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Abstract: Taking white noise, Lévy jumps, and periodic factors in the environments into account,
we formulated a periodic stochastic Gompertz model with impulsive harvesting and investigated its
optimal impulsive exploitation problem. For periodic stochastic ecosystems with Lévy jumps and
impulsive harvesting, two traditional approaches, the Fokker-Planck equation approach and ergodicity-
based approach used to study the optimal exploitation problems were invalid because for almost
all such ecosystems, one could not solve the associated Fokker-Planck equations. In addition, the
ecosystems have no traditional non-boundary invariant measures. The present study utilized a different
method. By exploring the associated Hamilton function, we derived an optimal exploitation strategy.
An example was also introduced to illustrate the theoretical results.
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1. Introduction

There are many renewable resources in nature. How to exploit them economically and sustainably
has become and will continue to be one of the key issues [1, 2]. Furthermore, nature is filled with
various random disturbances. In mathematical modeling, it is essential to fully account for the effects
of these random disturbances [3]. As a matter of fact, neglecting the impacts of random perturbations
might be one of the main reasons for the dramatic drop of many living creatures, hence many scholars
focused on stochastic harvesting ecosystems, and these researches have both theoretical and practical
values for decision making [4].

In recent decades, a number of scholars have devoted their efforts to stochastic exploitation
ecosystems [5–14]. Early investigations focused on using explicit solutions of the associated
Fokker-Planck equation (FPE) to get optimal exploitation strategies (OES) of the ecosystems [5, 6].
Nevertheless, for the vast majority of stochastic ecosystems, explicit solutions to their associated
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FPEs remain unavailable. To address this challenge, the authors [7] pioneered an ergodicity-based
method. This innovative method utilizes the ergodic properties of non-boundary invariant
measures (NBIM) in ecosystems, thereby eliminating the requirement for explicit solutions to the
associated FPEs. Now, this approach has been further developed and widely utilized [8–14].

Most stochastic harvesting studies have focused on autonomous models with continuous
exploitations. Nevertheless, the natural environment often fluctuates periodically due to seasonal
variations and other factors [15–17]. Additionally, exploitations in practice are often carried out
impulsively [18–22]. For instance, fishermen are only allowed to harvest scallop (Pecten maximus)
from November to April in the Saint Brieuc Bay (France), and only two days in a week [23].
Moreover, the growth of living creatures often encounter some abrupt fluctuations which can cause
dramatic variations in the number of the creatures. For example, the Gulf of Mexico oil spill wipes
out more than 30% of the laughing gulls in the area [24]. Lévy jump processes should be incorporated
to model these sudden fluctuations [25–27]. Therefore, in order to make it more consistent with the
actual situation, periodic stochastic ecosystems with Lévy jumps and impulsive exploitation should be
investigated. However, research on this topic is still in its infancy. One reason is that stochastic
ecosystems with Lévy jumps and impulsive harvesting are not continuous models, as both the FPE
approach and ergodicity-based approach mentioned above are invalid. For almost all such ecosystems,
one could not solve the associated FPEs; in addition, the ecosystems have no traditional NBIM. For
stochastic ecosystems with Lévy jumps and impulsive harvesting, how to analyze the OES, and reveal
the impacts of Lévy noise and impulsive exploitation on the OES become interesting topics.

Motivated by these factors, we consider a periodic stochastic Gompertz equation with Lévy jumps
and impulsive exploitation. As said above, for our model, both the FPE method and ergodicity-based
method used in [5–14] are invalid. This paper will use an innovative approach. We will show that the
model has a globally attractive solution, and we shall give the explicit form of the solution. Then, by
constructing an appropriate Hamilton function and using the the explicit form and the global
attractiveness of the solution, we shall obtain the OES. The results reveal that both Lévy jumps and
impulsive exploitation can impact the OES, and should not be neglected.

The organization of this paper is as follows. In Section 2, we formulate the model. In Section
3, by analyzing the corresponding Hamilton function, we get the OES. In Section 4, we introduce a
demonstrative example. At last, the impacts of Lévy noise and impulsive exploitation on the OES are
analyzed.

