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Abstract: This research focused on estimating the stress-strength parameter by considering stress
and strength as distinct random variables, both characterized by the inverse power Lomax (IPL)
distribution. The maximum likelihood estimate (MLE) for stress-strength reliability was then
calculated using the Newton-Raphson method. Using the asymptotic normality of MLEs, this study
developed approximate confidence intervals. Bootstrap confidence intervals for the stress-strength
reliability parameter (R) were investigated. The Bayes estimator of R was considered. Furthermore, we
utilized the Markov chain Monte Carlo (MCMC) method to create both symmetric and asymmetric loss
functions, allowing for a more comprehensive analysis. The highest posterior density (HPD) credible
intervals under a gamma prior distribution were calculated. The different approaches were assessed
using a Monte Carlo simulation. Finally, a numerical example was given to show the effectiveness of
the proposed methods.
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1. Introduction

Studies have indicated that certain parts or equipment endure because of their durability. These
gadgets can withstand a given amount of stress, but when more force is placed on them, they
malfunction because they are unable to handle it. The likelihood that these components will function
properly under specified conditions and at a given stress level is what is known as reliability. Reliability
engineering studies use this probability to control, assess, and estimate a device’s capability and
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lifetime. The stress-strength model defines a component’s life as follows: If stress surpasses strength,
the component will fail. The reliability of single-component systems involving strength under stress
is an issue shared by many aspects of agriculture engineering, biology, and medicine. Stress-strength
model has numerous applications and can be used to quantify the differences between two populations.

In statistical literature, estimating a function R = P(Y < X), considering the independent
distributions of X and Y, is a frequently encountered problem. [1] discussed the estimation problem
based on complete samples. While central to system reliability, the metric P(Y < X) finds significant
application in diverse fields. In biometrics, it allows for comparing treatment outcomes: If X and
Y denote patient longevity under drugs A and B, a patient’s decision may be informed by whether
P(Y < X) deviates from 0.5. In statistical tolerance analysis, P(Y < X) quantifies the probability of
successful assembly, such as a bearing (diameter Y) fitting a shaft (diameter X) without interference.
Consequently, the study and inference of P(Y < X) are of considerable importance.

A review of the stress-strength model in reliability was given by [2]. Using censored samples, [3]
investigated the situation in which X and Y are independent Burr Type XII random variables. In the
case where X and Y are two independent random variables with a Burr Type X distribution, [4] looked
into this subject. [5] investigated estimating the stress-strength reliability model using a finite mixture
of two-parameter Lindley distributions. The estimation of R under Type II progressive censoring for
an exponential distribution was derived by [6]. In order to establish the asymptotic distribution of
the MLE for the generalized exponential distribution, [7] assumed that X and Y were independently
distributed. [8] calculated R using logistic and Laplace distributions. The estimate of R for an
instance in which X and Y are Burr-X random variables was determined by [9]. [10] examined the
class of lifespan distributions, focusing specifically on the gamma and exponential distributions. The
estimator was developed by [11] for the situation in which X and Y exhibit independence and both
fit into a three-parameter Weibull distribution with different scale parameters but the same shape and
location parameters. Based on data that was progressively censored using Type-II, [12] estimated the
stress-strength reliability for the alpha power exponential distribution. Using the generalized variable
technique, [13] created interval estimation algorithms for R, particularly for the Weibull distribution.
The estimation of R was discussed by [14] in relation to the proportional odds ratio model. The
estimation of R where X and Y are the minimum of two exponential samples was studied by [15].

Rostamian and Nematollahi [16] studied stress-strength using the inverse Gaussian distribution
under Type-II censoring. Ghanbari et al. [17] extended this to the Marshall-Olkin model, and Asadi
and Panahi [18] applied it to coating reliability. Hu and Ren [19] used the inverse Weibull with adaptive
censoring, while Elbatal et al. [20] introduced a binomial removal scheme for broader inference.
Temraz [21] used the Exponentiated Generalized Marshall-Olkin-G distribution for skewed data.
Xavier et al. [22] and Hassan et al. 23 focused on system reliability using Kumaraswamy-based models.
Recently, Xu et al. [24] incorporated stress-strength concepts into federated learning by proposing
an adaptive sampling strategy for predicting aircraft engine life, and Xu et al. [25] modeled heavy-
tailed degradation paths using a multivariate Student-t process, aiding stress-strength analysis in
multicomponent systems.

As highlighted in the cited references, previous studies have primarily focused on the MLE as
a frequentist approach, along with Bayesian methods, for estimating R to evaluate the stress-strength
reliability of the IPL distribution. We systematically analyze the performance of these estimators under
varying sample sizes and parameter values, aiming to establish practical guidelines for selecting the
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most suitable method. Our findings are particularly relevant for applied statisticians and reliability
engineers seeking robust estimation strategies.

Through extensive simulation studies and real-data analysis, we demonstrate that Bayesian methods
can provide more desirable estimates than MLE, reinforcing their applicability in practical settings.
Notably, this study is the first comprehensive effort to compare distinct estimation methods for IPL
stress-strength reliability, offering new insights for the field. In terms of real data analysis, they showed
that the IPL distribution has more flexibility than some well-known distributions like Weibull, Burr XII,
and gamma distributions in modeling various types of data.

