

https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(8): 18784–18800.

DOI: 10.3934/math.2025839 Received: 11 April 2025 Revised: 04 August 2025 Accepted: 11 August 2025

Published: 19 August 2025

Research article

Duality of codes over non-unital rings of order six

Altaf Alshuhail^{1,*}, Rowena Alma Betty² and Lucky Galvez²

- ¹ Department of Mathematics, College of Science, University of Ha'il, Ha'il 2440, Saudi Arabia
- ² Institute of Mathematics, University of the Philippines, Diliman, Quezon City, Philippines
- * Correspondence: Email: ad.alshuhail@uoh.edu.sa.

Abstract: Some basic theory on the duality of codes over two non-unital rings of order 6, namely H_{23} and H_{32} is presented. For a code C over these rings, there is an associated binary code C_a and a ternary code C_b . Self-orthogonal, self-dual, and quasi self-dual (QSD) codes over these rings are characterized using the associated codes C_a and C_b , and a classification of self-orthogonal codes for short lengths is given. In addition, a building-up construction for self-orthogonal codes is presented, and cyclic and linear complementary dual (LCD) codes over the said rings are introduced.

Keywords: non-unital rings; self-orthogonal codes; self-dual codes; quasi self-dual codes; linear complementary dual; cyclic codes

Mathematics Subject Classification: 16D10, 94B05

1. Introduction

Coding theory was studied classically using finite fields as alphabets. However, for the last three decades, codes over rings have been used along with finite fields. In this case, linear codes are defined as modules over a ring. Most research on codes over rings takes commutative rings with unity as alphabet (see [1–3], for example). Recently, there has been interest in codes over non-unital rings (see [4–6]). One ring in particular is the non-local ring *H* of order 4 (see [7–9]). Linear codes with complementary duals (LCD codes) and cyclic codes have attracted considerable attention due to their strong algebraic structures and practical applications in communication systems and cryptography. The study of LCD codes over non-unital rings was initiated in [10]. Similarly, the investigation of cyclic codes over non-unital rings began with the work in [11, 12], which extended the theory of cyclicity beyond traditional finite fields and unital rings. Finally, the building-up construction has proven to be an effective technique for constructing linear codes with prescribed algebraic and distance properties. The first systematic study of this method over non-unital rings was carried out in [13, 14]. The goal of this paper is to lay down the foundations of the study of duality of linear codes over two non-unital

rings of order 6, denoted by H_{23} and H_{32} as in [15], whose properties are similar to the ring H. These rings are interesting because a lot of new codes can be constructed over them as alphabets. These codes also are in close connection to widely studied binary and ternary codes. For every code C over H_{23} or H_{32} , there is an associated binary code C_a and a ternary code C_b . Thus, the properties of the code C can be determined by studying the associated codes C_a and C_b . In this paper, the conditions for self-orthogonal, self-dual, quasi self-dual, and LCD codes will be explored. Moreover, a method to construct self-orthogonal codes of longer length from codes of shorter length will be given, cyclic codes over these rings will be introduced, and a classification of self-orthogonal codes for short lengths will be presented.

This paper is organized as follows: Some basic concepts regarding linear codes over finite fields are first reviewed in Section 2. In Section 3, the rings H_{23} and H_{32} are defined, and their properties are explained. Then in Section 4, codes over these rings are introduced, and the notion of duality is explored. Self-orthogonal, self-dual, quasi self-dual, and LCD codes are characterized in terms of their associated binary and ternary codes. Cyclic codes over these rings are also studied. This is followed by a building-up construction, i.e., a method to construct codes from codes of smaller length in Section 5. Finally, in Section 6, a classification of self-orthogonal codes of lengths up to 7 is given before the paper is concluded in the last section.

2. Codes over finite fields

An [n, k] linear code or an [n, k]-code C of length n and dimension k is a subspace of \mathbb{F}_q^n where q is a prime or a power of a prime. The elements of a code are called codewords. If q = 2, then C is called a binary code. If q = 3, then C is called a ternary code. The (Hamming) weight $wt(\mathbf{c})$ of $\mathbf{c} \in \mathbb{F}_q^n$ is the number of nonzero coordinates in \mathbf{c} , and the (Hamming) distance between vectors \mathbf{x} and \mathbf{y} in \mathbb{F}_q^n , denoted by $d(\mathbf{x}, \mathbf{y})$, is the number of coordinates where \mathbf{x} and \mathbf{y} differ. The minimum (Hamming) distance d(C) of a linear code C is given by $d(C) = \min\{d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}\} = \min\{wt(\mathbf{c}) \mid \mathbf{0} \neq \mathbf{c} \in C\}$.

We equip \mathbb{F}_q^n with the standard inner product $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$ for $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{F}_q^n$. The dual C^{\perp} of C is an [n, n-k]-code defined as

$$C^{\perp} = \{ \mathbf{y} \in \mathbb{F}_q^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in C \}.$$

A linear code C is self-orthogonal if $C \subseteq C^{\perp}$ and self-dual if $C = C^{\perp}$. A linear code C is linear with complementary dual (LCD) if $C \cap C^{\perp} = \{0\}$. A linear code C is cyclic provided that for each codeword $\mathbf{c} = (c_1, ..., c_n) \in C$, the vector $(c_n, c_1, ..., c_{n-1})$ is also a codeword in C.

3. The rings H_{23} and H_{32}

Consider the rings H_{23} and H_{32} , both of order 6, given by the following presentation.

$$H_{23} = \langle a, b \mid 2a = 0, 3b = 0, a^2 = a, b^2 = 0, ab = 0 = ba \rangle,$$

and

$$H_{32} = \langle a, b \mid 2a = 0, 3b = 0, a^2 = 0, b^2 = b, ab = 0 = ba \rangle.$$

The other elements are defined as

$$c := a + b,$$

 $d := 2b,$
 $e := a + 2b.$

Tables 1 and 2 are the addition table for both rings and the multiplication tables for rings H_{23} and H_{32} , respectively.

Table 1. Addition table for H_{23} and H_{32} .

+	0	a	b	c	d	e
0	0	а	b	С	d	e
a	a	0	c	b	e	d
b	b	c	d	e	0	a
c	c	b	e	d	a	0
d	d	e	0	a	b	c
e	e	d	b c d e 0 a	0	c	b

Table 2. Multiplication table for H_{23} and H_{32} , respectively.

