n+1 4"
Zz(x) s Wi(x) —(n+ l)dxn Wix) =0 (5.17)
and
n+1
pe W3(815 82. 83 84> 85> 86)(Xx=0 = E[W3 (81, 82, 83, 84 &5, 86)). (81, 82, 83, 84- 85 &6) € F5.(5.18)

Proof. The approach used to prove this theorem is similar to that of Theorem 5.1.3.

Theorem 5.2.4. The LST of UCWT for a client in the NPWA is given by

L Ni-giN-1 § my m

Wix) = 1- Z Z Z Z Z Z l//(glangs,gmgs,ge) (5.19)

81=0 g=0 gx—O 84=0 gs=1 ge=1
L Ni—g1 Np— mp  my

2,0 Z Z 2. Z Yl ssss s Wi (g, g, 85 + 1, 84, 85, 86)(X).

81=0 £,=0 g3=0 g4=0 gs=1 ge=1

Proof. The approach used to prove this theorem is similar to that of Theorem 5.1.4.
]
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Corollary 5.2.1. The n™ moment of UCWT is given by

E[W!] = (50,, +

L Ni-giN>-1 § my

(1 = 6on) Z Z Z Z Z Z Yl81828384858) EI W2 (g1, 82, 83 + 1,84’85,86)])-

m

81=0 g2=0 g3=0 g4=0 gs=1 ge=1

Proof. The proof of this corollary follows a technique similar to that in Corollary 5.1.1.

Corollary 5.2.2. The expected waiting time of a client in the NPWA is given by

L Ni—-g1 No— my np

1S
E[W;] = Z Z Z Z Z Y8888 B Wy (g1, 82, 83 + 1, 84, 85, 86)]-

81=0 £2=0 g3=0 g4=0 gs=1 g6=1

Proof. The proof of this corollary follows a technique similar to that in Corollary 5.1.2.

6. Numerical illustration

(5.20)

(5.21)

In this section, our primary objective is to examine the impact of the variables S and s on the
system’s total expected cost rate (TEC). The MAPs for the appearance of online and offline clients are

1. Hyper-exponential (HEPL):

-10 O 9 1
DO‘[ 0 —1]’ Dl‘[og 0.1]’
-1.90 0 1.710 0.190
Eo [ 0 —0.19]’ El‘[o.m 0.019]'
2. Erlang (ERG):
-1 1 0 0 00
Dy=|10 -1 11|, D;=|0 0 0};
0O 0 -1 1 00
—4.5000 4.5000 0 0 00
Ey)= 0 —-4.5000 4.5000 |, E, = 0 0 0f.
0 0 —4.5000 45000 0 O
3. Negative correlation (NCR):
-2 2 0 0O 0 O
Dy=|10 =81 0 |, D;=|2525 0 55.75|;
0O 0 =81 55.75 0 25.25

AIMS Mathematics

Volume 10, Issue 8, 19460-19494.



19478

—1.00222 1.00222 0 0 0 0
Ey= 0 —1.00222 0 , E;=10.01002 0 0.9922].
0 0 —225.75 223.4925 0 2.2575
4. Positive correlation (PCR):
-2 2 0 0O 0 O
Dy=|0 =81 0|, D;=|5525 0 25.75];
0O 0 =81 25.75 0 55.25
-1.00222 1.00222 0 0 0 0
Ey = 0 —1.00222 0 , E;=109922 0 0.01002 |.
0 0 —225.75 2.2575 0 223.4925

The online client process exhibits a positive (negative) correlated arrival pattern, with a coefficient
of variance c,,, = 24;m(=Ep)~'e — 1 = 1.9868 (1.9868) and a coefficient of correlation c.,, =
(L (=Eo) 'E\(=Ep)'e — 1)/cyar = 0.4889 (—0.4889), where the arrival rate A, = 1.00.

The offline client process exhibits a positive (negative) correlated arrival pattern, with ¢, =
2m(=Dy) te—1=2.7265 (2.7265) and c,, = (A212(—=Dy) "' D1(=Dy)'e—1)/cyr = 0.1213 (=0.1213),
where the arrival rate 1, = 3.81.