We consider independent random variables X and Y that follow a three-parameter IPL distribution,
defined by the probability density function (pdf) and its cumulative distribution function (cdf). Our
objective in this paper is to estimate the quantity P(Y < X).

gy, v, &) = wE XA +ENXT)YOD 0 x>0, 9, v, >0, (1.1)
Gx;y, v & = (1+&'xM7, x20, v, >0, (1.2)

Here ¢ is the scale parameter and 7y, v are shape parameters. Studying situations when a failure rate
that is not monotonic is genuinely present, the IPL model can be applied to numerous real-world
data modeling and analysis scenarios, see [26], which studied several statistical features of the IPL
distribution.

The IPL distribution is particularly adaptable, especially for scenarios involving non-monotonic
failure rates. This flexibility makes the IPL. model suitable for numerous real-world data modeling
and analysis tasks, as demonstrated by Hassan and Abd-Allah [26], who investigated its statistical
properties for engineering applications (see also Kumar and Sharma [27], Shi and Shi [28], and
Ahmed and Mustafa [29]). The complexity of estimating the stress-strength reliability of the three
unknown parameters of the IPL distribution under complete data has hindered research in this area.
Specifically, no published studies exist on statistical inference of the stress-strength reliability for the
IPL distribution under complete data. Therefore, this work focuses on providing the first treatment of
both classical and Bayesian inference for the IPL distribution within the complete framework.

This paper estimates reliability R = P(Y < X) within a stress-strength framework. We consider
the case where strength (X) and stress (Y) are independent IPL random variables sharing the same
parameters (¢ and v ) but differing in their parameters ( y and 7) to obtain the closed form to R. The
primary focus is on statistical inference for R under these conditions.

This research aims to analyze complete data from the IPL distribution to estimate the stress-strength
parameter. The model parameters and the stress-strength function are estimated using the MLE
method. The MLEs are numerically computed using the Newton-Raphson method. Interval estimation
is performed using two approximation information matrix methods and the bootstrap method. Bayesian
estimators and credible intervals are derived via the Metropolis-Hastings algorithm under squared error
and linear-exponential loss functions, assuming independent gamma priors for parameters. Finally,
Monte Carlo simulation is used to evaluate the performance of these estimators using mean squared
error, average length, and probability coverage.

The paper’s remaining portions are arranged as follows: The MLE is presented in Section 2. In
Section 3, the bootstrap confidence intervals are covered. In Section 4, Bayes estimates are derived
using the MCMC algorithm. Algorithms are developed, and both simulation studies and real data
analysis are carried out in Sections 5 and 6. Finally, the conclusion is presented in Section 7.

AIMS Mathematics Volume 10, Issue 7, 15632-15652.



15635

2. The maximum likelihood estimation

Let X and Y be two distinct, independent IPL random variables with the following parameters:
(y,v, &) and (1, v, &), respectively. R is

R=P(Y <X)= f e A w ey P g = L 2.1)
0 Y+n

To calculate the MLE of R, we deduce the MLEs of y and . Assume that there are two random samples
from an IPL: Let one be from an IPL(y, v, §) as X;, Xp, - -+ , X,,, and let another be from an IPL(, v, &)
as Y1, Y,, ---,Y,,. Consequently, these are the observed samples’ probability functions:

L()_c,z;y,n,v,aoc]—l[[wfl A+ ENT) W“)]]_z[[nvf T+ gy )

i=1 i=1

The natural logarithm of the likelihood function £(y, n, v, €) = In L(x, YiYa1, Vs &) 1s given by:

ni ny
v, &) = mlny+nlng—(n +n)(Iné —Inv) — (v + 1)(2 Inx; + Zlnyi]

i=1 i=1

—(’}/+1)Zln(l+§l )=+ 1) Y In(l+ £y, (2.3)
i=1

By solving the following set of equations, the MLEs of ® = (y, 1, v, £) can be obtained:

% - ﬂ—iln(ug-lx?):o

g—z = Zln(1+§1y;V)_

% = n1+n2—21nyl Zzlnxl+(n+1)Z:f y’fl_v+( +1)Z]1 x;lz_flzo,
g_g _ _m; +(n +1)i%+(y+1)2%:

The MLEs of the parameters are the solution of the above nonlinear system that insures that the
corresponding information matrix is positive definite. The system of four non-linear equations does
not have an analytic solution and therefore statistical or mathematical software should be used to solve
it numerically.

Consequently, the MLE of R is as follows:

R=

(2.4)

=>
+ [~
<>
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3. Bayesian estimation

This section presents the Bayes estimates for the unknown parameters and stress-strength parameter,
derived from a complete data sample. Within the Bayesian framework, parameters are treated as
random variables governed by prior distributions. A fundamental challenge in statistical inference
is the selection of an appropriate prior distribution that encapsulates available parameter information.
When considering the IPL distribution with all parameters unspecified, the lack of joint conjugate
priors necessitates alternative strategies. Consequently, assigning independent gamma priors to the
unknown parameters presents a viable approach. The appeal of gamma priors lies in their flexibility,
encompassing non-informative priors, and their generality as a distribution family that includes
exponential and chi-square distributions. We assume that y and n have independent gamma priors.
Also, the parameters v and & have independent priors. Now, we can build the Bayes estimate (BE) of
R. These presumptions are used to calculate the BE of R.