2. The model

As one of the most famous models in population dynamics, the Gompertz growth model has been
applied with surpassing success in many areas from growth of tumors to fishery resources
exploitation [15, 28]. Through curve fitting, the model has proven particularly useful for modeling a
wide range of developmental phenomena [28]. The classical deterministic Gompertz model is [15]:

Ψ̇(r) = bΨ(r)
[
ln K − lnΨ(r)

]
, (2.1)

where Ψ̇(r) = dΨ(r)/dr, Ψ(r) is population’s abundance, and growth rate b and carrying capacity K are
constants. When the periodic factors are taken into account, the constants b and K in (2.1) are replaced
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by T -periodic and continuous functions b(r) and K(r) respectively [15], then model (2.1) becomes:

Ψ̇(r) = b(r)Ψ(r)
[
ln K(r) − lnΨ(r)

]
, (2.2)

where minr∈[0,T ]{b(r), K(r)} > 0. This study assumes T = 1 to avoid complicated symbols.
Now let us move to the impacts of environmental noises. Two classes of environmental noises

are considered: white noise and Lévy noise. Minor disturbances are common in the environments,
for example, the slight variations of the temperature and humidity. One could use the white noise to
characterize these minor disturbances [3]. A widely accepted method for incorporating white noise is
based on the assumption that it primarily influences species’ per capita growth rate (see, e.g., [8–14,
29–32]), because species’ per capita growth rate is the most environmentally sensitive parameter and is
highly susceptible to interference from environmental noise [32]. Following this way, in model (2.2),

Ψ̇(r)
Ψ(r)

→
Ψ̇(r)
Ψ(r)

+ ϕ(r)ω̇(r),

where ω̇(r) represents white noise; that is, ω(r) represents a standard Brownian motion on a probability
space (Ω,F , {Fr}r≥0,P) that satisfies the usual conditions, and ϕ(r) is a 1-periodic continuous function
describing noise’s intensity. Then, Eq (2.2) is replaced by:

dΨ(r) = b(r)Ψ(r)
[
ln K(r) − lnΨ(r)

]
dr + ϕ(r)Ψ(r)dω(r). (2.3)

Besides small environmental perturbations, there are many abrupt environmental perturbations in the
environments, for example, floods, droughts, and windstorms. These perturbations usually cause
dramatic variations in the number of the species. One could use the Lévy noise to characterize the
abrupt environmental perturbations [25]. Let ν stand for characteristic measure of a Poisson counting
measure Γ satisfying ν(Υ) < +∞, where Υ ⊂ (0,+∞) is measurable. Let

Γ̃(dr, dη) = Γ(dr, dη) − ν(dη)dr.

Following [9–12], Eq (2.3) becomes:

dΨ(r) = b(r)Ψ(r)
[
ln K(r) − lnΨ(r)

]
dr + ϕ(r)Ψ(r)dω(r)

+

∫
Υ

κ(r, η)Ψ(r)Γ̃(dr, dη).
(2.4)

Here, κ(r, η) is a 1-periodic and continuous function with respect to r, and κ2(r, η) measures the intensity
of the abrupt environmental perturbations. Here we assume that κ(r, η) is periodic because the abrupt
environmental perturbations may occur periodically, for example, the Yellow River basin experiences
distinct seasonal flood periods due to its latitude and monsoon climate. It is important to point out that
comparing with model (2.3), due to the inclusion of the term

∫
Υ
κ(r, η)Ψ(r)Γ̃(dr, dη), the solution of

model (2.4) becomes discontinuous.
Finally, let us pay attention to impulsive harvesting. Hypothesize that in [0, 1], the species is

exploited L times at r = rl (l = 1, 2..., L) with harvesting effort hl:

0 < r1 < r2 < · · · < rL < 1, rl+L = rl + 1, hl = h(rl) = hl+L, l ∈ N.
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Then Eq (2.4) is replaced by
dΨ(r) = b(r)Ψ(r)

[
ln K(r) − lnΨ(r)

]
dr + ϕ(r)Ψ(r)dω(r)

+

∫
Υ

κ(r, η)Ψ(r)Γ̃(dr, dη), r , rl, l ∈ N,

Ψ(r+l ) − Ψ(rl) = −hlΨ(rl), l ∈ N.