6.1. Total expected cost

The total expected cost rate (TEC) is calculated by considering the following cost:

TEC = ¢, E; + ¢sEg + cpwaEpwa + cnpwaEnpwa + corEor + ca(Eont + Eorr) + corcEorc,
where

¢, : The inventory holding cost per unit item per unit time t.
¢y . The setup cost for every order.
cpwa - The waiting cost for a client in the PWA per unit time t.
cvepwa - The waiting cost for a client in the NPWA per unit time t.
cor : The online reservation holding cost per unit time t.
cq - The lost cost per client per unit time t.
corc : The online reservation cancellation cost per unit time t.

The primary goal of any business is to increase its profits by minimizing the total expected
cost (TEC). Analyzing the total expected cost function involves adjusting the model’s parameters to
optimize operational efficiency and support informed decision-making, ultimately ensuring sustained
profitability. For the numerical analysis, we begin by setting the parameters as follows: § = 28, s = 8,
M =LA4=37a=25=14u =65 u=75n=84, N, =10,N, =8, L=5,p =05,
q =0.3,r=1-p— g, and with the cost values ¢, = 1.06, c¢; = 10, cpwa = 8, cnpwa = 5, cor = 2.6,
¢ = 0.5, and corc = 0.5.
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e The local convexity points of the total expected cost (TEC) are explored by simultaneously
varying both § and s, as shown in Table 1 and Figure 2. It is important to note the existence
of a minimum TEC in each row and column. Specifically, the minimum TEC values are denoted
by underlined numbers in the rows and bold numbers in the columns. The intersection of an
underlined number and a bold number represents the optimal cost value TEC*(S*, s*). In this
context, TEC*(S*, s*) = 8.243018 is achieved at §* = 28 and s* = 8. This result provides a
practical decision basis for inventory managements; by setting the maximum inventory level to
S* = 28 and the reorder point to s* = 8, the system achieves its lowest expected cost. This helps
management balance inventory holding and ordering costs effectively.

e Figure 3 depicts the values of S € [26,31], s € [6,12], N; = 9,10, and L = 5 with n = 8.6 while
keeping all other parameters constant. Increasing the maximum capacity of PWA (V) leads to a
rise in the optimal cost value TEC*(S*, s*). This means that, if the size of the PWA increases, the
client count in the PWA rises, which in turn causes the TEC to increase. Increasing PWA capacity
attracts more clients but may raise operational costs, so expansion should be carefully evaluated
against demand.

e Compared to Figure 3, the optimal cost value TEC*(S *, s*) in Figure 4 increases as the maximum
level of the OR (L) has increased. This implies that overbooking may lead to higher cancellations
and holding costs.

e Compared to Figures 3 and 4, the optimal cost value TEC*(S*, s*) in Figure 5 increases due to
the rise in the maximum level (L) of the OR. Reservation levels have a significant impact on cost;
overbooking should be avoided unless sufficient inventory and staffing are available to support it.

e As the cost values of cj, cpwa, Cnpwa, Cs, and ¢ increase, the total expected cost also rises,
as indicated in Tables 2 and 3. This highlights the importance of cost control—minimizing
holding, waiting, setup, and loss-related costs can significantly reduce the overall TEC. Inventory
management should regularly assess and optimize these cost components to maintain system
efficiency.

Table 1. Impact of S and s on TEC(S, s).
S/s 6 7 8 9 10 11 12

26 10.417744 9.660536 9.075629 9.030448 9.329161 9.818025 10.437805
27  9.776801 8.998868 8.462639 8.482110 8.765466 9.196012 9.732667
28 9.409467 8.734543 8.243018 8.258543 8.511385 8.895220 9.369460
29 9399509 8.762253 8.294998 8.307935 8.544775 8.900918  9.357820
30 9.604686 9.000279 8.559727 8.580022 8.829237 9.200824  9.654875
31  9.982851 9.413633 9.021309 9.080195 9.348611 9.729000 10.184926
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TEC(S,s)

Figure 2. TEC(S, s).

