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1. Introduction

Unified hybrid censored sampling (UHCS) has arisen as a remedy for numerous obstacles faced in
data collecting and analysis, especially in the context of incomplete or censored data. In numerous
practical situations, acquiring comprehensive datasets is either unrealistic or unattainable due to
limitations such as time, expense, or external factors like equipment malfunctions or participant
attrition. Conventional censored sampling methods, like Type I (time-based) and Type II
(failure-based), although successful in specific scenarios, frequently prove inadequate when
confronted with the intricacies of contemporary studies. UHCS mitigates these restrictions by
incorporating many censoring techniques into a cohesive framework, enhancing both flexibility and
efficiency. A significant issue contributing to the adoption of UHCS is the unpredictability of
real-world data acquisition. In reliability testing, certain items may break prematurely, whilst others
may endure significantly longer than anticipated, complicating the establishment of a definite time
frame (Type I) or a predetermined number of failures (Type II). Hybrid censoring, integrating
elements from both methodologies, offers limited alleviation but remains deficient in the adaptability
necessary for highly changeable situations. UHCS enhances this by providing a more holistic
approach that can be customized to the particular requirements of a study, reconciling the limitations
of time and sample size. A further problem pertains to the inefficacy of resource usage unconventional
methods. Type I censoring frequently necessitates the continuation of an experiment until a
predetermined time, despite the collection of adequate data for analysis. Likewise, Type II censoring
can extend a research needlessly to achieve a predetermined number of failures. UHCS mitigates
these inefficiencies by permitting the cessation of trials upon the fulfillment of predetermined
criteria—whether temporal, failure-related, or a combination thereof—thus preserving resources
while maintaining result integrity.

The primary distinction between UHCS and alternative censored sampling techniques is its
adaptability and breadth. Conventional censoring techniques are tailored for particular scenarios and
may find it challenging to adjust to unforeseen alterations during data acquisition. UHCS offers a
cohesive architecture capable of seamlessly integrating various types of censorship, enhancing its
versatility for dynamic real-world applications. In medical research, UHCS can accommodate
fluctuating dropout rates, premature terminations, and varied follow-up periods, hence assuring
optimal utilization of all available data. Statistically, UHCS distinguishes itself in its methodology for
parameter estimation and model fitting. Integrating data from several censoring systems diminishes
bias and enhances the accuracy of estimates. Conventional approaches may overlook partially
censored observations or neglect their influence on the research, resulting in diminished accuracy of
conclusions. UHCS guarantees that even partial data significantly contributes to the whole analysis,
hence augmenting the trustworthiness of statistical judgments.

Chandrasekar et al. [1] categorize hybrid censored approaches into Type-I HCS and Type-II HCS.
Unlike Type-II HCS, which may necessitate an extended duration to ascertain the minimum number
of failures, Type-I HCS, for example, may yield several failure instances prior to the termination time.
Consequently, these censored sampling methodologies have been enhanced with the incorporation of
two expansions referred to as generalized Type-I and Type-II HCS. Chandrasekar et al. [1] proposed
two generalized HCSs to address these issues: ensuring the quantity of failures and establishing a
temporal limit for the experimental phase. These aimed to mitigate the intrinsic limitations of Type-I
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and Type-II HCSs. Balakrishnan et al. [2] integrated generalized Type-I and Type-II HCS approaches
to develop a UHCS. It offers enhanced adaptability in comparison to Type I and II HCS.

Censored data are essential in medical research, as researchers are unable to evaluate each
individual’s entire lifespan in a longitudinal study due to temporal and financial limitations. Due to
the persistent absence of comprehensive data, censoring algorithms exist that maximize both time and
resources. Balakrishnan et al. [2] characterize UHCS as an amalgamation of generalized Type-I HCS
and generalized Type-II HCS, which can be articulated as follows. Examine the assessment of n
identical units, where the lifespan of each unit is governed by independent, identically distributed
(i.i.d) variables. Let r and k be integers inside the set {1, 2, . . . , n}, such that r < k < n, and let T1 and
T2 represent times in the interval (0,∞). The experiment concludes at the moment
min {max {Xk:n,T1} ,T2}, provided that the r-th failure transpires prior to T1. Should the r-th failure
occur between T1 and T2, the experiment terminates at min {Xk:n,T2} . Ultimately, if the r-th failure
transpires subsequent to T2, the experiment finishes at Xr:n.

The UHCS addresses Type-I, Type-II, hybrid, and generalized hybrid censorship flaws:

• Enhanced flexibility: Termination is based on time limits (T1,T2) and failure counts (k, r),
enabling adaptation to changing situations.
• Resource efficiency: Experiments end by T2 after at least k failures, eliminating wasteful

extension and costs without compromising inferential validity.
• Improved estimation: UHCS uses all partially filtered data to lessen parameter estimate bias.

Kumar et al. [3] found that maximum likelihood estimates (MLEs) and Bayes estimators are
more accurate than traditional or single-criterion techniques.
• Robustness to complex scenarios: UHCS combines time and failure-count criteria to maintain

data integrity in medical or reliability research with unpredictable dropout or failure patterns.

UHCS thus guarantees that each experiment lasts no longer than T2 while recording at least k failures,
balancing logistical constraints and data needs. Its efficacy has been confirmed by Balakrishnan and
Kundu [4], Huang and Yang [5], Rabie and Li [6], Jeon and Kang [7], and Dutta et al. [8].

The Lindley distribution was introduced by Lindley [9] within the framework of fiducial and
Bayesian statistics to demonstrate the distinction between fiducial and posterior distributions.
Additionally, Ghitany et al. [10] examined its statistical features and showed that, in many
applications, Lindley provides a better fit than the exponential model. By construction. The
probability density function (PDF) and the cumulative distribution function (CDF) are provided by

f (x; λ) =
λ2

(λ + 1)
(1 + x) exp(−λx); x ≥ 0, λ, > 0. (1.1)

and
F(x; λ) = 1 −

(λ + λx + 1) exp(−λx)
(λ + 1)

; x ≥ 0, λ, > 0, (1.2)

where λ scale parameter. mixes an exponential(λ) and a Gamma(2, λ) component in proportion λ
λ+1 .

Bakouch et al. [11] proposed an enhanced Lindley variant, Ghitany et al. [12] introduced a
two-parameter extension, and Nadarajah et al. [13] developed further generalizations—all
underscoring the family’s flexibility. The Lindley model enjoys wide applicability in industry,
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medicine, biology, and beyond. For example, Ghitany et al. [14] used it to assess reliability in strength
systems, and Gómez–Déniz et al. [?] derived a bounded-domain density based on its generalized
form. Despite these extensions, the one-parameter core remains underutilized. In our real-data
analyses, Lindley consistently outperforms more flexible two- and three-parameter families—such as
the Weibull and Q-Weibull—in both goodness-of-fit and information criteria.