•	0	a	b	c	d	e		•	0	a	b	c	d	e
0	0	0	0	0	0	0	-	0	0	0	0	0	0	0
a	0	a	0	a	0	a		a	0	0	0	0	0	0
b	0	0	0	0	0	0		b	0	0	b	b	d	d
c	0	a	0	a	0	a		c	0	0	b	b	d	d
d	0	0	0	0	0	0		d	0	0	d	d	b	b
e	0	a	0	а	0	a		e	0	0	d	d	b	b

From these tables, it is evident that both rings are commutative and without unity. They have two maximal ideals, $J_a = \{0, a\}$ and $J_b = \{0, b, d\}$, and hence, H_{23} and H_{32} are semi-local rings. From the definitions, it is easy to verify that either of the two rings can be written as the direct sum $J_a \oplus J_b$.

Define a natural action of \mathbb{F}_2 on J_a by the rule r0=0r=0 and r1=1r=r, for all $r\in J_a$. This action is distributive in the sense that $r(s\oplus_2 t)=rs+rt$, where \oplus_2 denotes the addition in \mathbb{F}_2 , $s,t\in\mathbb{F}_2$. A similar action of \mathbb{F}_3 on J_b can also be defined. These actions extend in the following manner. If $\mathbf{x}=(x_1,\ldots,x_n)\in\mathbb{F}_2^n$, define $\alpha\mathbf{x}=(\alpha x_1,\ldots,\alpha x_n)\in H_{23}^n$ for $\alpha\in J_a$. Similarly, if $\mathbf{x}=(x_1,\ldots,x_n)\in\mathbb{F}_3^n$, define $\beta\mathbf{x}=(\beta x_1,\ldots,\beta x_n)\in H_{32}^n$ for $\beta\in J_b$.

4. Duality of codes over H_{23} and H_{32}

Let $z \in \{23, 32\}$. A linear code C over H_z , or simply an H_z -code C, of length n is an H_z -submodule of the H_z^n module. Since $H_z = J_a \oplus J_b$, an H_z -code C can be written as the direct sum $C = a C_a \oplus b C_b$, where C_a is a binary code and C_b is a ternary code. The (Hamming) weight of $\mathbf{c} \in H_z^n$, the (Hamming) distance between \mathbf{x} and \mathbf{y} in H_z^n , and the minimum (Hamming) distance of an H_z -code are defined similarly as in Section 2.

We also take the standard inner product on H_z^n as

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i$$

for all $\mathbf{x} = (x_1, \dots, x_n)$, $\mathbf{y} = (y_1, \dots, y_n) \in H_z^n$. The dual of an H_z -code C is the submodule of H_z^n defined by

$$C^{\perp} = \{ \mathbf{y} \in H_{\tau}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in C \}.$$

As in codes over finite fields, an H_z -code C is self-orthogonal if $C \subseteq C^{\perp}$ and self-dual if $C = C^{\perp}$. In addition, C is said to be nice if $|C||C^{\perp}| = 6^n$. If C is a self-orthogonal code with $|C| = 6^{\frac{n}{2}}$, then C is called a quasi self-dual (QSD) code.

Theorem 4.1. If $C = aC_a \oplus bC_b$ is an H_z -code where C_a is a nonzero binary code of minimum distance d_1 and C_b is a nonzero ternary code of minimum distance d_2 , then the minimum distance of C is $d = \min\{d_1, d_2\}$.

Proof. Let \mathbf{u}_1 be a nonzero codeword of C_a of weight d_1 and \mathbf{u}_2 be a nonzero codeword of C_b of weight d_2 . Since $aC_a \subseteq C$ and $bC_b \subseteq C$, this implies that, $a\mathbf{u}_1, b\mathbf{u}_2 \in C$ with $wt(a\mathbf{u}_1) = wt(\mathbf{u}_1)$ and $wt(b\mathbf{u}_2) = wt(\mathbf{u}_2)$. Therefore, $d \le \min\{d_1, d_2\}$. Conversely, let \mathbf{u} be a nonzero codeword of C of weight d. Then, $\mathbf{u} = a\mathbf{x} + b\mathbf{y}$ where $\mathbf{x} \in C_a$ and $\mathbf{y} \in C_b$. Since $\mathbf{u} \ne 0$, then one case of the following is true:

- If $\mathbf{x} = \mathbf{0}$ and $\mathbf{y} \neq 0$, then $d = wt(\mathbf{u}) = wt(b\mathbf{y}) = wt(\mathbf{y}) \geq d_2$.
- If $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{y} = 0$, then $d = wt(\mathbf{u}) = wt(a\mathbf{x}) = wt(\mathbf{x}) \geq d_1$.
- If $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{y} \neq 0$, then $d = wt(\mathbf{u}) \geq wt(a\mathbf{y}) = wt(\mathbf{y}) \geq d_2$ and $d = wt(\mathbf{u}) \geq wt(a\mathbf{x}) = wt(\mathbf{x}) \geq d_1$.

For all three cases, we have

$$d = wt(\mathbf{u}) \ge \min\{d_1, d_2\},\$$

and the result follows.

Theorem 4.2. Let $C = a C_a \oplus b C_b$ be an H_z -code of length n. Then

- (i) for z=23, $C^{\perp}=a\,C_a^{\perp}\oplus b\,\mathbb{F}_3^n$. Furthermore, $(C^{\perp})^{\perp}=C$ if and only if $C_b=\mathbb{F}_3^n$;
- (ii) for z=32, $C^{\perp}=a\mathbb{F}_2^n\oplus b\,C_b^{\perp}$. Furthermore, $(C^{\perp})^{\perp}=C$ if and only if $C_a=\mathbb{F}_2^n$.

Proof. Let C be an H_{23} -code, and suppose $\mathbf{u} \in C^{\perp}$. Write $\mathbf{u} = a\mathbf{x} + b\mathbf{y}$ where $\mathbf{x} \in \mathbb{F}_2^n$ and $\mathbf{y} \in \mathbb{F}_3^n$. If $\mathbf{v} \in C_a$, then $a\mathbf{v} \in C$. Thus,

$$0 = \langle \mathbf{u}, a\mathbf{v} \rangle = \langle a\mathbf{x} + b\mathbf{y}, a\mathbf{v} \rangle = a\langle \mathbf{v}, \mathbf{x} \rangle.$$