(2.5)

The objective is to determine the optimal harvesting effort that maximizes yield

Y(h) = lim inf
k→+∞, k∈N

L∑
l=1

hlE
(
Ψ(rl + k)

)
.

3. Main results

Assumption 3.1. For ∀r ≥ 0, η ∈ Υ,
1 + κ(r, η) > 0,

which means that the negative abrupt environmental perturbations cannot eliminate all the species.

Lemma 3.1. (Corollary 5.2.2 in [33]) Let

dY(r) = G(r)dr +
∫
Υ

y(r, η)̃Γ(dη, dr).

eY(r) is a local martingale⇔

G(z) +
∫
Υ

[
ey(z,η) − 1 − y(z, η)

]
ν(dη)dz = 0

for almost all z ≥ 0.

Lemma 3.2. Under Assumption 3.1, for arbitrary initial value Ψ0 = Ψ(0) > 0, Eq (2.5) possesses a
global positive solution Ψ(r) almost surely, which is pathwise uniqueness. Moreover, Ψ(r) is globally
attractive, and

Ψ(r) = exp
{

lnΨ0e−
∫ r

0 b(u)du +
∑

0≤rl<r

ln(1 − hl)e
−
∫ r

rl
b(u)du

+

∫ r

0
α(u)e−

∫ r
u b(z)dzdu

+

∫ r

0
ϕ(u)e−

∫ r
u b(z)dzdω(u) +

∫ r

0

∫
Υ

ln(1 + κ(u, η))e−
∫ r

u b(z)dzΓ̃(du, dη)
}
,

(3.1)

where

α(r) = b(r) ln K(r) −
ϕ2(r)

2
−

∫
Υ

[
κ(r, η) − ln(1 + κ(r, η))

]
ν(dη),

additionally,

E(Ψ(r)) = exp
{

lnΨ0e−
∫ r

0 b(u)du +
∑

0≤rl<t

ln(1 − hl)e
−
∫ r

rl
b(u)du

+

∫ r

0
α(u)e−

∫ r
u b(z)dzdu +

∫ r

0

ϕ2(u)
2

e−2
∫ r

u b(z)dzdu

+

∫ r

0

∫
Υ

[
(1 + κ(u, η))e−

∫ r
u b(z)dz
− 1 − ln(1 + κ(u, η))e−

∫ r
u b(z)dz

]
ν(dη)du

}
.

(3.2)
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Proof. Define A(r) = lnΨ(r), and by (2.5),
dA(r) =

[
b(r) ln K(r) −

ϕ2(r)
2
−

∫
Υ

[
κ(r, η) − ln(1 + κ(r, η))

]
ν(dη) − b(r)A(r)

]
dr

+ ϕ(r)dω(r) +
∫ r

0

∫
Υ

ln(1 + κ(u, η))Γ̃(du, dη), r , rl, l ∈ N,

A(r+l ) − A(rl) = ln(1 − hl), l ∈ N.

(3.3)

In light of Lemma 4.1 in [25], one can derive the explicit solution of (3.3):

A(r) = e−
∫ r

0 b(u)du lnΨ0 +
∑

0≤rl<t

ln(1 − hl)e
−
∫ r

rl
b(u)du

+

∫ r

0
α(u)e−

∫ r
u b(z)dzdu

+

∫ r

0
ϕ(u)e−

∫ r
u b(z)dzdω(u) +

∫ r

0

∫
Υ

ln(1 + κ(u, η))e−
∫ r

u b(z)dzΓ̃(du, dη).
(3.4)

This implies that

Ψ(r) = eA(r)

= exp
{

lnΨ0e−
∫ r

0 b(u)du +
∑

0≤rl<r

ln(1 − hl)e
−
∫ r

rl
b(u)du

+

∫ r

0
α(u)e−

∫ r
u b(z)dzdu

+

∫ r

0
ϕ(u)e−

∫ r
u b(z)dzdω(u) +

∫ r

0

∫
Υ

ln(1 + κ(u, η))e−
∫ r

u b(z)dzΓ̃(du, dη)
}
.