Lindley’s single-parameter form yields closed-form expressions for key reliability measures like
the survival function, hazard rate, cumulative hazard, and mean residual life, avoiding numerical
integration and ensuring robust estimation under MLE and Bayesian frameworks, especially with
censored data. Multi-parameter variants have been suggested, but the original one-parameter form
offers the best blend of parsimony, interpretability, and operational efficiency for upper-hybrid
censored samples. Finally, the Lindley distribution is stable and interpretable since it follows Occam’s
rule by describing data with one parameter. This research uses its skills to improve UHCS data
modelling.

The reliability function R(t), hazard rate function H(t), cumulative hazard function CH(t), and mean
residual lifetime MR(t) of the Lindley distribution are provided, respectively,

R(t) =
(λ + λt + 1) exp(−λt)

(λ + 1)
, (1.3)

H(t) =
λ2(1 + t)

(λ + λt + 1)
, (1.4)

CH(t) =

∫ t

0
H(u)du = log(λ + 1) + λt − log(λ + λt + 1). (1.5)

and

MR(t) = E(T − t | T > t) =

∫ ∞
t

R(u)du

R(t)
=

λ + λt + 2
λ + λ2 + λ2t

. (1.6)

For further information regarding the residual lifetime of the Lindley distribution, see Ebrahimi [16]
and Goel and Krishna [17].

System performance and lifetime are evaluated using key metrics: reliability, hazard rate,
cumulative hazard function, and mean residual life. Reliability represents the probability of a system
operating without failure over a given period, while hazard rate measures the instantaneous likelihood
of failure, indicating system degradation. The cumulative hazard function quantifies the cumulative
risk of failure over time, and mean residual life estimates the expected remaining lifetime after a given
point. These metrics collectively provide a comprehensive understanding of system reliability:
reliability assesses sustained functionality, hazard rate highlights failure risks, cumulative hazard
function measures accumulated exposure, and mean residual life aids in maintenance planning.

Figure 1 illustrates the behavior of the Lindley distribution functions for different values of λ.
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Figure 1. (a) PDF of the Lindley Distribution; (b) Hazard Rate Function; (c) Cumulative
Hazard Function; (d) Mean Residual Life Function.

The remainder of this paper is organized as follows: we are given the ML estimator and the
asymptotic confidence interval (asymp. CI) for unknown parameters, R(t), H(t), CH(t), and MR(t) in
Section 2. The Bayesian analysis under the square error (SE), linear exponential (LINEX), and
general entropy (GE) loss functions is discussed in Section 3. We introduced the MCMC algorithm in
Section 4, while the two bootstrap confidence intervals are shown in Section 5. Section 6 contains a
detailed presentation of the simulation technique and its findings. We provide a concrete example of
real-world data in Section 7. Finally, some concluding remarks in Section 8.

2. Maximum likelihood method

The ML method has been discussed for parameters of the Lindley distribution, R(t), H(t), CH(t),
and MR(t) based on UHCS by point estimation and asymp. CIs in this section.

2.1. Point estimation

Consider a random sample of size n, denoted as x1:n, x2:n, . . . , xn:n, derived from the Lindley
distribution based on UHCS. The subsequent six cases illustrate various censoring scenarios:

Case 1: When 0 < Xr:n < Xk:n < T1 < T2, the observation is stopped at T1.
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Case 2: If 0 < Xr:n < T1 < Xk:n < T2, the observation is stopped at Xk:n.

Case 3: If 0 < Xr:n < T1 < T2 < Xk:n, the process is halted at T2.

Case 4: In the situation where 0 < T1 < Xr:n < Xk:n < T2, the process is stopped at Xk:n.

Case 5: When 0 < T1 < Xr:n < T2 < Xk:n, the process terminates at T2.

Case 6: If 0 < T1 < T2 < Xr:n < Xk:n, the process stops at Xr:n.

Then, the likelihood function can be presented as

L(λ; x) =
n!

(n − m)!
{1 − F(s)}n−m

m∏
i=1

f (xi:n) ,

=
n! λ2m (λ+λs+1)(n−m)

(n−m)! (λ+1)n exp

−λ s(n−m)+
m∑

i=1

xi:n

+

m∑
i=1

ln(1+xi:n)

 , (2.1)

where, Q1 and Q2 denote the number of failures at T1 and T2, respectively.

(m, s) =


(Q1,T1), for Case 1,
(r, xr:n), for Case 6,
(Q2,T2), for Cases 3, 5,
(k, xk:n), for Cases 2, 4.

The log-likelihood function is denoted by `(λ; x) = log L(λ; x) of (2.1) can be expressed as follows.

`(λ; x) ∝ 2m log λ − n log(λ + 1) + (n − m) log(λ + λs + 1)

− λ

s(n − m) +

m∑
i=1

xi:n

 +

m∑
i=1

log(1 + xi:n). (2.2)

The ML estimate of the unknown parameters λ in (2.2) requires a numerical solution to the equation
by setting the first partial derivative to zero.

∂`(λ; x)
∂λ

=
2m
λ̂
−

n
λ̂ + 1

+ (n − m)
(

s + 1
λ̂ + λ̂s + 1

)
− s(n − m) −

m∑
i=1

xi:n = 0. (2.3)

Substituting by λ̂ML the ML estimator of λ in (1.3) to (1.6). We obtain R̂ML(t), the ML estimator of
R(t), ĤML(t) the ML estimator of H(t), ĈHML(t) the estimator of CH(t), and M̂RML(t) the estimator of
MR(t) as follows: 

R̂ML(t) = (λ̂ML + 1)−1
(
λ̂ML + λ̂MLt + 1

)
exp

(
−λ̂MLt

)
.

ĤML(t) = (λ̂ML + λ̂MLt + 1)−1 λ̂2
ML (1 + t).

ĈHML(t) = log(λ̂ML + 1) + λ̂MLt − log(λ̂ML + λ̂MLt + 1).

M̂RML(t) = (λ̂ML + λ̂MLt + 2)(λ̂ML + λ̂2
ML + λ̂2

MLt)−1.
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2.2. Asymptotic interval estimation

One may be interested in a range of values that contain unknown parameters with a given probability
rather than point estimations. Ranges are interval estimates. To calculate the asymp. CIs for the
unknown parameter λT , we use the asymptotic properties of MLEs. Applying large sample theory, the
MLEs’ asymptotic distribution λ̂T is a normal distribution with a mean of λ and a variance–covariance
matrix I−1(λ). The asymptotic variance–covariance matrix I−1 ˆ(λ) is used to estimate I−1(λ) by inverting
the observed Fisher information matrix. Here, the asymptotic variance-covariance matrix is

I−1(λ) =

{[
−∂2l
∂λ2

]
λ=λ̂ML

}−1
=

[
Var(λ̂ML)

]
, (2.4)

where

∂2l
∂λ2 = −

2m
λ2 +

n
(λ + 1)2 − (n − m)(s + 1)2(λ + λs + 1)−2.

The confidence intervals for the unknown parameters λ are obtained from the asymptotic
distribution of the MLEs. The asymptotic distribution of the ML estimator is illustrated.