Since $a \neq 0$, we have $\langle \mathbf{v}, \mathbf{x} \rangle = 0$, i.e., $\mathbf{x} \in C_a^{\perp}$ and so $\mathbf{u} \in a C_a^{\perp} + b \mathbb{F}_3^n$. Consequently, $C^{\perp} \subseteq a C_a^{\perp} + b \mathbb{F}_3^n$. Now, suppose $\mathbf{c} \in a C_a^{\perp} + b \mathbb{F}_3^n$, that is, $\mathbf{c} = a\mathbf{x} + b\mathbf{y}$, where $\mathbf{x} \in C_a^{\perp}$ and $\mathbf{y} \in \mathbb{F}_3^n$. For any $\mathbf{u} = a\mathbf{r} + b\mathbf{t} \in C$, where $\mathbf{r} \in C_a$, $\mathbf{t} \in C_b$,

$$\langle \mathbf{c}, \mathbf{u} \rangle = \langle a\mathbf{x} + b\mathbf{y}, a\mathbf{r} + b\mathbf{t} \rangle = a\langle \mathbf{x}, \mathbf{r} \rangle = a \cdot 0 = 0,$$

which means $\mathbf{c} \in C^{\perp}$ and hence, $a C_a^{\perp} + b \mathbb{F}_3^n \subseteq C^{\perp}$. This shows $C^{\perp} = a C_a^{\perp} + b \mathbb{F}_3^n$. Clearly, the intersection of $a C_a$ and $b \mathbb{F}_3^n$ is trivial, so the sum is direct. Finally, since $(C^{\perp})^{\perp} = (a C_a^{\perp} \oplus b \mathbb{F}_3^n)^{\perp} = a C_a \oplus b \mathbb{F}_3^n$, it follows that $(C^{\perp})^{\perp} = C$ if and only if $C_b = \mathbb{F}_3^n$, which proves (*i*). The case in which C is an H_{32} code is proved similarly.

Corollary 4.3. Let $C = a C_a \oplus b C_b$ be an H_z -code of length n. Then C is nice if and only if

- (i) $C_b = \{0\}$ for z = 23.
- (ii) $C_a = \{0\}$ for z = 32.

Proof. Let C be an H_{23} code and $k_a = \dim(C_a)$ and $k_b = \dim(C_b)$. Then $|C| = 2^{k_a} 3^{k_b}$ and by Theorem 4.2 (i), $|C^{\perp}| = 2^{n-k_a} 3^n$. Thus,

$$|C||C^{\perp}| = 2^n \, 3^{n+k_b}.$$

Therefore, C is nice if and only if $k_b = 0$.

Similarly, (ii) follows from Theorem 4.2 (ii).

4.1. Self-orthogonal, self-dual and QSD codes

In this section, the conditions so that a code C over H_{23} or H_{32} is self-orthogonal, self-dual, and quasi self-dual are determined.

Theorem 4.4. Let $C = a C_a \oplus b C_b$ be an H_z -code.

- (i) If z = 23, then C is self-orthogonal if and only if C_a is a binary self-orthogonal code.
- (ii) If z = 32, then C is self-orthogonal if and only if C_b is a ternary self-orthogonal code.

Proof. Let $\mathbf{c}_1 = a\mathbf{x}_1 + b\mathbf{y}_1$ and $\mathbf{c}_2 = a\mathbf{x}_2 + b\mathbf{y}_2$ be arbitrary codewords in C where $\mathbf{x}_1, \mathbf{x}_2 \in C_a$ and $\mathbf{y}_1, \mathbf{y}_2 \in C_b$. Then

$$\langle \mathbf{c}_1, \mathbf{c}_2 \rangle = a^2 \langle \mathbf{x}_1, \mathbf{x}_2 \rangle + b^2 \langle \mathbf{y}_1, \mathbf{y}_2 \rangle = a \langle \mathbf{x}_1, \mathbf{x}_2 \rangle.$$

Since $a \neq 0$, it can be concluded that C is self-orthogonal if and only if C_a is a binary self-orthogonal code.

On the other hand, $a^2 = 0$ and $b^2 = b$ in H_{32} , so (ii) follows.

Theorem 4.5. Let C_1 be a binary linear code of length n and C_2 be a ternary linear code of length n. The code C defined by

$$C = a C_1 \oplus b C_2$$

is a self-orthogonal H_z -code of length n where $C_a = C_1$ and $C_b = C_2$ if the following conditions are satisfied:

- (i) For z = 23, C_1 is a binary self-orthogonal code.
- (ii) For z = 32, C_2 is a ternary self-orthogonal.

Moreover, if $|C_1||C_2| = 6^{n/2}$, then C is QSD.

Proof. Let z = 23. By the linearity of C_1 and C_2 , the code $C = a C_1 \oplus b C_2$ is closed under addition. For the scalar multiplication, let $\mathbf{c} = a\mathbf{x} + b\mathbf{y} \in C$ where $\mathbf{x} \in C_1$ and $\mathbf{y} \in C_2$. Then we have the following:

- $a(a\mathbf{x} + b\mathbf{y}) = a^2\mathbf{x} = a\mathbf{x} = a\mathbf{x} + b\mathbf{0} \in C$;
- $b(ax + by) = 0 = a0 + b0 \in C$.

Since *C* is closed under addition, for any $r = ax + by \in H_{23}$ where $x \in \mathbb{F}_2$ and $y \in \mathbb{F}_3$, we have $rC \subseteq C$. Hence, *C* is a linear H_{23} -code. To prove the self-orthogonality of *C*, for all $a\mathbf{x}_1 + b\mathbf{y}_1$, $a\mathbf{x}_2 + b\mathbf{y}_2 \in C$ where $\mathbf{x}_1, \mathbf{x}_2 \in C_1$ and $\mathbf{y}_1, \mathbf{y}_2 \in C_2$, we have

$$\langle a\mathbf{x}_1 + b\mathbf{y}_1, a\mathbf{x}_2 + b\mathbf{y}_2 \rangle = a^2 \langle \mathbf{x}_1, \mathbf{x}_2 \rangle + b^2 \langle \mathbf{y}_1, \mathbf{y}_2 \rangle = a \langle \mathbf{x}_1, \mathbf{x}_2 \rangle = 0,$$

since C_1 is a binary self-orthogonal code.

Statement (ii) is proved similarly.

Furthermore, the last statement holds since $|C| = |C_1||C_2|$.

Corollary 4.6. Let $C = a C_a \oplus b C_b$ be an H_z -code of even length n. Then C is a QSD code if and only if the following conditions are satisfied:

- (i) For z = 23, C_a is a binary self-dual code, and C_b is a ternary [n, n/2] code.
- (ii) For z = 32, C_a is a binary [n, n/2] code, and C_b is a ternary self-dual code.

Proof. The result follows from [15, Lemmas 1 and 2], Theorem 4.4, Theorem 4.5, and the definition of QSD codes.

Theorem 4.7. Let $C = a C_a \oplus b C_b$ be an H_z -code of even length n. Then C is self-dual if and only if the following conditions are satisfied:

- (i) For z = 23, C_a is a binary self-dual code and $C_b = \mathbb{F}_3^n$.
- (ii) For z = 32, $C_a = \mathbb{F}_2^n$ and C_b is a ternary self-dual code.