Introduce Ψ1(r) and Ψ2(r) as two trajectories with distinct initial conditions, and let A1(r) = lnΨ1(r)
and A2(r) = lnΨ2(r). For arbitrary A1(0) = lnΨ1(0) and A2(0) = lnΨ2(0),

lim
r→+∞

| A1(r) − A2(r) |= lim
r→+∞

e−
∫ r

0 b(u)du | A1(0) − A2(0) |= 0.

Thereby,
lim

r→+∞
| Ψ1(r) − Ψ2(r) |= 0. (3.5)

To prove (3.2), define

U1(r) =
∫ r

0
ϕ(u)e−

∫ r
u b(z)dzdω(u).

The quadratic variation of U1(r) is

⟨U1(r),U1(r)⟩ =
∫ r

0
ϕ2(u)e−2

∫ r
u b(z)dzdu.

By virtue of Gardiner’s relation [34], one gets

E
{
eU1(r)} = e0.5⟨U1(r),U1(r)⟩ = exp

{ ∫ r

0

ϕ2(u)
2

e−2
∫ r

u b(z)dzdu
}
.

Define
U2(r) =

∫ r

0

∫
Υ

ln(1 + κ(u, η))e−
∫ r

u b(z)dzΓ̃(du, dη).
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According to Lemma 3.1,

exp
{
−

∫ r

0

∫
Υ

[
(1 + κ(u, η))e−

∫ r
u b(z)dz
− 1 − ln(1 + κ(u, η))e−

∫ r
u b(z)dz

]
ν(dη)du + U2(r)

}
is a local martingale. It follows that,

E
[
exp{U2(r)}

]
= exp

{ ∫ r

0

∫
Υ

[
(1 + κ(u, η))e−

∫ r
u b(z)dz
− 1 − ln(1 + κ(u, η))e−

∫ r
u b(z)dz

]
ν(dη)du

}
.

Then, the required assertion (3.2) follows from (3.1). □

Define

λ(rl+1) = e−
∫ rl+1

rl
b(z)dz
,

σ(r) =
∫ r

rl

∫
Υ

[
(1 + κ(u, η))e−

∫ r
u b(z)dz
− 1 − ln(1 + κ(u, η))e−

∫ r
u b(z)dz

]
ν(dη)du,

ρ(rl+1) =
∫ rl+1

rl

α(u)e−
∫ rl+1

u b(z)dzdu +
∫ rl+1

rl

ϕ2(u)
2

e−2
∫ rl+1

u b(z)dzdu + σ(rl+1),

πl = 1 −
[
λ(rl+1)

] 1
1−λ(rl+1)

[
λ(rl)
] λ(rl)
λ(rl)−1 e

ρ(rl+1)
1−λ(rl+1)−

ρ(rl)
1−λ(rl) , 1 ≤ l ≤ L.

Theorem 1. Let Assumption 3.1 hold. If πl > 0, 1 ≤ l ≤ L, then model (2.5) admits a unique optimal
capture effort h∗ = π, the associated output Y∗ is

Y∗ =
L∑

l=1

e
ρ(rl)

1−λ(rl)
[
λ(rl)
] λ(rl)

1−λ(rl)

{
1 − λ(rl)

}
, (3.6)

and the mean of optimal population level E(Ψ∗(r)) is a 1-periodic function and has the following form:
for t ∈ (rl, rl+1],

E(Ψ∗(r)) = exp
{ ln λ(rl+1) + ρ(rl+1)

1 − λ(rl+1)
e−
∫ r

rl
b(z)dz
+

∫ r

rl

α(u)e−
∫ r

u b(z)dzdu

+

∫ r

rl

ϕ2(u)
2

e−2
∫ r

u b(z)dzdu + σ(r)
}
.