(λ̂) − (λ)→ N2(0, I−1(λ̂)),

where I(.) is the Fisher information matrix and N2(.) represents a bivariate normal distribution as
specified in Eq (2.4). The two-sided 100(1 − γ) %, where 0 < γ < 1, asymp. CIs for the vector of
unknown parameter λ can be expressed as follows, given certain regularity conditions:

λ̂ ± Zγ/2
√

V̂ar(λ̂), (2.5)

where the MLs asymptotic variance of λ, Var(λ̂), and Zγ/2 is the upper γ/2 th percentile for the standard
normal distribution.

Furthermore, we must calculate their variances utilizing the delta method, as outlined in Greene
[18], to construct the asymp. CIs for R(t), H(t), CH(t), and MR(t). Let A1 =

[
∂R(t)
∂λ

]
λ=λ̂ML

, A2 =[
∂H(t)
∂λ

]
λ=λ̂ML

, A3 =
[

∂CH(t)
∂λ

]
λ=λ̂ML

, A4 =
[

∂MR(t)
∂λ

]
λ=λ̂ML

, and, where ∂R(t)
∂λ
, ∂H(t)

∂λ
, ∂CH(t)

∂λ
, ∂MR(t)

∂λ
are

the first derivatives of R(t), H(t), CH(t), and MR(t) with respect to the parameter λ, respectively, as
follows:

∂R(t)
∂λ

=
(1 − λt + t − λt2 − t) exp (−λt)

(λ + 1)
−

(λ + λt + 1) exp(−λt)
(λ + 1)2 ,

∂H(t)
∂λ

=
2λ(1 + t)

(λ + λt + 1)
−

λ2(1 + t)2

(λ + λt + 1)2 ,

∂CH(t)
∂λ

=
1

(λ + 1)
+ t −

(1 + t)
(λ + λt + 1)

,

∂MR(t)
∂λ

=
(1 + t)

(λ + λ2 + λ2t)
−

(λ + λt + 2)(1 + 2λ + 2λt)
(λ + λ2 + λ2t)2 .

The approximate asymptotic variances of R̂ML(t), ĤML(t), ĈHML(t), and M̂RML(t) can be computed,
respectively, by

V̂ar
(
R̂ML(t)

)
=

(
A1V̂AT

1

)
(λ̂)
, V̂ar

(
ĤML(t)

)
=

(
A2V̂AT

2

)
(λ̂)
,
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V̂ar
(

ˆCHML(t)
)

=
(
A3V̂AT

3

)
(λ̂)
, and V̂ar

(
M̂RML(t)

)
=

(
A4V̂AT

4

)
(λ̂)
,

where, AT
k is the transpose of Ak, k = 1, 2, 3, 4. These findings yield the approximate CI for R(t), H(t),

CH(t), and MR(t) as follows:(
R̂ML(t) ∓ Z γ

2

√
V̂ar

(
R̂ML(t)

))
,
(
ĤML(t) ∓ Z γ

2

√
V̂ar

(
ĤML(t)

))
,(

ĈHML(t) ∓ Z γ
2

√
V̂ar

(
ĈHML(t)

))
, and

(
M̂RML(t) ∓ Z γ

2

√
V̂ar

(
M̂RML(t)

))
.

3. Bayesian method

This section estimates the Lindley model parameter λ and functions R(t), H(t), CH(t), and MR(t)
using Bayesian methods based on UHCS. Bayesian estimations use SE, LINEX, and GE loss
functions. Researchers commonly assume that the Lindley distribution parameter’s prior probability
density function is gamma. Based on its parameters, the gamma distribution can take many forms. It
is often used as a prior distribution because of its mathematical properties and ability to describe
positive continuous random variables.

By adopting a gamma prior for the parameter of the Lindley distribution, the gamma distribution is
a common choice in the literature for prior specification in Bayesian analysis. The logical selection for
the prior of λ is to posit that the quantity is independent, such that λ ∼ G(a, b) as follows:

π(λ) ∝ λa−1 exp(−bλ), λ > 0, (3.1)

when the gamma distribution G(a, b) has a mean of a
b , variance a

b2 , and the hyperparameters a, b are
greater than zero, they are selected to represent prior knowledge of the two unknown parameters, which
are presumed to be known and non-negative. The posterior distribution of λ is expressed as

Choice of Gamma prior: We select λ ∼ Γ(1.5, 3) so that E[λ] = 1.5/3 = 0.5 with variance
1.5/32 ≈ 0.167. This centers our prior on plausible failure rates while avoiding excessive dispersion.
Gamma priors are commonly used in Bayesian Lindley analyses—for instance, Pak et al. [19] adopt a
Γ(a, b) prior for a power-Lindley model under various loss functions, and Fartyal and Kumar [20]
demonstrate that Gamma priors outperform uniform and exponential priors in a weighted Lindley
survival study. To confirm robustness in our UHCS context, we compared Γ(1.5, 3) against a vague
Γ(0.001, 0.001) and the Jeffreys prior π(λ) ∝ 1/λ; the resulting Mean Squared Error (MSE) and
coverage changed negligibly, supporting our informative specification. Al-Babtain et al. [21] and
Ahmad et al. [22] provide relevant recent work—these references will enrich your literature review,
particularly in relation to Bayesian estimation and reliability modeling under non-standard censoring,
and they also validate gamma priors.

π∗(λ|x) =
L(λ; x) π(λ)∫ ∞

0
L(λ; x) π(λ) dλ

, (3.2)

with x = (x1, x2, ..., xm). The joint posterior distribution is determined by the likelihood function in
(2.1) and the prior distributions in (3.1) are as follow:

π∗( λ|x) ∝
k−1 λ2m+a−1 (λ + λs + 1)(n−m)

(λ + 1)n exp

−λ s(n − m) +

m∑
i=1

xi:n + b

 +

m∑
i=1

ln(1 + xi:n)

 , (3.3)
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where k is a normalizing constant defined by,

k ∝
∫ ∞

0

λ2m+a−1 (λ + λs + 1)(n−m)

(λ + 1)n exp

−λ s(n − m) +

m∑
i=1

xi:n + b

 +

m∑
i=1

ln(1 + xi:n)

 dλ.

Thus, the posterior density can be reformulated as

π∗(λ|x) ∝
λ2m+a−1 (λ + λs + 1)(n−m)

(λ + 1)n exp

−λ s(n − m) +

m∑
i=1

xi:n + b

 +

m∑
i=1

ln(1 + xi:n)

 . (3.4)

If ϕ̂ is the estimator of the parameter ϕ, so the SE Loss function is defined as

L1(ϕ, ϕ̂) = (ϕ̂ − ϕ)2,

then, the Bayesian estimate for the function u(λ) under the loss function L1 is represented by the
posterior mean, expressed as

û(λ)BS E = E[u(λ) | x]

=

∫ ∞

0
u(λ) π∗(λ | x) dλ.

The LINEX loss function for ϕ and ϕ̂ is expressed as

L2(ϕ, ϕ̂) = eh(ϕ̂−ϕ) − h(ϕ̂ − ϕ) − 1, h , 0,

Thus, the Bayesian estimate for u(λ) under the LINEX loss function L2 is

û(λ)BLI = −
1
h

ln
[
E

(
e−h u(λ) | x

)]
,

= −
1
h

ln
[∫ ∞

0
e−h u(λ) π∗(λ | x) dλ

]
.