n(y) ~ Gamma(cy, d;), n(n) ~ Gammal(c,, d>), n(v) = —, n(é) = v,&>0, (3.1

§ 9
where (¢, d;) and (¢, d,) are known hyperparameters. The prior described above is advantageous due
to its greater flexibility and its ability to assume. The joint posterior density is given as

L, 1%, &) x)amr(ma(&)
[ Lo v ermmn(vyn(@)dydndvde

n _ - n — _
o« y nn2+cz—lvn1+nz—1é‘;—(n1+n2)—1e—y(d1+2[.=11 In(1+£ 1x,. V))e—q(d2+zi=21 In(1+& lyi v)) %

e L Inx;+ ny; =2 1
(=" Inx+s, IY)H(Hglx—v)n(1+§—1y;V)' (3.2)

A closed-form solution for Eq (3.2) cannot be obtained. Therefore, the MCMC technique to create
samples from the posterior distributions is used. The MCMC yields both a point estimate and an
interval estimate of the parameters. MCMC can be thought of as an iterative sampling procedure
that takes values from the parameter’s posterior distributions in the relevant model. Gibbs sampling
and the broader Metropolis-Hastings (MH)-within-Gibbs sampler are important subclasses of MCMC
techniques. The conditional posterior density functions can be expressed as follows:

m(y,n,v, € =

n1+c1—1

T v, &) oyl (Bl Indee ) (3.3)

ﬂ;(ﬂb’» V,f) o nn2+cz 1 —n(d2+2”2 1n(l+§*lyi—v))’ (34)

n
JT:(V|’}/, T]»é:) o Vn1+nz—1e—v(2;':1| lnxi+2[:21 lny,-) l_[(l +€; 1 —V) (y+1) l_l(l +§ y ) (T]+l) (35)
i=1

TEly, ) o £ ]—[<1+f1 Py ey, (3.6)
i=1

i=1

The distributions in Eqs (3.3)—(3.6) cannot be analytically transformed into well-known distributions,
which prevents direct sampling with conventional techniques. However, the samples for y and 7 in
Eqgs (3.3) and (3.4) are generated using the gamma distribution routine. Plots of Eqgs (3.5) and (3.6)
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(see Figure 1) conditional posterior distributions of v and & approximate normal distributions. Thus,
we apply the MH approach with a normal proposal distribution to generate random integers from these
distributions. Additionally, determining the marginal posterior distributions and finding the posterior
distributions’ means are generally important in Bayesian analysis.

a
Iy 14107
1.8-107147¢ 410723
1.6-1071474 3.6.107219 1
14107474 3.2:107%%7
L210-147) 281072
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7 + + + + - - > ot d - -
0.5 0.545 0.59 0.635 068 0.725 077 0.815 0.86 0905 0.95 0.2 0.35 0.5 0.65 08 0.95 11 125 14 1.55 17
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Figure 1. The probability density functions for v and &, conditional on the observed data.

3.1. Bayesian estimators for loss functions

A symmetric loss functions (squared error (SE)) in life and reliability testing have been extensively
studied recently by numerous writers (see [30]). First introduced by [31], the linear-exponential
(LINEX) loss function is one of the most-often-utilized asymmetric loss functions. Several papers
employ it, including [32] and [33]. On one side, this function is roughly linear, while on the other,
it rises approximately to zero. Estimators can be used to represent the LINEX loss function if the
minimal loss occurs at © = @,

L¥W)xcet —c¥ -1, c#0, (3.7)

where ¥ = (O — ©), and @ is the approximation estimate of @.

The direction and degree of symmetry are represented by the value of ¢. In particular, suggests
that ¢ > 0 overestimation is more dangerous than underestimating ¢ < 0, but it actually suggests the
reverse. The LINEX loss function approximates the SE loss when c is near zero.

Under the LINEX loss function, the value of ®, the Bayes estimator, is

OLinex = —% In (Ee [e_CG]) , (3.8)

such that Eg[¢°©] exists.
A general entropy (GE) loss function is an asymmetric loss function that was proposed by [34]. The
Oce under the GE loss Bayes estimate of © is

Ok = [Eo(©)] 7 (3.9)

such that Eg(®7") exists and is finite. The minimum occurs at ©® = ©. The SE loss function results
from p = —1. When p > 0, the repercussions of a positive error are greater than those of a negative
error. To generate y, n, v, and &, we compute from the posterior density functions, we now propose the
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following method, which will enable us to find the pertinent credible intervals for the Bayes estimates
of R.

Algorithm 1:

(1) Start with (O, p©, 0 £0)).

(2) Create j = 1.

(3) Both ¥ and '’ create and generate from the gamma, ¥ from Gamma(n, + ¢;,d; + X, In(1 +
&%), and n¥ from Gamma(n, + ¢2,dp + Y72, In(1 + £7'y7)).

(4) Generate v from n%(vly, n, £), with the proposal distribution using MH.
MH algorithm:

(i) Generate a starting point v* for which 7% (v“‘”, Var(f/)).
(i1) Calculate the acceptance probability:

Vi (v(*), Var(f/)) ] (3.10)

, =min|1, .

1 [ s (V=D var(¥))
and create U ~ U (0, 1).

(iii) If you agree with the proposal, U < ¢, and make a set v = v If not, dismiss the idea.

(5) Using MH to generate &) from mi(€ly,n,v), with the N (€U, var(£)) proposal distribution.

(6) Determine R, using Eq (2.1).

(7) Assign j=j+ 1.

(8) Go back and repeat steps three through six N times.