(3.7)

Proof. According to (3.2), for arbitrary r ∈ (rl, rl+1],

E(Ψ(r)) = exp
{

ln
[
(1 − hl)E(Ψ(rl))

]
e−
∫ r

rl
b(z)dz
+

∫ r

rl

α(u)e−
∫ r

u b(z)dzdu

+

∫ r

rl

ϕ2(u)
2

e−2
∫ r

u b(z)dzdu + σ(r)
}
.

(3.8)

That is to say,

E
(
Ψ(rl+1)

)
= exp

{
ln
[
(1 − hl)E(Ψ(rl))

]
λ(rl+1) + σ(rl+1)

+

∫ rl+1

rl

α(u)e−
∫ rl+1

u b(z)dzdu +
∫ rl+1

rl

ϕ2(u)
2

e−2
∫ rl+1

u b(z)dzdu
}
.

(3.9)
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Thus,

E
(
Ψ(rl+1)

)
= exp

{
ln
[
(1 − hl)E(Ψ(rl))

]
λ(rl+1) + ρ(rl+1)

}
. (3.10)

As a result,

E
(
Ψ(rl+1)

)
− E
(
Ψ(rl)

)
= exp

{
ln
[
(1 − hl)E(Ψ(rl))

]
λ(rl+1) + ρ(rl+1)

}
− E
(
Ψ(rl)

)
.

Define

Ỹ(h) =
L∑

l=1

hlE
(
Ψ(rl)

)
.

Our objective is to search for h∗ = (h∗1, ..., h
∗
L) which maximizes Ỹ(h). For this purpose, we define the

following Hamilton function:

H
(
E
(
Ψ(rl)

)
, hl, βl, rl

)
= hlE

(
Ψ(rl)

)
+ βl+1

(
E
(
Ψ(rl+1)

)
− E
(
Ψ(rl)

))
, (3.11)

where βl obeys

βl+1 − βl = −hl − βl+1

{
exp
{

ln
[
(1 − hl)E(Ψ(rl))

]
λ(rl+1) + ρ(rl+1)

}
λ(rl+1)
E(Ψ(rl))

− 1
}
.

As a result,

βl = hl + βl+1 exp
{

ln
[
(1 − hl)E(Ψ(rl))

]
λ(rl+1) + ρ(rl+1)

}
λ(rl+1)
E(Ψ(rl))

. (3.12)

Differentiating (3.11) leads to

∂H
∂hl
= E
(
Ψ(rl)

)
− βl+1

{
exp
{

ln
[
(1 − hl)E(Ψ(rl))

]
λ(rl+1) + ρ(rl+1)

}
λ(rl+1)
1 − hl

}
.

Let ∂H
∂hl
= 0, and one can see that

(1 − hl)E
(
Ψ(rl)

)
= βl+1 exp

{
ln
[
(1 − hl)E(Ψ(rl))

]
λ(rl+1) + ρ(rl+1)

}
λ(rl+1).

Then, by (3.12), we have βl = 1.When βl = 1 is used in (3.12), we obtain

λ(rl+1) =
(1 − hl)E(Ψ(rl))
E(Ψ(rl+1))

. (3.13)

Moreover, we deduce from (3.10) that

(1 − hl)E(Ψ(rl)) =
[
E(Ψ(rl+1))

] 1
λ(rl+1) e−

ρ(rl+1)
λ(rl+1) .

Combining with (3.13) leads to

E(Ψ∗(rl+1)) =
[
λ(rl+1)

] λ(rl+1)
1−λ(rl+1) e

ρ(rl+1)
1−λ(rl+1) .
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Consequently,

E(Ψ∗(rl)) =
[
λ(rl)
] λ(rl)

1−λ(rl) e
ρ(rl)

1−λ(rl) . (3.14)

Substituting this equality into (3.13) gives

h∗l = 1 −
[
λ(rl+1)

] 1
1−λ(rl+1)

[
λ(rl)
] λ(rl)
λ(rl)−1 e

ρ(rl+1)
1−λ(rl+1)−

ρ(rl)
1−λ(rl) , 1 ≤ l ≤ L. (3.15)