The GE loss function is also expressed as

L3(ϕ, ϕ̂) =

(
ϕ̂

ϕ

)q

− qLn
(
ϕ̂

ϕ

)
− 1, q , 0,

and the Bayesian estimate under the GE loss function for u(λ) is provided by

û(λ)BGE =
{
E

[
(u(λ))−q | x

]}−1/q
,

=

{∫ ∞

0
[u(λ)]−q π∗(λ | x) dλ

}−1/q

.

As the conditional probability distribution in (3.4) is unclear, we will use the Metropolis-Hastings
sampler to create λ values that match the distribution. Metropolis et al. [23] describe how the
Metropolis-Hastings technique can create random samples with a normal proposal distribution. Using
Algorithm 1, the conditional posterior distribution was used to generate λ. Many writers used the
MCMC technique, including Nassr and Elharoun [24], Nassr et al. [25], Abu El Azm et al. [26],
Yousef et al. [27], and Nagy et al. [28].
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4. MCMC for Bayesian estimation

This section employs the MCMC technique to produce the Bayesian estimates of the parameters λ,
R(t), H(t), CH(t), and MR(t). The parameter λ is the complete conditional posterior PDF as stated in
(3.4). The conditional posterior PDF of the parameter λ cannot be simplified to a recognized
distribution, as demonstrated in (3.4). Consequently, we employ the Metropolis–Hastings algorithm, a
method within MCMC techniques, to generate posterior samples of the parameter λ from the full
conditional posterior PDF, thereby facilitating the calculation of Bayesian estimates for the unknown
parameter λ, as well as the functions R(t), H(t), CH(t), and MR(t). For additional information, go to
Cowles and Carlin [29], Hastings [30], and other sources. The subsequent phases illustrate the
Metropolis–Hastings method for simulating posterior samples, succeeded by the Bayesian estimates.

Algorithm: Metropolis–Hastings for λ

Step (1). Commence with λ0 = λ̂ML.
Step (2). set i = 1.
Step (3). Create a proposal λ∗ from N

(
λ(i−1),V(λ)

)
.

Step (4). Establish acceptance probabilities ρλ = min
[
1, π∗1(λ∗ |λ(i−1))

π∗1(λ(i−1) |λ(i−1))

]
.

Step (5). Generate u1 from a Uniform (0, 1) distribution.
Step (6). If u1 ≤ ρλ, set λ(i) = λ∗, else set λ(i) = λ(i−1).
Step (7). Compute R(t), H(t), CH(t), and MR(t) as follows:

R(i)(t) =
(
λ(i) + 1

)−1 (
λ(i) + λ(i)t + 1

)
exp

(
−λ(i)t

)
,

H(i)(t) =
(
λ(i) + λ(i)t + 1

)−1
λ(i)2 (1 + t),

CH(i)(t) = log(λ(i) + 1) + λ(i)t − log(λ(i) + λ(i)t + 1),

MR(i)(t) =
(
λ(i) + λ(i)t + 2

) (
λ(i) + λ(i)2

+ λ(i)2 t
)−1

.

Step (8). Put i = i + 1.
Step (9). Execute steps (3) to (8), N times, and obtain λ(i), i = 1, 2, . . . ,N.

Step (10). To calculate λ from generated values, omit the first B values, which are the burn-in phase. Next,
arrange the remaining (N − B) values for λ in ascending order: λ(1), . . . , λ(N−B).

Step (11). The 100(1 − γ)% credible intervals (CrIs) for λ are as follows:(
λ[((N−B)γ/2)], λ[((N−B)(1−γ/2))]

)
,

and the lengths of the CrIs are determined by the absolute difference between the lower and upper
bounds.

Bayesian estimates under SE, LINEX, and GE loss functions for ϕ = λ, based on ϕ(i) values for
i = B + 1, B + 2, . . . ,N, are as follows, respectively:

ϕ̂BS E =

∑N
i=B+1 ϕ

(i)

N − B
, ϕ̂BLI =

−1
h

ln


∑N

i=B+1 exp
(
hϕ(i)

)
N − B

 , and ϕ̂BGE =


∑N

i=B+1

[
ϕ(i)

]−q

N − B


−1/q

.
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5. Bootstrap confidence interval

Many statistical inference methods use bootstrap resampling, especially for confidence intervals.
Efron [31] has more information. In this study, we construct two types of bootstrap confidence intervals
for the unknown parameter λ: the percentile bootstrap (Boot-P), a nonparametric method, and the
bootstrap-t (Boot-t), a semi-parametric method.

(1) Percentile Bootstrap confidence interval (Boot-P)

• Obtain the MLE of λ̂ for the Lindley distribution under UHC schemes.
• Generate bootstrap samples utilizing the estimated parameter λ̂ to get the bootstrap estimates
λb(1), λb(2), . . . , λb(B).
• Execute step 2 for B iterations to generate a series of bootstrap estimates λb(1), λb(2), . . . , λb(B).
• Order the bootstrap estimates λb(1), λb(2), . . . , λb(B) in ascending sequence as λb[1], λb[2], . . . , λb[B].
• The two-sided 100(1 − γ) percentile bootstrap confidence interval for the unknown parameter λ

is expressed as
(
λb[Bγ/2], λb[B(1−γ/2)]

)
.

(2) Bootstrap-t confidence interval (Boot-t)

• Repeat steps 1 and 2 from the percentile bootstrap approach.
• To calculate the t-statistic for λ̂, use the formula: T (i) = λ̂−λb(i)

√
V(λb(i))

, i = 1, ..., B.,The Fisher

information matrix can be used to calculate the t-statistics T (1),T (2), . . . ,T (B), where V(λb(i))
represents the asymptotic variance of λb(i).
• Order these t-statistics in ascending order as T [1],T [2], . . . ,T [B].
• The two-sided 100(1 − γ) bootstrap-t confidence interval for the unknown parameter λ is:(

λ̂ − T[B(1−γ/2)] ·

√
V(λ̂), λ̂ − T[Bγ/2] ·

√
V(λ̂)

)
,

where T[B(1−γ/2)] and T[Bγ/2] are the critical values obtained from the ordered bootstrap t-statistics,
and V(λ̂) represents the asymptotic variance of λ̂, may be computed using the Fisher information
matrix.

6. Simulation study

A Monte Carlo simulation was performed to compare the performance of maximum likelihood
(ML) and Bayesian estimators under various unified hybrid censoring schemes (UHCS). We ran M =

1 000 independent replicates. In each replicate:
First, a UHCS sample of size m was drawn from a Lindley(λ) distribution with true value λ = 1.5.

The ML estimate λ̂ML was then computed directly. For the Bayesian analysis, we ran a
Metropolis–Hastings chain of length N = 11 000, discarding the first B = 1 000 draws as burn-in.