Proof. Let C be an H_{23} -code. From the definition of self-dual codes and Theorem 4.2 (i), we have

$$a C_a \oplus b C_b = C = C^{\perp} = a C_a^{\perp} \oplus b \mathbb{F}_3^n$$
.

Therefore, C is self-dual if and only if $C_a = C_a^{\perp}$ and $C_b = \mathbb{F}_3^n$. Similarly, (ii) follows from the definition of self-dual codes and Theorem 4.2 (ii).

Observe that by Corollary 4.6 and Theorem 4.7, QSD and self-dual H_{23} -codes have even lengths, while QSD and self-dual H_{32} -codes have lengths divisible by 4 since C_b must be ternary self-dual codes.

The next result shows that any H_{23} -code or H_{32} -code cannot be both QSD and self-dual at the same time.

Proposition 4.8. Let Q be the set of all QSD H_{23} -codes of length n and S be the set of all self-dual H_{23} -codes of length n. Then $Q \cap S = \emptyset$.

Proof. Suppose C is an H_{23} -code of length n that is both QSD and self-dual. Then $|C| = |C^{\perp}| = 6^{n/2}$. Therefore, $|C||C^{\perp}| = 6^n$, so C is a nice code. However, by Corollary 4.3, $C_b = \{0\}$, which contradicts Corollary 4.6. Thus, $Q \cap S = \emptyset$.

The same can be said for H_{32} codes.

4.2. Cyclic codes

Similar to the definition of cyclic codes over finite fields, a cyclic H_z -code C of length n is a linear code having the property that if $(c_1, \ldots, c_n) \in C$, then its cyclic shift $(c_n, c_1, \ldots, c_{n-1})$ is also a codeword in C.

Theorem 4.9. Let $C = a C_a \oplus b C_b$ be an H_z -code of length n. Then C is a cyclic code if and only if C_a and C_b are both cyclic.

Proof. Suppose *C* is a cyclic H_z -code of length n and let $(x_1, \ldots, x_n) \in C_a$ and $(y_1, \ldots, y_n) \in C_b$. Then $(ax_1 + by_1, \ldots, ax_n + by_n) \in C$ and

$$a(x_n, x_1, \dots, x_{n-1}) + b(y_n, y_1, \dots, y_{n-1}) = (ax_n + by_n, ax_1 + by_1, \dots, ax_{n-1} + by_{n-1}) \in C.$$

Therefore, $(x_n, x_1, \dots, x_{n-1}) \in C_a$ and $(y_n, y_1, \dots, y_{n-1}) \in C_b$, i.e., C_a and C_b are cyclic codes.

Conversely, since $C = a C_a \oplus b C_b$, any linear combination of codewords from C_a and C_b will be a codeword in C. Since both C_a and C_b are cyclic codes, it follows that C is a cyclic code.

Corollary 4.10. If $C = a C_a \oplus b C_b$ is a cyclic H_z -code, then its dual is also cyclic.

Proof. The result follows from Theorems 4.2 and 4.9.

Corollary 4.11. A QSD H_z -code $C = a C_a \oplus b C_b$ of even length n is cyclic if and only if the following conditions are satisfied:

- (i) For z = 23, C_a is a binary cyclic self-dual code, and C_b is a ternary cyclic [n, n/2]-code.
- (ii) For z = 32, C_a is a binary cyclic [n, n/2]—code and C_b is a ternary cyclic self-dual code.

Proof. The result follows from Corollary 4.6 and Theorem 4.9.

4.3. LCD codes

An H_z -code C is linear with complementary dual (LCD) if $C \cap C^{\perp} = \{0\}$. The following theorem gives a characterization of LCD codes over the ring H_z .

Theorem 4.12. An H_z -code $C = a C_a \oplus b C_b$ is LCD if and only if the following conditions are satisfied:

- (i) For z = 23, C_a is LCD and $C_b = \{0\}$.
- (ii) For z = 32, $C_a = \{0\}$, and C_b is LCD.

Proof. Let z=23, and suppose $C=aC_a\oplus bC_b$ is LCD, i.e., $C\cap C^{\perp}=\{0\}$. By Theorem 4.2, $C_a\cap C_a^{\perp}=\{0\}$ and $C_b\cap \mathbb{F}_3^n=\{0\}$. This implies C_a is LCD and $C_b=\{0\}$.

Conversely, suppose C_a is LCD and $C_b = \{0\}$. By definition, $C_a \cap C_a^{\perp} = \{0\}$, and so $C \cap C^{\perp} = a(C_a \cap C_a^{\perp}) + b(C_b \cap C_b^{\perp}) = \{0\}$, which shows C is LCD.

The case where C is an H_{32} -code is proved similarly.

Note that by Corollary 4.3, an H_z -code C is LCD if it is nice and the associated nonzero code is LCD.

Corollary 4.13. Suppose $C = a C_a \oplus b C_b$ is a cyclic H_z -code. Then C is LCD if and only if the following conditions are satisfied:

- (i) For z = 23, C_a is an LCD cyclic code and $C_b = \{0\}$.
- (ii) For z = 32, $C_a = \{0\}$, and C_b is an LCD cyclic code.

Proof. The result follows from Theorems 4.9 and 4.12.

These results show that the existence of LCD H_z -codes depends on the existence of binary and ternary LCD codes. Good binary and ternary LCD codes and their characterizations can be found in many literatures, such as [16] and [17].

5. Building-up construction for self-orthogonal codes

In this chapter, several methods to construct self-orthogonal codes from codes of smaller length are presented. These are called the *building-up constructions*.

Theorem 5.1. Let C_0 be a self-orthogonal H_{23} -code of length n with generating set $\{\mathbf{r}_1, \ldots, \mathbf{r}_k\}$. Fix $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{F}_2^n$ satisfying $\langle \mathbf{x}, \mathbf{x} \rangle = 1$ and let $y_i = \langle \mathbf{x}, \mathbf{r}_i \rangle$, $1 \le i \le k$. Then the code C with k+1 generators given by

$$(a, 0, a\mathbf{x}), (y_1, y_1, \mathbf{r}_1), \dots, (y_k, y_k, \mathbf{r}_k),$$

is a self-orthogonal H_{23} -code of length n + 2.