By (3.13)–(3.15), hl is unique, hence it is a global maximum. Thereby, if h∗l > 0 (1 ≤ l ≤ L), notice
that λ(rL+1) = λ(r1 + 1) = λ(r1), and ρ(rL+1) = ρ(r1 + 1) = ρ(r1), and one has

Ỹ∗ =
L∑

l=1

h∗lE(Ψ∗(rl)) =
L∑

l=1

{[
λ(rl)
] λ(rl)

1−λ(rl) e
ρ(rl)

1−λ(rl) −
[
λ(rl+1)

] 1
1−λ(rl+1) e

ρ(rl+1)
1−λ(rl+1)

}
=
[
λ(r1)
] λ(r1)

1−λ(r1) e
ρ(r1)

1−λ(r1) −
[
λ(r2)
] 1

1−λ(r2) e
ρ(r2)

1−λ(r2)

+
[
λ(r2)
] λ(r2)

1−λ(r2) e
ρ(r2)

1−λ(r2) −
[
λ(r3)
] 1

1−λ(r3) e
ρ(r3)

1−λ(r3)

+ · · · · · · · · · · · ·

+
[
λ(rL)

] λ(rL)
1−λ(rL) e

ρ(rL)
1−λ(rL) −

[
λ(rL+1)

] 1
1−λ(rL+1) e

ρ(rL+1)
1−λ(rL+1)

=

L∑
l=1

e
ρ(rl)

1−λ(rl)

{[
λ(rl)
] λ(rl)

1−λ(rl) −
[
λ(rl)
] 1

1−λ(rl)

}
=

L∑
l=1

e
ρ(rl)

1−λ(rl)
[
λ(rl)
] λ(rl)

1−λ(rl)

{
1 − λ(rl)

}
.

When (3.14) and (3.15) are utilized in (3.8), for r ∈ (rl, rl+1],

E(Ψ∗(r)) = exp
{ ln λ(rl+1) + ρ(rl+1)

1 − λ(rl+1)
e−
∫ r

rl
b(z)dz

+

∫ r

rl

α(u)e−
∫ r

u b(z)dzdu +
∫ r

rl

ϕ2(u)
2

e−2
∫ r

u b(z)dzdu + σ(r)
}
.

We then deduce from λ(rl+1 + 1) = λ(rl+1), ρ(rl+1 + 1) = ρ(rl+1), b(r + 1) = b(r), α(r + 1) = α(r),
κ(r + 1, η) = κ(r, η) and ϕ(r + 1) = ϕ(r) that

E(Ψ∗(r + 1))

= exp
{ ln λ(rl+1 + 1) + ρ(rl+1 + 1)

1 − λ(rl+1 + 1)
e−
∫ r+1

rl+1 b(z)dz

+

∫ r+1

rl+1
α(u)e−

∫ r+1
u b(z)dzdu +

∫ r+1

rl+1

ϕ2(u)
2

e−2
∫ r+1

u b(z)dzdu

+

∫ r+1

rl+1

∫
Υ

[
(1 + κ(u, η))e−

∫ r+1
u b(z)dz

− 1 − ln(1 + κ(u, η))e−
∫ r+1

u b(z)dz
]
ν(dη)du

}
= exp

{ ln λ(rl+1) + ρ(rl+1)
1 − λ(rl+1)

e−
∫ r

rl
b(z)dz

+

∫ r

rl

α(u)e−
∫ r

u b(z)dzdu +
∫ r

rl

ϕ2(u)
2

e−2
∫ r

u b(z)dzdu

+

∫ r

rl

∫
Υ

[
(1 + κ(u, η))e−

∫ r
u b(z)dz
− 1 − ln(1 + κ(u, η))e−

∫ r
u b(z)dz

]
ν(dη)du

}
= E(Ψ∗(r)).
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This implies that E(Ψ∗(r)) is 1-periodic. Thereby,

Y∗ = max
h

{
lim inf

k→+∞

L∑
l=1

hlE
(
Ψ(rl + k)

)}
≥

L∑
l=1

h∗lE
(
Ψ∗(rl)

)
= Ỹ∗.