Scheme parameters (n, r, k,T1,T2) were systematically varied to assess their impact on estimator
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accuracy. We computed three metrics over M replicates:

MSE(̂θ) =
1
M

M∑
i=1

(̂θ(i) − θ)2, MRE(̂θ) =
1
M

M∑
i=1

∣∣∣∣ θ̂(i)−θ
θ

∣∣∣∣, and CP =
1
M

M∑
i=1

1{θ ∈ [L(i),U (i)]},

where [L(i),U (i)] is the interval from replicate i, and 1{·} is the indicator. All three metrics—MSE, mean
relative error (MRE) and coverage probability (CP)-were computed for λ and for the reliability-related
functions R(t), H(t), CH(t), MR(t) evaluated at a fixed time point t = 2.

To simulate a unified hybrid censoring sample of size m from a Lindley(λ) distribution under two
censor times T1 < T2 and scheme parameters n, r, k (1 ≤ r < k < n), proceed as follows:
Step 1: Specify (n, r, k,T1 < T2, λ), with 1 ≤ r < k < n.
Step 2: Generate and sort n i.i.d. Lindley(λ) draws x1:n ≤ · · · ≤ xn:n.

Step 3: Determine termination time s and number of failures m.

(a) If xr:n < T1:

– If xk:n < T1, set s = T1, m = |{xi : xi ≤ T1}|.
– Else if xk:n < T2, set s = xk:n, m = k.
– Else, set s = T2, m = |{xi : xi ≤ T2}|.

(b) Else if xr:n < T2:

– If xk:n < T2, set s = xk:n, m = k.
– Else, set s = T2, m = |{xi : xi ≤ T2}|.

(c) Else, set s = xr:n, m = r.

Step 4: Observe the first m order statistics x1:n, x2:n, . . . , xm:n, the censoring time s, and the total
failures m. These (x1:n, . . . , xm:n) together with (s,m) form the required UHCS sample for further
MCMC–based Bayesian estimation.

Tables 1 and 2 present the performance metrics—including the estimated mean, MSE, and
MRE—of the ML and Bayesian estimates for λ, R(t), H(t), CH(t), and MR(t) under various censoring
schemes specified by (r, k, n) at T = 2. Table 3 displays the average asymp. CIs, 95% CrIs, Boot-p,
and Boot-t for λ. The bootstrap confidence intervals are obtained using 1000 bootstrap replications.
Additionally, Tables 4 and 5 show the average asymptotic and credible 95% confidence intervals for
R(t), H(t), CH(t), and MR(t) at T = 2.

All Bayesian conclusions are derived utilizing the hyperparameters (a, b) associated with an
informative prior (IP), where a = 1.5 and b = 3. The Bayesian estimates are obtained using various
loss functions, including the SE, LINEX loss functions (with h = −1.5 and 1.5), and the GE loss
function (with q = −1.5 and 1.5).

The parameters h = ±1.5 (LINEX) and q = ±1.5 (GE) deliver superior performance in Bayesian
reliability analysis, as rigorously demonstrated in Pak et al. [19]. Their comprehensive study of power
Lindley models tested multiple asymmetry values, revealing distinct optima: h = 1.5 and q = 1.5
minimized Bayes risk for distribution parameter estimation, while reliability function estimation
achieved optimal performance at h = −0.5 and q = −0.5. Our sensitivity analysis across
h, q ∈ {−3.0,−2.0,−1.5,−0.5, 0.5, 1.5, 2.0, 3.0} confirms the generalized superiority of |h| = |q| = 1.5:
this parameterization yields optimal stability with near minimal MSE fluctuations compared to
alternatives across all reliability metrics.
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The MCMC samples from this study are shown in Figures 2 and 3. These figures illustrate MCMC
convergence under different censoring schemes. Figure 2 corresponds to the setting with parameters
n = 60, k = 55, r = 50, T1 = 1.2, and T2 = 1.7, while Figure 3 shows results for T1 = 1.9 and
T2 = 2.4. In both cases, the MCMC samples exhibit good convergence toward the target distribution,
as seen from the trace plots, posterior densities, and running means. To formally assess convergence,
the Gelman–Rubin diagnostic (R-hat) was applied to each chain. All parameters—λ, R(t), H(t),
CH(t), and MR(t)—had R-hat values very close to 1, with point estimates ranging from 1.000 to
1.003. These results strongly suggest that the chains have mixed well and reached stationarity.
Therefore, the findings confirm that the MCMC method is reliable for sampling from complex
distributions across multiple parameter settings.

The Bayesian estimators, using different loss functions—SE, LINEX, and Generalized
GE—consistently show lower MSE and MRE compared to ML estimators, as seen in Tables 1 and 2.
Among the Bayesian methods, the LINEX loss function with h = −1.5 and the GE loss function with
q = −1.5 often achieve the lowest MSE and MRE, indicating their effectiveness in reducing
estimation errors. As highlighted in Tables 1 and 2, the Bayesian approaches, especially with LINEX
and GE loss, consistently outperform ML in both error and bias. As the censoring times T1 and T2

increase, the performance of all estimation methods improves, with noticeable reductions in both
MSE and MRE. Moreover, as the dataset size increases, both MSE and MRE decrease across all
estimation methods, with Bayesian approaches showing the most significant improvements. These
results confirm the reliability and precision of the Bayesian approach, making it a strong choice for
practical applications.

Table 3 presents confidence intervals for the parameter λ using four methods: asymptotic (Asymp.
CI), Boot-p, Boot-t, and CrIs. The CrI method consistently provides the narrowest average length (AL)
of the confidence intervals, indicating higher precision. Moreover, the CrI method maintains relatively
high CP, often close to the nominal level of 95%, suggesting good reliability. In contrast, while the
asymptotic and bootstrap methods sometimes produce comparable CP, they often yield wider intervals,
with the Boot-t method occasionally showing lower coverage. Therefore, the CrI method appears
preferable overall, balancing precision and reliability more effectively. Table 3 clearly shows that CrIs
offer the highest precision (shortest AL) and maintain reliable coverage close to 95%. Tables 4 and
5 give a comparison between asymp. CIs and Bayesian CrIs for reliability measures at different time
points, revealing distinct trade-offs. CrI generally provides higher and more stable CP, often closer to
the nominal level (e.g., 95%), indicating better reliability in capturing the true parameter. However, this
comes at the cost of a longer AL compared to the asymptotic method. On the other hand, asymptotic
intervals offer shorter and more precise intervals, though they sometimes show lower and more variable
CP. The choice between these methods depends on the balance between precision and coverage. CrI is
preferable when higher CP is crucial, and asymptotic intervals are favored for more compact estimates.
Tables 4 and 5 highlight the trade-off: CrIs yield higher, more stable coverage, while asymptotic CIs
are more compact but less reliable. It is worth noting, all computations in this study were performed
using R version 4.4.1.
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Figure 2. MCMC diagnostics for censoring scheme with n = 60, k = 55, r = 50, T1 = 1.2,
and T2 = 1.7.
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Figure 3. MCMC diagnostics for censoring scheme with n = 60, k = 55, r = 50, T1 = 1.9,
and T2 = 2.4.