Proof. It suffices to show that all generators are orthogonal to each other. Observe that

- The first vector is orthogonal to itself since $a^2 + a^2 \langle \mathbf{x}, \mathbf{x} \rangle = a + a = 0$.
- The first vector is orthogonal to the other k vectors since $ay_i + \langle a\mathbf{x}, \mathbf{r}_i \rangle = 2ay_i = 0$.
- The last k vectors are orthogonal to each other and to themselves by self-orthogonality of C_0 since $y_i y_i + y_i y_i + \langle \mathbf{r}_i, \mathbf{r}_i \rangle = 2y_i y_i + 0 = 0$, where $y_i y_i \in J_a$ in H_{23} .

Hence, C is a self-orthogonal H_{23} -code of length n + 2.

Theorem 5.2. Let C_0 be a self-orthogonal H_{23} -code of length n with generating set $\{\mathbf{r}_1, \ldots, \mathbf{r}_k\}$. Let $\mathbf{x} = (x_1, \ldots, x_n)$ be a fixed ternary vector. Denote $y_i = \langle \mathbf{x}, \mathbf{r}_i \rangle$, $1 \le i \le k$. Then the code C with k+3 generators given by

$$(\beta, 0, 0, \beta \mathbf{x}), (0, \beta, 0, \beta \mathbf{x}), (0, 0, \beta, \beta \mathbf{x}), (2y_1, 2y_1, 2y_1, \mathbf{r}_1), \dots, (2y_k, 2y_k, 2y_k, \mathbf{r}_k),$$

where $\beta \in \{b, d\}$ is a self-orthogonal H_{23} -code of length n + 3.

Proof. The following observations show all the k + 3 generators of C are orthogonal to each other.

- The first three vectors are orthogonal to themselves since $\beta^2 + \beta^2 \langle \mathbf{x}, \mathbf{x} \rangle = 0 + 0 \langle \mathbf{x}, \mathbf{x} \rangle = 0$.
- The first three vectors are orthogonal to each other as $\beta^2 \langle \mathbf{x}, \mathbf{x} \rangle = 0$.
- The first three vectors are orthogonal to any of the last k vectors since $2\beta y_i + \langle \beta \mathbf{x}, \mathbf{r}_i \rangle = 3\beta y_i = 0$.
- The last *k* rows are orthogonal to each other and to themselves by self-orthogonality of C_0 since $4y_iy_i + 4y_iy_i + 4y_iy_i + \langle \mathbf{r}_i, \mathbf{r}_i \rangle = 12y_iy_i + 0 = 0$.

Hence, C is a self-orthogonal H_{23} -code of length n + 3.

Example 5.3. Consider the self-orthogonal H_{23} -code C_0 of length 2 generated by vectors

$$\mathbf{r}_1 = (a, a) \text{ and } \mathbf{r}_2 = (b, 0).$$

(1) Let $\mathbf{x} = (1,0) \in \mathbb{F}_2^2$. Then $y_1 = a$ and $y_2 = b$, and by Theorem 5.1,

$$\mathbf{r}'_1 = (a, 0, a, 0), \ \mathbf{r}'_2 = (a, a, a, a), \ \mathbf{r}'_3 = (b, b, b, 0)$$

generate a self-orthogonal H_{23} -code C_1 of length 4.

(2) Consider C_1 with generators \mathbf{r}'_1 , \mathbf{r}'_2 , and \mathbf{r}'_3 and $\mathbf{x} = (1,0,1,1) \in \mathbb{F}^4_2$. Then $y_1 = 0$, $y_2 = a$ and $y_3 = d$. Again, by Theorem 5.1, the vectors

$$(a, 0, a, 0, a, a), (0, 0, a, 0, a, 0), (a, a, a, a, a, a, a), (d, d, b, b, b, 0)$$

generate a self-orthogonal H_{23} -code C_2 of length 6.

(3) Let $\beta = b$ and $\mathbf{x} = (2, 1) \in \mathbb{F}_3^2$ and consider C_0 . Then $y_1 = a$ and $y_2 = d$, and by Theorem 5.2, the vectors

$$\mathbf{g}_1 = (b, 0, 0, d, b), \ \mathbf{g}_2 = (0, b, 0, d, b), \ \mathbf{g}_3 = (0, 0, b, d, b), \ \mathbf{g}_4 = (0, 0, 0, a, a), \ \mathbf{g}_5 = (b, b, b, b, 0)$$

generate a self-orthogonal H_{23} -code C_3 of length 5.

(4) Using C_3 with generators \mathbf{g}_1 , \mathbf{g}_2 , \mathbf{g}_3 , \mathbf{g}_4 , and \mathbf{g}_5 , $\mathbf{x} = (1, 0, 0, 2, 2) \in \mathbb{F}_3^5$ and $\beta = d$, we have $y_1 = b$, $y_2 = y_3 = y_4 = y_5 = 0$. By Theorem 5.2, the vectors

$$(d, 0, 0, d, 0, 0, b, b), (0, d, 0, d, 0, 0, b, b), (0, 0, d, d, 0, 0, b, b), (d, d, d, b, 0, 0, d, b), (0, 0, 0, 0, b, 0, d, b), (0, 0, 0, 0, 0, b, d, b), (0, 0, 0, 0, 0, 0, 0, a, a), (0, 0, 0, b, b, b, b, 0)$$

generate a self-orthogonal H_{23} -code C_4 of length 8.

Theorem 5.4. Let C_0 be a self-orthogonal H_{32} -code of length n with generating set $\mathbf{r}_1, \ldots, \mathbf{r}_k$. Fix $\mathbf{x} \in \mathbb{F}_3^n$ and let $y_i = \langle \mathbf{x}, \mathbf{r}_i \rangle$, $1 \le i \le k$. Let $\alpha, \beta, \gamma \in H_{32}$ such that $\alpha + \beta + \gamma = 0$, with $(\alpha, \beta, \gamma) \ne (0, 0, 0)$. Then the code C with k + 1 generators given by

$$(\alpha, \beta, 0, \gamma \mathbf{x}), (y_1, y_1, y_1, \mathbf{r}_1), \dots, (y_k, y_k, y_k, \mathbf{r}_k),$$

is a self-orthogonal H_{32} -code of length n + 3 if one of the following holds:

(i)
$$\langle \mathbf{x}, \mathbf{x} \rangle = 1$$
 and $\alpha^2 + \beta^2 + \gamma^2 = 0$,

(ii)
$$\langle \mathbf{x}, \mathbf{x} \rangle = -1$$
 and $\alpha^2 + \beta^2 - \gamma^2 = 0$.

Proof. Similar to the previous theorems, the following observations show that the generators are orthogonal to each other.