On the other hand, for arbitrary n ∈ N and hl > 0,

L∑
l=1

hlE
(
Ψ(rl + k)

)
=

L∑
l=1

h(rl + k)E
(
Ψ(rl + k)

)
≤

L∑
l=1

h∗lE
(
Ψ∗(rl)

)
= Ỹ∗.

As a consequence,
Y∗ ≤ Ỹ∗,

Thus,
Y∗ = Ỹ∗,

which completes the proof. □

Remark 3.1. The approach used in Theorem 1 can avoid solving the associated FPEs and does not
need to use the traditional NBIM. This approach could be used to study other models, for example,
logistic model (details are left to the reader). Hence, the approach may provide a new way to study the
OES for periodic stochastic ecosystems with Lévy jumps and impulsive exploitation.

Remark 3.2. Liu [16] considered the optimal exploitation of the following model:

dΨ(r) = b(r)Ψ(r)
[
ln K(r) − lnΨ(r)

]
dr − h(r)Ψ(r)dr + ϕ(r)Ψ(r)dω(r), (3.16)

where h(r) is a 1-periodic continuous function. The author obtained the optimal capture effort and the
associated output. Clearly, Eq (3.16) is a model with continuous harvesting, while our system (2.5)
is a model with noncontinuous harvesting. In addition, our system (2.5) considers the effects of Lévy
jumps that are not considered in Eq (3.16).

4. An example

Now let us introduce a demonstrative example. Pay attention to the following equation where the
coefficients are hypothesized:

dΨ(r) =
(
0.3 + 0.1 cos(2πr)

)
Ψ(r)
[

ln
(
5 + 0.2 sin(2πr)

)
− lnΨ(r)

]
dr

+

(
0.1 + 0.05 cos(2πr)

)
Ψ(r)dω(r)

+ Ψ(r)
∫
R+

(
0.05 + 0.06 cos(2πr)

)
Γ̃(dr, dη), r , rl, l ∈ N,

Ψ(r+l ) − Ψ(rl) = −hlΨ(rl), l ∈ N.

(4.1)

Assume that each year, people exploit twice at the moments 0.4, 0.6, i.e., r1 = 0.4, r2 = 0.6, r3 = 1.4,
r4 = 1.6,.... Notice that

b(r) = 0.3 + 0.1 cos(2πr), K(r) = 5 + 0.2 sin(2πr), ϕ(r) = 0.1 + 0.05 cos(2πr),
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Υ = R+, κ(r, η) = 0.05 + 0.06 cos(2πr), ν(Υ) = 1,

hence
λ(r1) = λ(r3) = e−

∫ r3
r2

b(z)dz
= 0.7720, λ(r2) = e−

∫ r2
r1

b(z)dz
= 0.9596,

ρ(r1) = ρ(r3) =
∫ r3

r2

[
b(u) ln K(u) −

ϕ2(u)
2

]
e−
∫ r3

u b(z)dzdu

+

∫ r3

r2

ϕ2(u)
2

e−2
∫ r3

u b(z)dzdu

+

∫ r3

r2

∫
Υ

[
(1 + κ(u, η))e−

∫ r3
u b(z)dz

− 1 − ln(1 + κ(u, η))e−
∫ r3

u b(z)dz
]
ν(dη)du

= 0.3647,

ρ(r2) =
∫ r2

r1

[
b(u) ln K(u) −

ϕ2(u)
2

]
e−
∫ r2

u b(z)dzdu

+

∫ r2

r1

ϕ2(u)
2

e−2
∫ r2

u b(z)dzdu

+

∫ r2

r1

∫
Υ

[
(1 + κ(u, η))e−

∫ r2
u b(z)dz

− 1 − ln(1 + κ(u, η))e−
∫ r2

u b(z)dz
]
ν(dη)du

= 0.0650.