Figure 3. Three-dimensional plot illustrating the convexity of TEC(S, s) (n = 8.6 and L =
5).
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TEC(S,s)

Figure 4. Three-dimensional plot illustrating the convexity of TEC(S, s) (n = 8.6 and L =
6).

TEC(S,s)

Figure 5. Three-dimensional plot illustrating the convexity of TEC(S, s) (n = 8.6 and L =
7).
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Table 2. Impact of ¢;, cpwa, and cypwa on TEC.

c;,=1.02 c;,=1.03
CPWA/CNPWA 5.25 5.5 5.75 6 5.25 5.5 5.75 6

7 7.7222  7.8956 8.0691 8.2425 8.0008 8.1742 8.3477 8.5211
7.25 7.7801 79536 8.1270 8.3005 8.0587 8.2322 8.4056 8.5791
7.5 7.8381 8.0115 8.1850 8.3585 8.1167 8.2902 8.4636 8.6371
7.75 7.8961 8.0695 8.2430 8.4164 8.1747 8.3481 8.5216 8.6950

cr=1.04 c;=1.05

cpwa/cnpwa  5.25 5.5 5.75 6 5.25 5.5 5.75 6
7 8.2794 8.4528 8.6263 8.7997 8.5580 8.7315 8.9049 9.0784
7.25 8.3374 8.5108 8.6843 8.8577 8.6160 8.7894 8.9629 9.1363
7.5 8.3953 8.5688 8.7422 8.9157 8.6739 8.8474 9.0208 9.1943
7.75 8.4533 8.6268 8.8002 8.9737 8.7319 8.9054 9.0788 9.2523
Table 3. Impact of ¢, c,, and c.; on TEC.

c;,=1.02 c,=1.03
csfcaq 035 04 0.45 0.5 0.35 04 0.45 0.5
7.05 52749 5.3354 5.3956 5.4564 5.5535 5.6140 5.6745 5.7350
725 5.8927 59532 6.0137 6.0742 6.1713 6.2318 6.2923 6.3528
745 65105 6.5710 6.6315 6.6920 6.7891 6.8496 6.9102 6.9707
7.65 7.1283 7.1888 7.2494 7.3099 7.4069 7.4675 7.5280 7.5885

c;,=1.04 c,=1.05
csfca  0.35 04 0.45 0.5 0.35 04 0.45 0.5
7.05 6.1107 6.1712 6.2318 6.2923 6.3893 6.4499 6.5104 6.5709
725 6.7285 6.7891 6.8496 6.9101 7.0072 7.0677 7.1282 7.1887
745 7.3464 7.4069 7.4674 7.5279 7.6250 7.6855 7.7460 7.8065
7.65 79642 8.0247 8.0852 8.1457 8.2428 8.3033 8.3638 8.4243

6.2. Effects of varying parameters on certain performance measures

e Table 4 demonstrates that an increase in the non-premium service rate (u,) results in a decrease
in E;. Similarly, as the replenishment rate (1) increases, the E; also increases. This means
that an increase in the service rate leads to a faster checkout and reduces the inventory level.
Conversely, if the inventory restocking duration decreases, then the inventory level increases.
Inventory management should strategically adjust service and restocking rates to maintain optimal
inventory levels—accelerating service to reduce overstock and increasing replenishment speed to
prevent stock-outs.

e Table 5 examines the impacts of the probability p on Epya, Eypwa, and Epg. If the probability (p)
of offline arrivals choosing the PWA increases, the expected client count in the PWA (Epy4) and
the total expected cost (TEC) also increase. Conversely, the expected client count in the NPWA
(Enpwa) and the expected count of online reservations in the PWA (Eg) are slightly decreased.
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Management should monitor and control the flow of offline clients toward premium services, as
a higher preference for PWA may lead to congestion and increased operational costs. Balancing
service allocation can improve efficiency and cost-effectiveness.

e Figure 6 illustrates that an increase in the rate (@) of a reserved online client joining the PWA leads
to a reduction in Epg. Similarly, an increase in the rate (8) of online reservations being canceled
leads to a reduction in Epg. To manage reservation load effectively, operators can influence client
behavior—encouraging timely arrivals (higher @) or enabling flexible cancellations (higher g) to
avoid reservation backlog and improve service utilization.