(i) If
$$\langle \mathbf{x}, \mathbf{x} \rangle = 1$$
 and $\alpha^2 + \beta^2 + \gamma^2 = 0$, then

• The first vector is orthogonal to itself since $\alpha^2 + \beta^2 + \gamma^2 \langle \mathbf{x}, \mathbf{x} \rangle = \alpha^2 + \beta^2 + \gamma^2 = 0$.

- The first vector is orthogonal to any of the other k vectors since $\alpha y_i + \beta y_i + \gamma y_i = (\alpha + \beta + \gamma)y_i = 0$.
- The last k vectors are orthogonal to each other and to themselves by self-orthogonality of C_0 since $3y_iy_i + \langle \mathbf{r}_i, \mathbf{r}_i \rangle = 0$, where $y_iy_i \in J_b$ in H_{32} .
- (ii) If $(\mathbf{x}, \mathbf{x}) = -1$ and $\alpha^2 + \beta^2 \gamma^2 = 0$, then
 - The first vector is orthogonal to itself since $\alpha^2 + \beta^2 + \gamma^2 \langle \mathbf{x}, \mathbf{x} \rangle = \alpha^2 + \beta^2 \gamma^2 = 0$.
 - The first vector is orthogonal to any of the other k vectors since $\alpha y_i + \beta y_i + \gamma y_i = (\alpha + \beta + \gamma)y_i = 0$.
 - The last k vectors are orthogonal to each other and to themselves by self-orthogonality of C_0 since $3y_iy_j + \langle \mathbf{r}_i, \mathbf{r}_j \rangle = 0$, where $y_iy_j \in J_b$ in H_{32} .

Hence C is a self-orthogonal H_{32} -code of length n + 3.

Example 5.5. Consider the self-orthogonal H_{32} -code C_0 of length 3 generated by

$$\mathbf{r}_1 = (a, 0, 0)$$
 and $\mathbf{r}_2 = (b, b, b)$.

(1) Let $\alpha = a$, $\beta = b$, $\gamma = e$, and $\mathbf{x} = (0, 1, 1) \in \mathbb{F}_3^3$. Then $y_1 = 0$ and $y_2 = d$. By Theorem 5.4 (ii), the vectors

$$\mathbf{r}_1' = (a, b, 0, 0, e, e), \ \mathbf{r}_2' = (0, 0, 0, a, 0, 0), \ \mathbf{r}_3' = (d, d, d, b, b, b)$$

generate a self-orthogonal H_{32} -code C_1 of length 6.

(2) Consider C_1 with generators \mathbf{r}_1' , \mathbf{r}_2' , and \mathbf{r}_3' , and let $\mathbf{x} = (2, 2, 0, 1, 1, 0) \in \mathbb{F}_3^6$, $\alpha = e$, $\beta = e$, and $\gamma = d$. Then $y_1 = c$, $y_2 = a$, and $y_3 = b$. By Theorem 5.4 (i), the vectors

$$(e, e, 0, b, b, 0, d, d, 0), (c, c, c, a, b, 0, 0, e, e), (a, a, a, 0, 0, 0, a, 0, 0), (b, b, b, d, d, d, b, b, b)$$

generate a self-orthogonal H_{32} -code C_2 of length 9.

6. Numerical results

In this section, a classification of self-orthogonal codes over H_{23} and H_{32} of lengths up to 7 will be given, using a method similar to [15]. For each pair (C_a, C_b) , we find self-orthogonal codes that are permutation equivalent to $C = a C_a \oplus b C_b$. This can be accomplished by double coset decompositions of the symmetry group S_n by automorphism groups of codes C_a and codes C_b satisfying conditions given in Theorem 4.5. Then the System of Distinct Representatives (SDR), i.e., a set of representatives of the double cosets in the group S_n are obtained. Here is an analog of Theorem 2 in [15].

Theorem 6.1. Let (C_a, C_b) be a pair of codes as defined in Theorem 4.5. Let $Aut(C_a)$ and $Aut(C_b)$ denote permutation groups of C_a and C_b , respectively. Then the set

$$S_{C_a,C_b} := \{ a C_a \oplus b \sigma(C_b) \mid \sigma \text{ runs over an SDR of } Aut(C_a) \setminus S_n / Aut(C_b) \}$$

forms a set of permutation inequivalent self-orthogonal H_z -codes. Moreover, $|S_{C_a,C_b}| = |Aut(C_a)\backslash S_n/Aut(C_b)|$.

As in [15], the notation $Aut(C_a)\backslash S_n/Aut(C_b)$ refers to the set of all $(Aut(C_a), Aut(C_b))$ -double cosets of S_n . To carry out the classification, note the following consequence of Theorem 6.1, similar to Corollary 1 and Corollary 2 in [15].

Corollary 6.2. Let L_a be the set of all inequivalent binary codes of length n and L_b be the set of all (permutation) inequivalent ternary codes that satisfy Theorem 4.5. Then the set of all self-orthogonal H_z -codes of length n is the disjoint union

$$\bigcup_{C_a \in La, C_b \in L_b} S_{C_a, C_b}.$$

Based on these results, the following is the classification algorithm for self-orthogonal H_z -codes of length n.

- (1) If z = 23,
 - (a) write a list L_a of inequivalent binary self-orthogonal $[n, k_a]$ -codes;
 - (b) write a list L_b of permutation inequivalent ternary $[n, k_b]$ -codes.
- (2) If z = 32,
 - (a) write a list L_a of inequivalent binary $[n, k_a]$ -codes;
 - (b) write a list L_b of permutation inequivalent ternary self-orthogonal $[n, k_b]$ -codes.
- (3) For every pair $(C_a, C_b) \in L_a \times L_b$,
 - (a) compute the automorphism groups $Aut(C_a)$ and $Aut(C_b)$,
 - (b) determine a list $\sigma_1, \ldots, \sigma_r$ of representatives of $Aut(C_a) \setminus S_n / Aut(C_b)$,
 - (c) for i = 1, ..., r, compute $a C_a \oplus b \sigma_i(C_b)$.

Clearly, the zero code of length n is self-orthogonal. The following results are for nonzero codes. All computations are done with the help of MAGMA [18].

6.1. Self-orthogonal codes over H_{23}

If $(k_a, k_b) = (0, n)$, then we have the self-orthogonal code $C = b\mathbb{F}_3^n$. If $(k_a, k_b) = (0, k_b)$, then the number of inequivalent self-orthogonal H_{23} -codes for a given length n is equal to the number of permutation inequivalent ternary codes of dimension k_b . If $(k_a, k_b) = (k_a, 0)$ or $(k_a, k_b) = (k_a, n)$, then the number of inequivalent self-orthogonal H_{23} -codes for a given length n is equal to the number of inequivalent binary self-orthogonal codes of dimension k_a . For the other cases, refer to Table 3.