(9) Obtain the Bayes point estimators of R with regard to SE, LINEX, and GE loss functions as

follows:
N
Rsp = 1 R, (3.11)
N - M i=M+1

1 1 N -
R = -2 RO 3.12
LINEX CH[N_Mi:;rle ] ( )

1 N -1/p

Rop = R 1

o [N_Mi:;i—l( ) ’ G19

where M is burn-in.
4. Interval estimation

4.1. Asymptotic confidence bounds

Since the MLEs cannot be derived analytically, we do not have their actual distributions that can
allow us to derive the exact confidence intervals of the parameters. Alternatively, we can derive the
asymptotic confidence intervals using the asymptotic behavior of the MLEs. It is well known that the
MLE of @, say ©, follows approximately a multivariate normal distribution with a mean of ® and a

AIMS Mathematics Volume 10, Issue 7, 15632-15652.



15639

Variance covariance matrix equaling the inverse of the observed Fisher information matrix, see [35].
Thatis, ® = (y,7, v, .f) ~ N4(0,V), where

-1

Y o A ol A 4
6¥ _Ggign ~ 62)/2(;1/ ~ ()gzif
v=|Tp T T T
65267 652877 ggz 65266

T 9Edy 0édn  0Edv e ©)

From Eq (2.3), the second derivatives can be computed as follows:

o m

I

ot o 0
dyon — omoy

L A o Ex7 Inx;
OyoE — 0Edy L 1+&x

o P N Y
dydé — 0fdy L1+ &x

gt _ m

on? - 7 ’

Pl P KEY Iny,
ovony — Ondv — 1+ &y

R s A e B e U
onog — 0éon A1 +¢& y;V’

0% n+n =2 é—‘_lyl._vln Elx; “In’x;

52 —122—(77+1)Z— Z s

v v i=1 (1 +§‘1yi‘v) =1 1+§ lx‘V)

325 azf < f‘zx._"lnxi g y.Vlnyi

= =-(y+1) ) ———-+1) ) ————,

ovoé 0oy ; (1 +§_1x;v)2 ; (1 +§_1yi_v)2

0’ n +n Y ECXTR+EXY) & EPYTRHEYT)
2 = e (D) -+ D) .

3 g i=1 (1 +.§-"1xl.‘v) i=1 (1 +.f‘1yl.‘v)

A 100(1 — @)% confidence interval of ® = (y, 1, v, &) can be approximated by

Y+ Zap \VArF), 01+ 2o0 \VAr@), ¥ £ 24 Vvar(®), and & + z,) v var(é),

where z,/, is the percentile of the standard normal distribution with a probability of the right tail, and
var(®;), i = 1,2, 3,4, are the elements on the major diagonal in the covariance matrix V.

We apply the delta approach to determine the approximate estimator of the variance of R. A generic
method for calculating confidence intervals for functions of MLEs is the delta method.
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R OR OR OR
LetQ:(E o ov a—f)where

OR _ _ 1

ay "~ (y+m?’

OR _ __ Y

on () (4.1)
R _ R _

v~ oE T

Subsequently, the approximate estimator of var(R) is provided by
var(R) > Q1" QTH

where Q7 is the transpose of Q. The approximate confidence ranges of R are obtained from these data

as
R + 22 /var(R). (4.2)

®)’

4.2. Bootstrap confidence intervals

Normal approximations provide accurate confidence intervals when sample sizes are large.
However, this approach is unreliable when the normality assumption is violated, as is often the
case with small sample sizes. Resampling techniques, such as the bootstrap, are more suitable for
approximating confidence intervals in such scenarios. Consequently, this section introduces bootstrap
resampling approaches for estimating confidence intervals for the parameters and stress-strength
parameter within the context of the IPL distribution.

For tiny sample sets, confidence intervals based on asymptotic results usually perform poorly. To
address this confidence issue, we propose to use confidence intervals derived from the non-parametric
percentile bootstrap approach as a solution to this issue of confidence [36].

Algorithm 2:

(1) Compute the MLEs ¥, 7, ¥, .f, as well as R using the first two samples of {x;, x,, -, x,,} and
{y1,¥2, -+ ,yn,} for the IPL distribution.

(2) Generate bootstrap samples as {x}, x;,- -, x, } and {y],y5,---,y, } using (3,9, 5) and (7}, ¥, 3) and
calculate the bootstrap value of R, which we will call R*.

(3) Step 3 should be repeated N times.

(4) Put R*, IAQZ, cee IAQ}:, in ascending order to become R R

. . 1> (2)""1%*
confidence interval for R is given by

(v)- The approximate 100(1 —a)%

A

Dk *

o3 o1-3)

4.3)

4.3. MCMC credible intervals

A Bayesian credible interval and HPD interval are derived from the posterior distribution that
quantifies the uncertainty about a random parameter. We apply the following procedure to determine
credible intervals for R.

Algorithm 3:

(1) Credible interval:
Perform the sequence of steps 1 to 9 from Algorithm 1. To determine R’s credible intervals (Cls),
order RM+D RM+2) ... RM-N) and the 100(1 — @)% Cls of R become

(ﬁ(N—M)% ) k(N—M)(l—%)) . (4.4)
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(2) HPD interval:
For a given credibility level 100(1 — @)%, the HPD interval is defined as:

[LR;,(M — N — L)R;],[LR;,(M — N — L)R/] 4.5)

where:

e L is an index running from 1 to «(M — N).
e R; represents ordered posterior statistics (e.g., quantiles or sorted posterior samples).
e M and N are parameters that may relate to sample sizes or distributional thresholds.