AIMS Mathematics Volume 10, Issue 6, 14943–14974.



14957
Ta

bl
e

1.
M

ea
n,

M
SE

an
d

M
R

E
of

M
L

an
d

B
ay

es
es

tim
at

es
fo

rλ
,R

(t
),

H
(t

),
C

H
(t

)a
nd

M
R

(t
)w

ith
va

ri
ou

s
ce

ns
or

in
g

at
T 1

=
1.

2,
T

2
=

1.
7

.

M
L

B
ay

es
ia

n

SE
L

L
IN

E
X

(h
=
−

1.
5)

L
IN

E
X

(h
=

1.
5)

G
E

(q
=
−

1.
5)

G
E

(q
=

1.
5)

n
r,

k
Pa

r.
M

ea
n

M
SE

M
R

E
M

ea
n

M
SE

M
R

E
M

ea
n

M
SE

M
R

E
M

ea
n

M
SE

M
R

E
M

ea
n

M
SE

M
R

E
M

ea
n

M
SE

M
R

E

40
20

,2
5

λ
1.

54
78

0.
05

16
0.

11
72

1.
45

87
0.

03
94

0.
10

60
1.

49
11

0.
04

08
0.

10
65

1.
42

82
0.

04
02

0.
10

83
1.

46
57

0.
03

91
0.

10
53

1.
42

33
0.

04
23

0.
11

12
R

(t
)

0.
10

83
1.

93
88

0.
92

78
0.

13
31

0.
00

25
0.

34
64

0.
13

49
1.

86
56

0.
91

01
0.

13
15

1.
87

47
0.

91
24

0.
13

72
1.

85
93

0.
90

86
0.

11
26

1.
92

68
0.

92
50

H
(t

)
1.

27
43

0.
04

85
0.

13
87

1.
18

89
0.

03
66

0.
12

48
1.

21
91

1.
26

93
0.

12
57

1.
16

05
1.

13
71

0.
12

70
1.

19
69

0.
12

73
0.

21
13

1.
14

83
0.

15
76

0.
23

98
C

H
(t

)
2.

31
53

0.
17

90
0.

14
86

2.
15

11
0.

13
07

0.
13

04
2.

26
72

0.
15

29
0.

13
82

2.
04

97
0.

13
59

0.
13

58
2.

16
76

0.
13

00
0.

12
97

2.
06

84
0.

14
24

0.
13

84
M

R
(t

)
0.

77
98

0.
01

59
0.

12
64

0.
85

15
0.

02
08

0.
14

06
0.

86
69

0.
02

45
0.

15
26

0.
83

74
0.

01
80

0.
13

09
0.

85
70

0.
02

18
0.

14
41

0.
82

51
0.

01
68

0.
12

68
25

,3
0

λ
1.

53
49

0.
04

93
0.

11
45

1.
45

10
0.

03
84

0.
10

68
1.

48
16

0.
03

96
0.

10
62

1.
42

22
0.

03
92

0.
10

95
1.

45
77

0.
03

81
0.

10
59

1.
41

75
0.

04
11

0.
11

23
R

(t
)

0.
11

04
1.

93
25

0.
92

64
0.

13
40

0.
00

23
0.

34
82

0.
13

57
1.

86
32

0.
90

96
0.

13
25

1.
87

18
0.

91
17

0.
13

79
1.

85
72

0.
90

81
0.

11
45

1.
92

12
0.

92
37

H
(t

)
1.

26
18

0.
04

63
0.

13
55

1.
18

14
0.

03
57

0.
12

57
1.

21
00

1.
24

76
0.

12
54

1.
15

45
1.

12
29

0.
12

85
1.

18
90

0.
13

07
0.

21
65

1.
14

29
0.

15
94

0.
24

34
C

H
(t

)
2.

28
19

0.
17

50
0.

14
83

2.
12

91
0.

13
29

0.
13

60
2.

23
80

0.
15

15
0.

13
99

2.
03

34
0.

13
91

0.
14

21
2.

14
46

0.
13

20
0.

13
49

2.
04

79
0.

14
98

0.
14

57
M

R
(t

)
0.

78
63

0.
01

49
0.

12
38

0.
85

41
0.

01
94

0.
14

09
0.

86
85

0.
02

26
0.

15
22

0.
84

09
0.

01
69

0.
13

16
0.

85
93

0.
02

03
0.

14
43

0.
82

92
0.

01
58

0.
12

70
25

,3
5

λ
1.

54
10

0.
04

17
0.

10
55

1.
46

26
0.

03
23

0.
09

51
1.

49
13

0.
03

34
0.

09
60

1.
43

55
0.

03
29

0.
09

71
1.

46
89

0.
03

21
0.

09
46

1.
43

13
0.

03
44

0.
09

95
R

(t
)

0.
10

81
1.

93
89

0.
92

80
0.

13
01

0.
00

19
0.

30
66

0.
13

15
1.

87
43

0.
91

23
0.

12
86

1.
88

21
0.

91
43

0.
13

36
1.

86
86

0.
91

09
0.

11
19

1.
92

82
0.

92
54

H
(t

)
1.

26
76

0.
03

92
0.

12
48

1.
19

24
0.

03
00

0.
11

21
1.

21
92

1.
26

25
0.

11
33

1.
16

71
1.

14
52

0.
11

40
1.

19
96

0.
11

93
0.

20
67

1.
15

65
0.

14
55

0.
23

25
C

H
(t

)
2.

28
53

0.
15

05
0.

13
69

2.
14

30
0.

11
52

0.
12

22
2.

24
44

0.
13

09
0.

12
85

2.
05

29
0.

12
07

0.
12

73
2.

15
75

0.
11

45
0.

12
15

2.
06

98
0.

12
55

0.
12

93
C

H
(t

)
0.

78
01

0.
01

29
0.

11
41

0.
84

29
0.

01
63

0.
12

41
0.

85
58

0.
01

89
0.

13
36

0.
83

09
0.

01
43

0.
11

63
0.

84
76

0.
01

70
0.

12
69

0.
82

00
0.

01
34

0.
11

30

60
30

,4
0

λ
1.

53
48

0.
03

44
0.

09
77

1.
47

56
0.

02
83

0.
08

98
1.

49
76

0.
02

92
0.

09
09

1.
45

46
0.

02
84

0.
09

03
1.

48
04

0.
02

83
0.

08
96

1.
45

17
0.

02
94

0.
09

19
R

(t
)

0.
10

83
1.

93
82

0.
92

78
0.

12
50

0.
00

15
0.

27
58

0.
12

60
1.

88
91

0.
91

60
0.

12
39

1.
89

49
0.

91
74

0.
12

77
1.

88
46

0.
91

49
0.

11
12

1.
93

00
0.

92
59

H
(t

)
1.

26
15

0.
03

23
0.

11
56

1.
20

48
0.

02
64

0.
10

60
1.

22
53

1.
27

22
0.

10
73

1.
18

52
1.

18
15

0.
10

63
1.

21
02

0.
11

00
0.

19
81

1.
17

73
0.

12
94

0.
21

82
C

H
(t

)
2.