\overline{n}	(k_a, k_b)	$ L_a $	$ L_b $	#Codes	Remark	n	(k_a, k_b)	$ L_a $	$ L_b $	#Codes	Remark
2	(1, 1)	1	3	3	QSD	6	(2, 4)	3	87	2003	
3	(1, 1)	1	5	9		6	(2,5)	3	15	145	
3	(1, 2)	1	5	9		6	(3, 1)	1	15	31	
4	(1, 1)	2	8	27		6	(3, 2)	1	87	404	
4	(1, 2)	2	16	66		6	(3, 3)	1	168	1032	QSD
4	(1, 3)	2	8	27		6	(3, 4)	1	87	404	
4	(2, 1)	1	8	12		6	(3, 5)	1	15	31	
4	(2, 2)	1	16	30	QSD	7	(1, 1)	3	19	185	
4	(2,3)	1	8	12		7	(1, 2)	3	176	3822	
5	(1, 1)	2	11	54		7	(1, 3)	3	644	20458	
5	(1, 2)	2	39	289		7	(1, 4)	3	644	20458	
5	(1, 3)	2	39	289		7	(1, 5)	3	176	3822	
5	(1, 4)	2	11	54		7	(1, 6)	3	19	185	
5	(2, 1)	1	11	33		7	(2, 1)	3	19	333	
5	(2, 2)	1	39	220		7	(2, 2)	3	176	11400	
5	(2,3)	1	39	220		7	(2, 3)	3	644	76968	
5	(2,4)	1	11	33		7	(2, 4)	3	644	76968	
6	(1, 1)	3	15	109		7	(2, 5)	3	176	11400	
6	(1, 2)	3	87	1143		7	(2, 6)	3	19	333	
6	(1, 3)	3	168	2640		7	(3, 1)	2	19	118	
6	(1, 4)	3	87	1143		7	(3, 2)	2	176	4074	
6	(1, 5)	3	15	109		7	(3, 3)	2	644	29998	
6	(2, 1)	3	15	145		7	(3, 4)	2	644	29998	
6	(2, 2)	3	87	2003		7	(3, 5)	2	176	4074	
6	(2, 3)	3	168	5096		7	(3, 6)	2	19	118	

Table 3. Number of nonzero inequivalent self-orthogonal H_{23} -codes of lengths n up to 7.

There is a unique binary self-dual code of length 2 with generator matrix

$$\begin{bmatrix} 1 & 1 \end{bmatrix}$$
.

Up to equivalence, there are three QSD H_{23} -codes of length 2 and each of their associated codes C_a and $\sigma_i(C_b)$ are listed below. All these codes are cyclic by Corollary 4.11.

C_a	$\sigma_i(C_b)$	Remark
	[1, 0]	cyclic
[1, 1]	[1, 1]	cyclic
	[1, 2]	cyclic

There is a unique binary self-dual code C_a of length 4 with generator matrix

$$G_a = \left[\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array} \right].$$

Up to equivalence, we find 30 inequivalent QSD H_{23} -codes of length 4 and associated ternary codes $\sigma_i(C_b)$ has generator matrices listed below:

$$\begin{bmatrix} 1 & 2 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

The ternary code C'_b with generator matrix G_a is cyclic, so the H_{23} -code $a C_a \oplus b C'_b$ is a cyclic code by Corollary 4.11.

There is a unique binary self-dual code C_a of length 6 with generator matrix

$$\left[\begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{array}\right].$$

Up to equivalence, we find 1032 inequivalent QSD H_{23} -codes of length 6. We found more QSD H_{23} -codes for lengths n = 2, 4, 6 than [15].

6.2. Self-orthogonal codes over H_{32}

If $(k_a, k_b) = (n, 0)$, then we have the self-orthogonal code $C = a\mathbb{F}_2^n$. If $(k_a, k_b) = (0, k_b)$ or $(k_a, k_b) = (n, k_b)$, then the number of inequivalent self-orthogonal H_{32} -codes for a given length n is equal to the number of permutation inequivalent self-orthogonal ternary codes of dimension k_b . If $(k_a, k_b) = (k_a, 0)$, then the number of inequivalent self-orthogonal H_{32} -codes for a given length n is equal to the number of inequivalent binary codes of dimension k_a . For the other cases, refer to Table 4.

<u>n</u>	(k_a, k_b)	$ L_a $	$ L_b $	#Codes	Remark	n	(k_a, k_b)	$ L_a $	$ L_b $	#Codes	Remark
3	(1, 1)	3	2	8		6	(2, 2)	16	4	469	
3	(2, 1)	3	2	8		6	(3, 2)	22	4	866	
4	(1,1)	4	2	18		6	(4, 2)	16	4	469	
4	(2, 1)	6	2	35		6	(5, 2)	6	4	75	
4	(3, 1)	4	2	18		7	(1, 1)	7	6	132	
4	(1, 2)	4	1	7		7	(2, 1)	23	6	963	
4	(2, 2)	6	1	13	QSD	7	(3, 1)	43	6	2623	
4	(3, 2)	4	1	7		7	(4, 1)	43	6	2623	
5	(1,1)	5	2	28		7	(5, 1)	23	6	963	
5	(2, 1)	10	2	99		7	(6, 1)	7	6	132	
5	(3, 1)	10	2	99		7	(1, 2)	7	10	354	
5	(4, 1)	5	2	28		7	(2, 2)	23	10	3999	
5	(1, 2)	5	1	15		7	(3, 2)	43	10	13675	
5	(2, 2)	10	1	57		7	(4, 2)	43	10	13675	
5	(3, 2)	10	1	57		7	(5, 2)	23	10	3999	
5	(4, 2)	5	1	15		7	(6, 2)	7	10	354	
6	(1,1)	6	6	78		7	(1, 3)	7	2	78	
6	(2, 1)	16	6	360		7	(2, 3)	23	2	939	
6	(3, 1)	22	6	603		7	(3, 3)	43	2	3405	
6	(4, 1)	16	6	360		7	(4, 3)	43	2	3405	
6	(5,1)	6	6	78		7	(5,3)	23	2	939	
6	(1, 2)	6	4	75		7	(6, 3)	7	2	78	

Table 4. Number of nonzero inequivalent self-orthogonal H_{32} -codes of lengths n up to 7.

There is a unique ternary self-dual code up to permutation equivalence of length 4 with generator matrix

$$C_b = \left[\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{array} \right].$$

Up to equivalence, we find 13 QSD H_{32} -codes of length 4. This result agrees with [15], and by Corollary 4.11, none of these codes is a cyclic code. The pairs $(C_a, \sigma_i(C_b))$ that correspond to the code $a C_a \oplus b \sigma_i(C_b)$ are listed in Table 5.