The HPD interval is the shortest width among all possible 100(1 — @)% ClIs, making it the most
precise estimate, which includes the region where the posterior density is highest, ensuring no
point inside has a lower density than any point outside. Uses for HPD Intervals:

e Unlike symmetric Cls, the HPD interval adapts to skewed or multimodal distributions,
capturing the most probable values efficiently.

o It is useful in Bayesian inference when a tight, probability-concentrated interval is preferred
over equal-tailed alternatives.

5. Numerical comparison study

This section presents the findings from Monte Carlo simulations, comparing the effectiveness of
various techniques. The confidence intervals derived from the asymptotic distributions of the MLE,
bootstrap, and HPD ClIs are compared in terms of average confidence lengths (ACL) and coverage
percentages (CP). Two sets of parameter values (y,n,v,¢) = (1.0,1.5,1.0,0.5) and (y,n,v,&) =
(1.0, 1.5,2.0,0.7) with different sample sizes as (20, 20), (40, 40), (60, 60), (80, 80), and (100, 100) are
used. We provide the average mean and mean square error (MSE) of the MLE, in addition to the Bayes
estimates of R, for various parameter values. For prior knowledge, two different priors are considered
for the four parameters (denoted as (y,n,v,€) ):

(1) Non-informative (diffuse) priors
Hyperparameters: Prior 0 (P°) (¢; = d; = 0 for i = 1,2). These priors are “uninformative”,
meaning they introduce minimal prior knowledge. They let the observed data dominate the
posterior distribution. It is often used when no strong prior information is available or to avoid
bias.

(2) Informative (conjugate) priors
Hyperparameters: The informative priors are chosen such that c;/d; = E(®;), ensuring prior
means match true means under SE, LINEX, and GE loss functions. Three hyperparameter sets
are used:
Prior 1 (PY): ¢c;=d;=0.1, i=1,2.
Prior2 (P*): ci=d;=1,i=1,2.

This alignment ensures consistent Bayesian estimation across loss functions. These are chosen so
that the prior expectations match the true parameter values. For example, the prior is gamma-distributed
(as is common for positive parameters).
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We generated the estimates using 1000 MCMC samples, and distinct shape parameters (¢ = —5 and
5) are employed for the LINEX loss functions. The GE loss functions employ different values of p,
(o = =5 and 5). The results are reported in Tables 1-3. Also, the MSEs are plotted in Figures 2—4.

We examine and contrast the MSE-based performance of the ML, boot-p, and BEs. It is clear that
the average and MSE of the Bayes estimates provide more accurate results than those of the boot-p and
MLEs. Additionally, we compare different 95% confidence intervals regarding ACL and CP, which
are estimated to minimize randomness and are presented in Table 3. These confidence intervals are
produced using bootstrap confidence intervals, Cls, and asymptotic distributions of the MLEs.

o
—— \#/’\
0.02 S 0.02
o -0
————g
0.01 —e 0.01
0 0
MLE boot-p SE LINEX1 LINEX2 GEI GE2 MLE boot-p SE LINEX]  LINEX2 GEI GE2
—6—(2020) —#—(40,40) —8—(60.60) ——(80,80) —@—(100,100) —e—(2020) —®—(40,40) —8—(60,60) —®—(80,80) —e—(100,100)

Figure 2. The MSE of R = P(Y < X) for (y,n, v, &) for P°.

0.06 0.06

0.05 0.05

0.04 -\\\/‘\‘ 0.04

0.03 .\\‘Q/,___,\‘ 0.03
~—

0.02 \ e oo 0.02

j

0.01 .—-.\._——0\.—_—0“. 0.01
0 0
MLE boot-p SE LINEXI  LINEX2 GE1 GE2 MLE boot-p SE LINEXI  LINEX2 GE1 GE2
—8—(2020) ——(4040) —8—(60.60) —e—(80,80) —e—(100,100) ——(2020) —&—(4040) —8—(60,60) —8—(80,80) —e—(100,100)

Figure 3. The MSE of R = P(Y < X) for (y,n, v, &) for P'.

0.04

fff
(

MLE boot-p SE LINEX1 LINEX2 GE1 GE2 MLE boot-p SE LINEX1 LINEX2 GE1 GE2

——(20,20) —®—(40,40) —e—(60,60) —®—(80,80) —e—(100,100) —8—(2020) —®—(40.40) —@—(60,60) —e—(80,80) —@—(100,100)

Figure 4. The MSE of R = P(Y < X) for (y,7, v, £) for P2
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Table 1. Average mean and MSE of R = P(Y < X) for (y,n,v,€) = (1.0, 1.5, 1.0,0.5).