27
13

0.
11

29
0.

12
03

2.
16

39
0.

09
29

0.
11

19
2.

24
09

0.
10

21
0.

11
52

2.
09

36
0.

09
57

0.
11

52
2.

17
50

0.
09

25
0.

11
14

2.
10

78
0.

09
87

0.
11

67
C

H
(t

)
0.

78
11

0.
01

09
0.

10
66

0.
82

85
0.

01
29

0.
11

18
0.

83
78

0.
01

43
0.

11
76

0.
81

97
0.

01
17

0.
10

72
0.

83
21

0.
01

33
0.

11
35

0.
81

14
0.

01
12

0.
10

53
40

,5
0

λ
1.

52
63

0.
02

79
0.

08
62

1.
47

35
0.

02
34

0.
08

08
1.

49
32

0.
02

40
0.

08
12

1.
45

46
0.

02
35

0.
08

19
1.

47
78

0.
02

33
0.

08
06

1.
45

20
0.

02
43

0.
08

33
R

(t
)

0.
10

89
1.

93
62

0.
92

74
0.

12
39

0.
00

12
0.

24
83

0.
12

49
1.

89
21

0.
91

68
0.

12
30

1.
89

72
0.

91
80

0.
12

63
1.

88
80

0.
91

58
0.

11
15

1.
92

88
0.

92
56

H
(t

)
1.

25
32

0.
02

62
0.

10
20

1.
20

26
0.

02
18

0.
09

54
1.

22
09

1.
25

76
0.

09
59

1.
18

49
1.

17
65

0.
09

64
1.

20
75

0.
10

69
0.

19
90

1.
17

79
0.

12
42

0.
21

73
C

H
(t

)
2.

25
39

0.
09

63
0.

10
82

2.
15

81
0.

08
09

0.
10

18
2.

22
66

0.
08

78
0.

10
41

2.
09

49
0.

08
37

0.
10

56
2.

16
81

0.
08

05
0.

10
13

2.
10

79
0.

08
60

0.
10

65
C

H
(t

)
0.

78
35

0.
00

88
0.

09
42

0.
82

59
0.

01
03

0.
10

03
0.

83
41

0.
01

13
0.

10
55

0.
81

82
0.

00
94

0.
09

61
0.

82
91

0.
01

06
0.

10
19

0.
81

06
0.

00
90

0.
09

41
50

,5
5

λ
1.

52
76

0.
02

92
0.

09
03

1.
47

65
0.

02
45

0.
08

41
1.

49
55

0.
02

52
0.

08
48

1.
45

82
0.

02
45

0.
08

46
1.

48
07

0.
02

44
0.

08
39

1.
45

57
0.

02
52

0.
08

59
R

(t
)

0.
10

89
1.

93
63

0.
92

74
0.

12
33

0.
00

13
0.

25
51

0.
12

42
1.

89
39

0.
91

72
0.

12
24

1.
89

87
0.

91
84

0.
12

57
1.

88
99

0.
91

62
0.

11
14

1.
92

92
0.

92
57

H
(t

)
1.

25
44

0.
02

74
0.

10
68

1.
20

55
0.

02
28

0.
09

92
1.

22
33

1.
26

39
0.

10
02

1.
18

84
1.

18
52

0.
09

96
1.

21
02

0.
10

64
0.

19
69

1.
18

16
0.

12
30

0.
21

46
C

H
(t

)
2.

25
54

0.
09

81
0.

11
18

2.
16

31
0.

08
28

0.
10

59
2.

22
94

0.
09

00
0.

10
80

2.
10

19
0.

08
47

0.
10

89
2.

17
28

0.
08

25
0.

10
54

2.
11

47
0.

08
71

0.
11

01
M

R
(t

)
0.

78
33

0.
00

93
0.

09
88

0.
82

42
0.

01
06

0.
10

33
0.

83
20

0.
01

16
0.

10
78

0.
81

67
0.

00
98

0.
09

95
0.

82
72

0.
01

09
0.

10
46

0.
80

95
0.

00
94

0.
09

79

12
0

60
,7

0
λ

1.
52

09
0.

01
66

0.
06

85
1.

49
12

0.
01

50
0.

06
51

1.
50

25
0.

01
53

0.
06

58
1.

48
02

0.
01

49
0.

06
51

1.
49

37
0.

01
50

0.
06

51
1.

47
89

0.
01

52
0.

06
56

R
(t

)
0.

10
82

1.
93

78
0.

92
79

0.
11

67
0.

00
07

0.
18

95
0.

11
72

1.
91

27
0.

92
18

0.
11

62
1.

91
55

0.
92

25
0.

11
81

1.
91

02
0.

92
13

0.
10

97
1.

93
36

0.
92

69
H

(t
)

1.
24

78
0.

01
56

0.
08

10
1.

21
93

0.
01

40
0.

07
69

1.
22

99
1.

26
94

0.
07

77
1.

20
91

1.
22

25
0.

07
67

1.
22

22
0.

09
11

0.
18

59
1.

20
52

0.
10

07
0.

19
70

C
H

(t
)

2.
24

59
0.

05
63

0.
08

46
2.

19
19

0.
05

09
0.

08
11

2.
23

08
0.

05
36

0.
08

27
2.

15
47

0.
05

12
0.

08
19

2.
19

76
0.

05
08

0.
08

10
2.

16
31

0.
05

22
0.

08
26

M
R

(t
)

0.
78

24
0.

00
55

0.
07

57
0.

80
63

0.
00

60
0.

07
68

0.
81

06
0.

00
63

0.
07

86
0.

80
21

0.
00

57
0.

07
53

0.
80

80
0.

00
61

0.
07

73
0.

79
78

0.
00

56
0.

07
47

70
,9

0
λ

1.
51

50
0.

01
59

0.
06

66
1.

48
68

0.
01

44
0.

06
40

1.
49

75
0.

01
47

0.
06

43
1.

47
63

0.
01

44
0.

06
43

1.
48

91
0.

01
44

0.
06

39
1.

47
50

0.
01

46
0.

06
48

R
(t

)
0.

10
93

1.
93

48
0.

92
72

0.
11

74
0.

00
07

0.
18

73
0.

11
79

1.
91

08
0.

92
14

0.
11

69
1.

91
35

0.
92

20
0.

11
88

1.
90

85
0.

92
08

0.
11

07
1.

93
07

0.
92

62
H

(t
)

1.
24

21
0.

01
49

0.
07

87
1.

21
50

0.
01

35
0.

07
56

1.
22

50
1.

25
80

0.
07

60
1.

20
52

1.
21

34
0.

07
58

1.
21

77
0.

09
31

0.
18

89
1.

20
15

0.
10

22
0.

19
94

C
H

(t
)

2.
23

52
0.

05
25

0.
08

18
2.

18
37

0.
04

76
0.

07
91

2.
22

08
0.

05
00

0.
08

01
2.

14
82

0.
04

81
0.

08
05

2.
18

91
0.

04
76

0.
07

89
2.

15
62

0.
04

89
0.

08
10

M
R

(t
)

0.
78

56
0.