e Figure 7 explains the impact on Epy, due to the rates y; and @. When the premium service
rate (u;) increases, the expected client count in the PWA (Epy4) decreases. This suggests that,
as the service time decreases with an increase in the rate, customers experience faster service.
Similarly, when the rate of reserved clients joining the PWA () rises, the expected client count in
the PWA (Epw4) also increases. This indicates that reserved clients join the PWA within shorter
intervals of time when the rate increases. Enhancing premium service speed can help reduce
waiting area congestion, while a higher rate of reservation fulfillment should be managed to avoid
overcrowding and maintain service quality.

Table 4. Impact of u, and 17 on E;.

8.4 8.5 8.6 8.7 8.8 8.9
Ho/n E
1

7.1 0.740472 0.764460 0.787888 0.810769 0.833119 0.854955
7.2 0.655943 0.679300 0.702109 0.724385 0.746142 0.767397
7.3 0.572785 0.595531 0.617742 0.639432 0.660616 0.681309
74 0490969 0.513124 0.534756 0.555880 0.576509 0.596658
7.5 0410466 0.432049 0.453121 0.473697 0.493789 0.513413
7.6 0.331249 0.352279 0.372809 0.392853 0.412426 0.431541

Table S. Impact of the probability p on various performance measures.
p Epwa Enpwa Eor TEC(S,s)

0.4 0.200229 0.208279 0.000057 9.561180
0.45 0.216346 0.196493 0.000055 9.813898
0.5 0.230531 0.183859 0.000051 10.04449
0.55 0.242290 0.170505 0.000050 10.25123
0.6 0251222 0.156595 0.000047 10.43192
0.65 0.257029 0.142336 0.000044 10.58404
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6.3. Analyzing the impact of parameter variations under different MAP

e Table 6 indicates that as the rate « increases, the expected count of online reservations in the
PWA (Eor) decreases. Conversely, the expected client count in the PWA (Epw4), the expected
number of online clients lost (Egy;), the expected client count in the NPWA (Eypwa), and the
expected number of offline clients lost (Eor; ) increase. These effects are observed across various
distributions. While encouraging prompt arrival of online clients reduces reservation backlog, it
may lead to system congestion and higher client loss. Management should optimize « to balance
service availability with system capacity.

e Table 7 demonstrates that an escalation in the lead time rate (17) corresponds to an increase in the
expected inventory count (E;) and expected reorder rate (Eg). Conversely, there is a decrease in
the expected client count in the PWA (Epy4) and expected client count in the NPWA (Eypw4) due
to stock availability. These effects are observed across various distributions. Faster replenishment
boosts inventory levels and turnover but also frees up waiting-area capacity, reducing customer
congestion. Management should calibrate ordering speed to maintain service levels without
inflating holding costs.

e Table 8 illustrates that increasing the premium service rate (u;) leads to a decrease in both the
expected inventory count (E;) and the expected client count in the PWA (Epy,4). Conversely,
there is an increase in Epg due to the faster depletion of inventory, and these effects are observed
across various distributions. While speeding up premium service reduces waiting and inventory
levels, it may require better coordination with reservation capacity to avoid excess demand or
stockouts. Management should align service speed with inventory replenishment and booking
controls.

e Table 9 shows the presence of online and offline clients under the Erlang distribution, along
with negative and positive correlations on the optimal cost values. Understanding how correlated
arrival patterns impact cost under realistic distributions like Erlang helps management fine-tune
system parameters and client prioritization strategies to achieve cost efficiency.

e Table 10 presents the occurrence of offline and online clients across various distributions (Erlang,
negative correlation, and positive correlation) on some performance measure. Recognizing how
different client arrival patterns impact performance metrics allows management to adapt service
strategies and resource allocation based on the underlying demand variability.
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Table 6. Effects of the MAP with ERG, NCR, and PCR on performance measures.