Bayes: P°
LINEX GE
(ny,ny) MLE boot-p SE c=-5 ¢=5 p=-5 p=5
(20,20) Mean 0.6104 0.6177 0.588 0.5958 0.581 0.5847 0.5937
MSE 0.0132 0.013  0.011 0.0112 0.0109 0.0111 0.0108
(40,40) Mean 0.5991 0.589  0.59037 0.5957 0.5991  0.5687 0.5922
MSE 0.011 0.0106 0.0112 0.0108 0.011 0.0107 0.0102
(60,60) Mean 0.588  0.6019 0.5934  0.5827 0.6047  0.5867 0.5909
MSE 0.0101 0.01 0.0101  0.0099 0.0098  0.0083 0.008
(80,80) Mean 0.5907 0.5963 0.5867  0.5768 0.5883  0.5837 0.5995
MSE 0.0098 0.0095 0.0099  0.0095 0.0082 0.0062 0.0063
(100,100) Mean 0.587 0.6023 0.5883  0.5867 0.6085  0.5834 0.588
MSE 0.0077 0.0052 0.0067  0.0058 0.0056  0.007  0.0061
Bayes: P!
LINEX GE
(ny,mnp) MLE boot-p SE c=-5 c¢=5 p=-5 p=>5
(20,20) Mean 0.6104 0.6177 0.599 0.593  0.596 0.6084  0.9007
MSE 0.0132 0.013  0.0096  0.0099 0.0092  0.0099 0.0096
(40,40) Mean 0.5991 0.589  0.6007  0.5957 0.9055 0.587  0.6043
MSE 0.011 0.0106 0.0092 0.0091 0.0101 0.0096 0.0097
(60,60) Mean 0.588  0.6019 0.5837 0.586  0.6043  0.5895 0.5729
MSE 0.0101 0.01 0.0082  0.0077 0.0097  0.0099 0.0091
(80,80) Mean 0.5907 0.5963 0.6107  0.6028 0.6022  0.6084 0.601
MSE 0.0098 0.0095 0.0062  0.0052 0.005 0.0061 0.0058
(100,100) Mean 0.587  0.6023 0.6014  0.599  0.602 0.5982  0.597
MSE 0.0077 0.0052 0.0051 0.0047 0.0046 0.0044 0.0044
Bayes: P?
LINEX GE
(ny,n2) MLE boot-p SE c=-5 c¢=5 p=-5 p=5
(20,20) Mean 0.6104 0.6177 0.5883  0.5951 0.5907 0.6044 0.6026
MSE 0.0132 0.013  0.0095  0.0097 0.0093 0.0095 0.0091
(40,40) Mean 0.5991 0.589  0.607 0.5927 0.5995  0.5687 0.5925
MSE 0.011 0.0106 0.0081 0.008 0.0082 0.0083 0.008
(60,60) Mean 0.588  0.6019 0.593 0.586  0.5957 0.588  0.5959
MSE 0.0101 0.01 0.008 0.0078 0.0072  0.0077  0.0077
(80,80) Mean 0.5907 0.5963 0.5996  0.5928 0.59931 0.6016 0.599
MSE  0.0098 0.0095 0.008 0.0066 0.0058  0.0057 0.0049
(100,100) Mean 0.587  0.6023 0.597 0.588  0.6095  0.6063 0.599
MSE 0.0077 0.0052 0.0046  0.0043 0.0042  0.0044 0.0041
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Table 2. Average mean and MSE of R = P(Y < X) for (y,n,v, &) = (1.0, 1.5,2.0,0.7).

Bayes: P°
LINEX GE
(ny,ny) MLE boot-p SE c=-5 ¢=5 p=-5 p=5
(20,20) Mean 0.5982 0.6089 0.599  0.5929 0.6028 0.5968 0.5896
MSE 0.0139 0.0132 0.0128 0.0128 0.0126 0.0131 0.012
(40,40) Mean 0.5851 0.6013 0.5982 0.5887 0.5909 0.589  0.5957
MSE 0.0121 0.0123 0.0111 0.0112 0.012 0.013  0.011
(60,60) Mean 0.591  0.6002 0.5829 0.5899 0.615  0.5908 0.5996
MSE 0.0111 0.0112 0.0101 0.0104 0.0112 0.011 0.0106
(80,80) Mean 0.5883 0.5995 0.5939 0.5958 0.5807 0.5938 0.5875
MSE 0.01 0.0106  0.0099 0.0099 0.0102 0.01 0.0099
(100,100) Mean 0.5993 0.5886 0.5967 0.6028 0.6011 0.588  0.5893
MSE  0.0095 0.0092 0.0096 0.0095 0.0091 0.0092 0.009
Bayes: P!
LINEX GE
(n1,n2) MLE boot-p SE c=-5 ¢=5 =-5 p=5
(20,20) Mean 0.5982 0.6089 0.5988 0.592  0.596  0.612  0.6007
MSE 0.0139 0.0132 0.0118 0.0111 0.0099 0.0098 0.0096
(40,40) Mean 0.5851 0.6013 0.5927 0.591  0.5912 0.5896 0.6125
MSE 0.0121 0.0123 0.0091 0.0091 0.0098 0.0091 0.009
(60,60) Mean 0.591  0.6002 0.5879 0.593  0.6011 0.5993 0.5829
MSE 0.0111 0.0112 0.005 0.0045 0.0046 0.005  0.0048
(80,80) Mean 0.5883 0.5995 0.608  0.587  0.5992 0.6006 0.5996
MSE 0.01 0.0106  0.0055 0.0041 0.0032 0.0034 0.0028
(100,100) Mean 0.5993 0.5886 0.5939 0.5911 0.5868 0.5866 0.5871
MSE 0.0095 0.0092 0.0045 0.0032 0.0023 0.0022 0.0021
Bayes: P?
LINEX GE
(ny,ny) MLE boot-p SE c=-5 c¢=5 p=-5 p=5
(20,20) Mean 0.5982 0.6089 0.589  0.5883 0.5898 0.6011 0.6108
MSE 0.0139 0.0132 0.0094 0.0098 0.0093 0.0092 0.0092
(40,40) Mean 0.5851 0.6013 0.6109 0.5995 0.5915 0.5993 0.5883
MSE 0.0121 0.0123 0.0088 0.0081 0.0079 0.0083 0.0081
(60,60) Mean 0.591  0.6002 0.5928 0.5933 0.5911 0.609  0.5886
MSE 0.0111 0.0112 0.0049 0.0048 0.0032 0.0044 0.0042
(80,80) Mean 0.5883 0.5995 0.5867 0.5933 0.5839 0.6 0.6016
MSE 0.01 0.0106  0.0025 0.0031 0.003  0.0029 0.0026
(100,100) Mean 0.5993 0.5886 0.6081 0.5908 0.598  0.6058 0.6008
MSE 0.0095 0.0092 0.0023 0.002 0.002 0.0026 0.0022
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Table 3. Average length 95% coverage probabilities for R = P(Y < X).