C_a	$\sigma_i(C_b)$	C_a $\sigma_i(C_b)$
1 1	0 1] [1 0 1 1]	
0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0 1	0 1] [1 0 1 1]	
0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 1	$\begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix}$	
0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{bmatrix} 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & 2 \end{bmatrix}$	
0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{bmatrix} 1 & 0 \end{bmatrix}$	0 1] [1 0 2 1]	
0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
[1 0	$\begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 2 \end{bmatrix}$	
0 0	$0 1 \boxed{ 0 1 1 1 }$	
$\begin{bmatrix} 1 & 0 \end{bmatrix}$	$1 1 \boxed{ 1 0 2 2 }$	
0 1	$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 & 1 \end{bmatrix}$	

Table 5. The 13 inequivalent self-orthogonal H_{32} -codes of length n=4.

Generator matrices of the pairs $(C_a, \sigma_i(C_b))$ that corresponds to H_z -codes in Tables 3 and 4 may be obtained by the interested reader from the authors.

7. Conclusions

In this paper, we developed a basic framework to study the duality of linear codes over two non-unital rings of order six, namely, H_{23} and H_{32} . We use the fact that every code over these rings can be associated with a binary code and a ternary code, which helps to understand when these codes are self-orthogonal, self-dual, quasi self-dual, or have a complementary dual (LCD). We introduced building-up construction methods that provide a systematic way to construct longer self-orthogonal codes from shorter ones. In addition, we discussed conditions for when an H_z -code is cyclic, for $z \in \{23, 32\}$. Our numerical computations confirmed the results from previous studies and revealed new results in the classification of inequivalent self-orthogonal codes for short lengths.

Author contributions

Altaf Alshuhail: Conceptualization, methodology, formal analysis, writing—original draft preparation, supervision; Rowena Alma Betty: Methodology, formal analysis, writing—original draft preparation, writing—review and editing; Lucky Galvez: Methodology, formal analysis, writing—original draft preparation, writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

- 1. M. Shi, A. Alahmadi, P. Solé, *Codes and rings: Theory and practice*, Academic Press, 2017. https://doi.org/10.1016/C2016-0-04429-7
- 2. A. Bonnecaze, P. Udaya, Cyclic codes and self-dual codes over $\mathbb{F}_2 + u\mathbb{F}_2$, *IEEE Trans. Inf. Theory*, **45** (1999), 1250–1255. https://doi.org/10.1109/18.761278
- 3. H. Lee, Y. Lee, Construction of self-dual codes over finite rings \mathbb{Z}_{p^m} , *J. Combin. Theory Ser. A*, **115** (2008), 407–422. https://doi.org/10.1016/j.jcta.2007.07.001
- 4. A. Alahmadi, A. Alshuhail, R. A. Betty, L. Galvez, P. Solé, Mass formula for self-orthogonal and self-dual codes over non-unital rings of order four, *Mathematics*, **11** (2023), 4736. https://doi.org/10.3390/math11234736
- 5. A. Alahmadi, A. Alshuhail, R. A. Betty, L. Galvez, P. Solé, The mass formula for self-orthogonal and self-dual codes over a non-unitary non-commutative ring, *Mathematics*, **12** (2024), 862. https://doi.org/10.3390/math12060862
- 6. A. Alahmadi, A. Alshuhail, P. Solé, The mass formula for self-orthogonal and self-dual codes over a non-unitary commutative ring, *AIMS Mathematics*, **8** (2023), 24367–24378. https://doi.org/10.3934/math.20231242
- 7. B. Fine, Classification of finite rings of order p^2 , *Math. Mag.*, **66** (1993), 248–252. https://doi.org/10.1080/0025570X.1993.11996133
- 8. A. Alahmadi, A. Alkathiry, A. Altassan, W. Basaffar, A. Bonnecaze, H. Shoaib, P. Solé, Type IV codes over a non-local non-unital ring, *Proyecciones (Antofagasta)*, **39** (2020), 963–978. https://doi.org/10.22199/issn.0717-6279-2020-04-0060
- 9. A. Alahmadi, A. Melaibari, P. Solé, Duality of codes over non-unital rings of order four, *IEEE Access*, **11** (2023), 53120–53133. https://doi.org/10.1109/ACCESS.2023.3261131
- 10. M. Shi, S. Li, J.-L. Kim, P. Solé, LCD and ACD codes over a noncommutative non-unital ring with four elements, *Cryptogr. Commun.*, **14** (2022), 627–640. https://doi.org/10.1007/s12095-021-00545-4
- 11. A. Alahmadi, M. Altaiary, P. Solé, Cyclic codes over a non-commutative non-unital ring, *Mathematics*, **12** (2024), 2014. https://doi.org/10.3390/math12132014
- 12. A. Alahmadi, M. Altaiary, P. Solé, Cyclic codes over a non-local non-unital ring, *Mathematics*, **12** (2024), 866. https://doi.org/10.3390/math12060866
- 13. A. Alahmadi, A. Alkathiry, A. Altassan, A. Bonnecaze, H. Shoaib, P. Solé, The build-up construction over a commutative non-unital ring, *Des. Codes Cryptogr.*, **90** (2022), 3003–3010. https://doi.org/10.1007/s10623-022-01044-0
- 14. A. Alahmadi, T. Alihia, P. Solé, The build-up construction for codes over a non-commutative non-unitary ring of order 9, *AIMS Mathematics*, **9** (2024), 18278–18307. https://doi.org/10.3934/math.2024892

- 15. A. Alahmadi, A. Alkathiry, A. Altassan, W. Basaffar, A. Bonnecaze, H. Shoaib, et al., Quasi self-dual codes over non-unital rings of order six, *Proyecciones (Antofagasta)*, **39** (2020), 1083–1095. http://dx.doi.org/10.22199/issn.0717-6279-2020-04-0066
- 16. S. Bouyuklieva, Optimal binary LCD codes, *Des. Codes Cryptogr.*, **89** (2021), 2445–2461. https://doi.org/10.1007/s10623-021-00929-w
- 17. C. Carlet, S. Mesnager, C. Tang, Y. Qi, New characterization and parametrization of LCD codes, *IEEE Trans. Inf. Theory*, **65** (2018), 39–49. https://doi.org/10.1109/TIT.2018.2829873
- 18. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, *J. Symbolic Comput.*, **24** (1997), 235–265. https://doi.org/10.1006/jsco.1996.0125

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)