As a result,

h∗1 = 1 −
[
λ(r2)
] 1

1−λ(r2)
[
λ(r1)
] λ(r1)
λ(r1)−1 e

ρ(r2)
1−λ(r2)−

ρ(r1)
1−λ(r1) = 0.1277,

h∗2 = 1 −
[
λ(r3)
] 1

1−λ(r3)
[
λ(r2)
] λ(r2)
λ(r2)−1 e

ρ(r3)
1−λ(r3)−

ρ(r2)
1−λ(r2) = 0.1507,

Y∗ = e
ρ(r1)

1−λ(r1)
[
λ(r1)
] λ(r1)

1−λ(r1)
{
1 − λ(r1)

}
+ e

ρ(r2)
1−λ(r2)
[
λ(r2)
] λ(r2)

1−λ(r2)
{
1 − λ(r2)

}
= 0.5459.

5. Discussions and conclusions

Revealing the influences of random noises and impulsive exploitation on the OES of ecosystems
has significant implications. Gompertz growth model can depict a wide range of developmental
phenomena [28]; in addition, abrupt fluctuations often occur in the real word, therefore we study a
periodic Gompertz equation with impulsive exploitation and Lévy jumps. Theorem 1 is the main
result, which gives the OES of the model.

Two traditional approaches, the FPE method and ergodicity-based method, do not work for periodic
stochastic ecosystems with Lévy jumps and impulsive harvesting. In this paper, we used a different
approach to derive the OES, which may provide a new way to study the OES for periodic stochastic
ecosystems with Lévy jumps and impulsive exploitation.

The research findings indicate that OES is closely dependent on Lévy jumps and impulsive
exploitation. According to Theorem 1, optimal capture effort h∗ and the associated annual output Y∗

depend only on the values of θ(ri) and ρ(ri). By the definitions of θ(ri) and ρ(ri), one can see that the
intensity of Lévy jumps γ and the impulsive harvesting time ri influence the values of θ(ri) and ρ(ri).
Due to the complicated expressions of h∗ and Y∗, the impacts of ri on h∗ and Y∗ cannot be given
clearly. The impacts of γ on h∗ depend on the values of θ(ri) (1 ≤ i ≤ L), which cannot be given
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clearly either. However, the impacts of γ on Y∗ are clear. In fact, when γ > 0, one can see that

∂ρ(ri)
∂γ

> 0,
∂Y∗

∂ρ(ri)
> 0.

That is to say, when γ > 0, with the increasing of γ, one can get more annual yield Y∗. Biologically,
γ > 0 means that the population size increases suddenly (for example, releasing fish fry). Hence, in
this case, one can get more annual yield.

Compared to most existed researches (see, e.g., [6–12]), this study makes the following key
contributions.

(i) This study considers the effects of white noise, Lévy jumps, periodic environment, and impulsive
harvesting simultaneously, and the model is more realistic. In fact, this letter represents the initial
study to investigate OES of models under Lévy noises and noncontinuous harvesting.

(ii) This study establishes explicit forms of optimal capture effort and associated output which are
easy to utilize in reality.

(iii) Our results reveal that both Lévy jumps and impulsive exploitation can impact the OES, and
should not be neglected.

To finish this paper, we would like to point out that this paper only considers a single-species model,
and it is interesting to test multi-species models or epidemiological coupled systems [35]. Additionally,
this paper does not consider the effects of time delay [36], and it is interesting to test models with time
delay. Third, our model is with classical Brownian motion, and it is interesting to test models with G-
Brownian motion [37]. Finally, this paper doesn’t illustrate numerical approach because there is white
noise, Lévy jumps, and impulsive exploitation in model (2.5), and how to numerically illustrate the
results is still not solved; specifically, the appropriate discretization schemes are still unknown. These
problems are left for further consideration.
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33. D. Applebaum, Lévy processes and stochastics calculus, London: Cambridge University Press,
2009.

34. E. L. Crow, K. Shimizu, Lognormal distributions, New York: Marcel Dekker, 1987.

35. Y. Sabbar, M. Mehdaoui, M. Tilioua, K. S. Nisar, Probabilistic analysis of a disturbed SIQP-SI
model of mosquito-borne diseases with human quarantine strategy and independent Poisson jumps,
Model. Earth Syst. Environ., 10 (2024), 4695–4715. https://doi.org/10.1007/s40808-024-02018-y

36. Q. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear
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