(y,n,v,€) =(1,1.5,1.0,0.5) (y,m,v,€) =(1,1.5,2.0,0.7)
Bayes Bayes
(ny,ny) MLE boot-p PO P! P? MLE boot-p PO P! P?

(20,20) ACL 03012 0.3104 0.2934 0.3002 0.3096 0.3015 0.2961 0.2938 0.3006 0.2992
CP 0902 0914 0932 0934 0934 0912 0914 0942 095 0.946
(40,40) ACL 0.1816 0.1767 0.1868 0.181  0.1783 0.188  0.1813 0.1807 0.1767 0.176
CP 0912 0934 0942 095 0948 0916 093 0.95 0.95 0.952
(60,60) ACL 0.141  0.1243 0.1114 0.111  0.1101 0.1412 0.1363 0.1201 0.1109 0.1131
CP 0.94 0942 0954 0946 0954 0934 0942 0946 0952  0.956
(80,80) ACL 0.133  0.102  0.0915 0.0912 0.0905 0.104 0.11 0.1001 0.0912 0.0827
CP 0942 0946 0954 0948 0964 094 0946  0.95 0.956  0.95
(100,100) ACL 0.0884 0.075  0.0799 0.07 0.0701 0.0881 0.0801 0.0789 0.07 0.071
CP 0948 0954 0958 0956 0968 0954 0958 0958 0964 0.962

For varying sample sizes, the MCMC credible intervals provide more accurate findings than
the approximation. We discover that when the value of the shape parameter ¢ rises, the MSEs
of the BE using the LINEX loss function decrease. However, when evaluating all recommended
methods (ML, Boot-p, and HPD), the HPD-based Cls demonstrate the best overall performance.
Specifically, they tend to have shorter ACLs at the nominal level and CPs that are closer to the target
level. Moreover, Bayesian Cls constructed using informative priors consistently outperform those
based on non-informative priors. This superiority holds across all estimated parameters, including
R. In addition, point and interval estimation under different combinations of sample sizes (n, n)
and censoring schemes reveal that the Bayesian method with an informative prior delivers highly
effective results. Parameter estimates also show varying performance depending on the loss function
applied. Therefore, when prior knowledge about the unknown parameters is available, the Bayesian
approach with informative priors is preferable. In situations where such prior information is lacking
— particularly when the sample size is small — the Bayesian method with non-informative priors is
often the more suitable alternative.

6. Real data application

This part discusses the suggested methodology’s practical application from the preceding sections.
The data provided shows the customer service wait times, expressed in minutes, for two distinct banks,

as partially examined in [37], considering that n; = 100 and n, = 60. The parameter of stress-
strength needs to be estimated, where X or Y reflect the service times to clients at Bank A and Bank B,
respectively:

Data I (X): 0.8,2.1,3.5,4.3,4.9,6.1,7.1, 8.0, 8.9, 109, 11.9, 13.1, 17.3, 20.6, 33.1, 0.8, 2.6, 3.6, 4.4,
49,6.2,7.1,8.2,89,11.0, 12.4, 13.3, 18.1, 21.3, 38.5, 1.3, 2.7, 4.0, 4.4, 5.0, 6.2, 7.1, 8.6, 9.5, 11.0,
13.6,13.9,18.2,21.4,1.5,2.9,4.1,4.6,5.3,6.2,7.1,8.6,9.6, 11.1, 13.7, 14.1, 18.4, 21.9, 1.8, 3.1, 4.2,
4.7,55,63,74,8.6,9.7,11.2,12.5, 154, 18.9, 23.0, 1.9, 3.2, 4.2, 4.7,5.7, 6.7, 7.6, 8.8, 9.8, 11.2,
12.9,154,19.0,27.0,1.9,3.3,43,4.8,5.7,69,7.7, 8.8, 10.7, 11.5, 13.0, 17.3, 19.9, 31.6.
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Data II (Y): 0.1, 0.9, 1.9, 2.3, 2.7, 3.1, 3.5, 4.5, 5.6, 6.8, 7.7, 8.5, 10.9, 12.8, 14.5, 0.2, 1.1, 2.0, 2.3,
27,3.2,39,4.7,6.2,73,8.0,87,11.0, 12.9, 16.0, 0.3, 1.2, 2.2, 2.5, 2.9, 34, 4.0, 5.3, 6.3, 7.5, 8.0,
95,12.1,13.2,16.5,0.7, 1.8, 2.3, 2.6, 3.1,3.4,4.2,5.6, 6.6, 7.7, 8.5, 10.7, 12.3, 13.7, 28.0.