Client arrival a EOR EPWA ENPWA EONL EOFL
32 0.002997 0.004555 0.003460 0.000193 0.000122
. 33 0.002300 0.005545 0.006770 0.000495 0.000125
MAPWIthERG 7\ 001631 0.008336 0.014405 0.001471 0.000233
35 0.001075 0.014329 0.023855 0.002674 0.000380
32 0017270 0.034124 0.022543 0.004862 0.001412
. 33 0.013856 0.056668 0.023345 0.005747 0.001416
MAPWIthNCR 5 012140 0.075949 0.023431 0.007033  0.001626
35 0.011589 0.093509 0.025585 0.011574 0.002136
32 0.000803 0.010454 0.034190 0.005479 0.000877
. 33 0.000693 0.016218 0.047212 0.01190  0.002922
MAPwWIth PCR 5 1000616 0.040793 0.056397 0.018915 0.015442
3.5 0.000559 0.055609 0.057733 0.035317 0.025118
Table 7. Effects of the MAP with HEPL, ERG, NCR, and PCR.
Client arrival 77 E[ ER EPWA ENPWA
88 0.174310 0.168781 0.002696 0.062596
. 89 0.178880 0.173710 0.002589 0.061230
MAPwith HEPL " 105061 0.183509 0.002380 0.058440
9.1 0.186570 0.188353 0.002278 0.057024
88 2.198943 0392753 0.103729 0310223
. 89 2199663 0.392899 0.103709 0.309933
MAPWIthERG " 5 501190 0393204 0103671 0.309373
9.1 2202008 0.393363 0.103653 0.309104
88 3311371 0248782 0011272 0.052170
. 89 3353101 0.250233 0.010228 0.051344
MAPWIthNCR 5" 5303601 0253521 0.008252  0.049870
9.1 3.434086 0.255516 0.007305 0.049218
88 1411492 0.036408 0.040941 0.016812
. 89 1.414364 0.038132 0.040841 0.013570
MAPwith PCR "o 116038 0.039839 0.040729 0.007100
9.1 1420669 0.041524 0.040607 0.003868
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Table 8. Effects of the MAP with HEPL, ERG, NCR, and PCR.

Client arrival Uy

E;

Eor

EPWA

6.5
6.6

MAP with HEPL

6.7
6.8

0.347937
0.328664
0.288655
0.233663

0.000153
0.000163
0.000284
0.000386

0.004459
0.004012
0.003304
0.002696

6.5
6.6

MAP with ERG

6.7
6.8

2.202008
2.183082
2.163971
2.144756

0.000034
0.000035
0.000036
0.000037

0.103653
0.103595
0.103535
0.103473

6.5
6.6

MAP with NCR

6.7
6.8

3.311371
3.213376
2781790
1.877155

0.160274
0.172271
0.181240
0.203387

0.021293
0.016191
0.011272
0.010230

6.5
6.6

MAP with PCR

6.7
6.8

2.387458
2.146230
1.903801
1.661274

0.000459
0.000498
0.000536
0.000573

0.056419
0.052986
0.049265
0.045270

Table 9. Impact of online and offline arrivals on the optimal cost value.

MAP with ERG MAP with NCR MAP with PCR

Online/Offline Arrival S* s*
TEC(S*,s%)
MAPWINERG [ iciner  toomom9  11aas
MAP with NCR %'9331218 ?(7).0888626 ?3,4497298
MaPwinpcR 2 T B 82T
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Table 10. Impact of online and offline client arrivals on certain performance measures.

Online Client

Arrival 1 ER EPWA ENPWA EOR

Offline client arrival with ERG
MAP with ERG 4.621442 0.423645 0.002354 0.118958 0.000013
MAP with NCR 1.258070 0.616003 0.183491 1.783972 0.618471
MAP with PCR  5.319139 0.903415 0.169887 1.024294 0.000231
Offline client arrival with NCR
MAP with ERG 4.022059 0.383683 0.112221 0.439154 0.000015
MAP with NCR 1.274188 0.479374 0.053132 0.360379 0.338045
MAP with PCR  2.386798 0.725307 0.142748 0.874890 0.000259
Offline client arrival with PCR
MAP with ERG 3.865297 0.392535 0.110237 0.432563 0.000014
MAP with NCR 1.200502 0.115720 0.041943 0.220459 0.056056
MAP with PCR  2.236128 0.717345 0.138985 0.881299 0.000246

6.4. Analyzing the expected waiting time of a client in the PWA and NPWA

e Figure 8 illustrates that when the maximum capacity of the PWA (N,) and the OR level (L)
increase, the expected waiting time for a client in the PWA E[W,] also increases. This means
that a higher number of clients in the waiting area leads to longer waiting times to receive the
service. Management should carefully regulate PWA capacity and reservation limits to avoid
excessive congestion, ensuring a balance between premium service availability and acceptable
waiting times.

e Compared to Figure 8, the expected waiting time for a client in the PWA (E[W,]) decreases as the
service rate y; increases, as shown in Figure 9. Enhancing service speed is an effective strategy
to manage congestion and improve client experience in premium service zones.

e Figure 10 illustrates the impact on the expected waiting time for a client in the NPWA (E[W;])
when varying N, and A,. As the maximum capacity of the NPWA (N,) and the offline arrival rate
(4») increase, E[W,] also increases. Management should monitor client inflow and adjust service
or capacity levels in the NPWA to prevent excessive waiting and ensure smooth service flow for
offline clients.

e Compared to Figure 10, the expected waiting time for a client in the NPWA (E[W,]) decreases as
the service rate u, increases, as shown in Figure 11. Increasing the non-premium service rate is
an effective strategy to improve service efficiency and reduce waiting time for offline clients.

e By setting s = 3 and L = 3 while keeping all other parameters constant, the optimal expected
waiting time of a client in the PWA is analyzed by varying the inventory maximum capacity
(S) and the PWA maximum capacity (N;). In this context, the optimal expected waiting time is
attained at S = 10 and N; = 8, as indicated by the bold number in Table 11.

e By setting s = 3 and keeping all other parameters constant, the optimal expected waiting time of
a client in the NPWA is analyzed by varying the inventory maximum capacity () and the NPWA
maximum capacity (IV,). In this context, the optimal expected waiting time is achieved at S = 11
and N, = 7, as indicated by the bold number in Table 12.
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Figure 10. Impact of 4, vs N, on E[W,].

Figure 11. Impact of A, vs N, on E[W,].

Table 11. Optimal expected waiting time of a client in PWA.
S/N; 6 7 8 9 10

8 25717 25716 2.4009 2.4889 2.5397
9 23623 23566 2.2873 2.3362 2.3672
10  1.6828 1.6799 1.6741 1.6789 1.6795
11 1.9232 1.9229 19341 1.9346 1.9359
12 21455 2.1399 2.1262 2.1565 2.1750
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Table 12. Optimal expected waiting time of a client in NPWA.
S/N, 5 6 7 8 9

8 1.6840 1.6788 1.6774 1.6798 1.6827
9 1.6839 1.6787 1.6772 1.6797 1.6825
10 1.6829 1.6775 1.6760 1.6783 1.6813
11  1.6821 1.6766 1.6750 1.6774 1.6808
12 1.6834 1.6781 1.6767 1.6790 1.6818
13 1.6837 1.6784 1.6770 1.6794 1.6823

7. Conclusions

In this study, a stochastic inventory system was examined that addresses the two distinct types of
services for a single commodity, two types of clients, and two waiting areas. An online reservation
service facility was implemented, enabling clients to pre-book their premium service—a feature
encountered during the author’s recent visit to a restaurant. The description of the model assumed
an infinitesimal generator transition matrix, which was finite; based on this, a steady-state probability
vector was calculated. The waiting time of a client in both the PWA and NPWA was analyzed using
the Laplace—Stieltjes transform. The impact of parameters on performance measures was analyzed
with various distributions for online and offline client arrival patterns. Importantly, the research delved
into optimizing the TEC of the system, offering valuable insights for improvement of the efficiency
and performance of stochastic inventory management under diverse client types and waiting areas. In
future research, we intend to extend this system by incorporating a batch-marked Markovian arrival
process (BMMAP) and a phase-type distribution for the service time. This concept can be further
expanded by offering an online reservation facility for non-premium services.
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