Under transformation (d% 15 we confirmed that modeling these data with the IPL distribution is a

feasible approach. Figure 5 exhibits the fitted and empirical survival functions based on data X and Y,
respectively.

10 pr——v—v—vyTryy YV VYT T
g
1 g os
2 :
£ 5 o0s
b £ o0
2 A
& £ 06
g 04} g 0.5
- - . . 04L 1 L
‘ 3 6 ? 0 1 2 3
X :
Figure 5. Fitted cumulative distribution and empirical functions of data X and data Y,
respectively.

The charts show that the IPL distributions fit the provided data sets well. Table 4 shows the results
of the p-values and the Kolmogorov-Smirnov (K-S) test for the new data.

Table 4. The K-S and p-values for the new data.

New data K-S p-value
X 0.0520 0.9497
Y 0.0854 0.7740

It specifies that every modified data set is taken at the significance level (0.05) from the IPL
distribution.

The parametric percentile bootstrap method is used to compute the Boot-p estimations. The
estimations from Bayes, when the hyperparameters are ¢; = d; = 0.0001, i = 1,2, are computed.
The MCMC algorithm to generate a sequence of 22,000 times is conducted and as a “burn-in”, we
discard the first 2000 values. Table 5 presents the BEs under the SE loss function of y, 7, v, &, and R as
well as the 95% ClIs of R based on Bayes MCMC. Table 6 presents the BEs of R based on LINEX and
GE loss functions with different values of ¢ and p, respectively. The values of ¢ and p will be chosen
as positive and negative to maintain overestimation and underestimation, so that the estimator’s output
is close to the Bayesian method at SE.
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Table 5. The point and 95% ClIs estimating vy, 1, v, ¢, and R for MLE, Boot-p, and Bayes SE.

Bayes

MLE Boot-p CIs HPD CIs
Parameters Point  Interval Point  Interval Point  Interval Point  Interval
0% 0.5863 (0.2452,0.9274) 0.5795 (0.2410,0.9391) 0.5320 (0.3034, 0.8805) 0.5271 (0.3045, 0.8747)
n 0.3277 (0.1465,0.5089) 0.3166 (0.1419,0.5099) 0.3095 (0.1041, 0.4421) 0.3114 (0.1340, 0.4552)
v 1.9774 (1.3503,2.6046) 1.9063 (1.2022,2.6660) 1.9217 (1.0230,2.1011) 1.9034 (1.1040, 2.1080)
3 0.8582 (0.0317,1.6847) 0.8012 (0.0311,1.6278) 0.5193 (0.0412, 1.6110) 0.5211 (0.0440, 1.6124)
R 0.6415 (0.5672,0.7141) 0.6371 (0.5561,0.6902) 0.6498 (0.5582,0.7012) 0.6489 (0.5590, 0.7002)

Table 6. Bayesian approximations of R using loss functions.

LINEX GE
c=-5 c=5 p=-5 p=>5
0.640327 0.63106 0.641189 0.630723

Figures 6-10 show the estimations of the marginal posterior density of vy, 1, v, &, and R along with

their histograms.
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Figure 10. The actual number and histogram produced by the real MCMC of R.

The estimates show that there is symmetry in the marginal distribution. The trace of the iteration
number versus the value of the draw of R of the iteration, which is displayed in Figure 10 together with
the sample mean and 95% Cls, is used to track the convergence of MCMC samples. The plots deliver
a strong, varied performance. The profile of the log likelihood function is plotted in Figures 11 and 12
and display unique results.
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Figure 12. The depiction of the log likelihood function for v and &.

From Figures 11 and 12, it is clear that the logarithm of the maximum likelihood function is convex
upward and has only one solution at the parameter values ¥, 7, ¥, and & obtained using the data [30].

7. Conclusions

This research examines several methods for estimating stress-strength reliability R = P(Y < X)),
where X and Y are treated as independent random variables. It is assumed that X and Y follow IPL
distributions with different scale parameters. The MLE for R is derived using an iterative process.
Additionally, bootstrap confidence intervals for R are calculated and contrasted with those obtained
using the delta method. A Bayesian approach to estimating R under GE, LINEX, and SE loss functions
is also explored, with Cls constructed via the Gibbs sampling method by using non-informative and
informative priors. When there is no subjective information, it was found that the MLEs perform
rather well. With subjective information available, the Bayesian estimators perform better than the
MLE:s, as predicted. The applicability of these point and interval estimation methods is shown through
several numerical examples. A simulation study and real data are then incorporated to investigate
the performance of the proposed techniques across varying sample sizes. The results demonstrate the
practical implementation of the proposed methods.

This study highlights several key areas for future research. Specifically, the design of optimal
censoring strategies instead of complete, the prediction of statistical outcomes under complete or
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censoring conditions, and the development of more comprehensive inference methods to handle
complex failure models are of considerable interest. The application of data mining techniques to these
data may also prove beneficial, providing a means to identify variations in patient survival patterns and
to estimate associated confidence intervals. These research avenues are worthy of further study.
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