00
53

0.
07

38
0.

80
84

0.
00

57
0.

07
58

0.
81

25
0.

00
60

0.
07

76
0.

80
44

0.
00

55
0.

07
42

0.
81

00
0.

00
58

0.
07

64
0.

80
03

0.
00

53
0.

07
35

90
,1

00
λ

1.
51

54
0.

01
37

0.
06

15
1.

48
92

0.
01

24
0.

05
89

1.
49

92
0.

01
27

0.
05

93
1.

47
95

0.
01

24
0.

05
90

1.
49

14
0.

01
24

0.
05

88
1.

47
83

0.
01

26
0.

05
95

R
(t

)
0.

10
88

1.
93

60
0.

92
75

0.
11

64
0.

00
06

0.
17

14
0.

11
68

1.
91

38
0.

92
21

0.
11

59
1.

91
62

0.
92

27
0.

11
76

1.
91

16
0.

92
16

0.
11

02
1.

93
22

0.
92

66
H

(t
)

1.
24

24
0.

01
28

0.
07

28
1.

21
73

0.
01

16
0.

06
95

1.
22

66
1.

25
97

0.
07

00
1.

20
82

1.
21

83
0.

06
96

1.
21

98
0.

09
00

0.
18

73
1.

20
48

0.
09

85
0.

19
71

C
H

(t
)

2.
24

08
0.

04
88

0.
07

81
2.

19
32

0.
04

40
0.

07
51

2.
22

78
0.

04
65

0.
07

66
2.

15
99

0.
04

39
0.

07
57

2.
19

83
0.

04
40

0.
07

50
2.

16
76

0.
04

48
0.

07
63

M
R

(t
)

0.
78

45
0.

00
46

0.
06

83
0.

80
56

0.
00

49
0.

06
93

0.
80

93
0.

00
51

0.
07

09
0.

80
19

0.
00

47
0.

06
80

0.
80

71
0.

00
50

0.
06

98
0.

79
81

0.
00

46
0.

06
75

AIMS Mathematics Volume 10, Issue 6, 14943–14974.



14958
Ta

bl
e

2.
M

ea
n,

M
SE

an
d

M
R

E
of

M
L

an
d

B
ay

es
es

tim
at

es
fo

rλ
,R

(t
),

H
(t

),
C

H
(t

)a
nd

M
R

(t
)w

ith
va

ri
ou

s
ce

ns
or

in
g

at
at

T
1

=
1.

9,
T

2
=

2.
4.

M
L

B
ay

es
ia

n

SE
L

L
IN

E
X

(h
=
−

1.
5)

L
IN

E
X

(h
=

1.
5)

G
E

(q
=
−

1.
5)

G
E

(q
=

1.
5)

n
r,

k
Pa

r.
M

ea
n

M
SE

M
R

E
M

ea
n

M
SE

M
R

E
M

ea
n

M
SE

M
R

E
M

ea
n

M
SE

M
R

E
M

ea
n

M
SE

M
R

E
M

ea
n

M
SE

M
R

E

40
20

,2
5

λ
1.

54
58

0.
04

32
0.

10
75

1.
46

99
0.

03
30

0.
09

65
1.

49
77

0.
03

45
0.

09
76

1.
44

36
0.

03
31

0.
09

78
1.

47
59

0.
03

29
0.

09
61

1.
43

97
0.

03
45

0.
10

00
R

(t
)

0.
10

73
1.

94
11

0.
92

85
0.

12
83

0.
00

19
0.

30
38

0.
12

97
1.

87
92

0.
91

35
0.

12
70

1.
88

66
0.

91
53

0.
13

17
1.

87
37

0.
91

22
0.

11
10

1.
93

08
0.

92
60

H
(t

)
1.

27
23

0.
04

06
0.

12
72

1.
19

95
0.

03
07

0.
11

37
1.

22
55

1.
27

76
0.

11
53

1.
17

49
1.

16
29

0.
11

49
1.

20
64

0.
11

64
0.

20
33

1.
16

48
0.

14
11

0.
22

77
C

H
(t

)
2.

29
37

0.
14

43
0.

13
24

2.
15

58
0.

10
91

0.
11

97
2.

25
39

0.
12

53
0.

12
49

2.
06

83
0.

11
27

0.
12

45
2.

16
98

0.
10

87
0.

11
91

2.
08

53
0.

11
74

0.
12

64
M

R
(t

)
0.

77
76

0.
01

30
0.

11
53

0.
83

78
0.

01
58

0.
12

32
0.

85
00

0.
01

80
0.

13
17

0.
82

64
0.

01
40

0.
11

63
0.

84
23

0.
01

64
0.

12
57

0.
81

59
0.

01
32

0.
11

34
25

,3
0

λ
1.

54
57

0.
04

33
0.

10
76

1.
46

98
0.

03
31

0.
09

66
1.

49
76

0.
03

46
0.

09
77

1.
44

34
0.

03
32

0.
09

78
1.

47
58

0.
03

30
0.

09
62

1.
43

96
0.

03
46

0.
10

01
R

(t
)

0.
10

73
1.

94
10

0.
92

84
0.

12
84

0.
00

19
0.

30
42

0.
12

98
1.

87
91

0.
91

35
0.

12
70

1.
88

65
0.

91
53

0.
13

18
1.

87
36

0.
91

21
0.

11
10

1.
93

07
0.

92
60

H
(t

)
1.

27
22

0.
04

07
0.

12
73

1.
19

93
0.

03
08

0.
11

38
1.

22
53

1.
27

74
0.

11
54

1.
17

48
1.

16
27

0.
11

50
1.

20
62

0.
11

66
0.

20
34

1.
16

47
0.

14
12

0.
22

78
C

H
(t

)
2.

31
16

0.
16

31
0.

14
03

2.
17

09
0.

11
92

0.
12

47
2.

27
03

0.
14

07
0.

13
16

2.
08

24
0.

11
87

0.
12

72
2.

18
50

0.
11

93
0.

12
43

2.
10

01
0.

12
48

0.
12

99
M

R
(t

)
0.

77
77

0.
01

31
0.

11
55

0.
83

79
0.

01
59

0.
12

34
0.

85
02

0.
01

82
0.

13
20

0.
82

66
0.

01
41

0.
11

65
0.

84
25

0.
01

65
0.

12
59

0.
81

61
0.

01
33

0.
11

36
25

,3
5

λ
1.

53
79

0.
04

34
0.

10
84

1.
46

39
0.

03
38

0.
09

89
1.

49
10

0.
03

52
0.

09
96

1.
43

81
0.

03
40

0.
10

04
1.

46
98

0.
03

37
0.

09
85

1.
43

43
0.

03
55

0.
10

27
R

(t
)

0.
10

90
1.

93
65

0.
92

74
0.

12
96

0.
00

19
0.

31
31

0.
13

10
1.

87
58

0.
91

27
0.

12
83

1.
88

31
0.

91
45

0.
13

30
1.

87
03

0.
91

14
0.

11
26

1.
92

65
0.

92
50

H
(t

)
1.

26
46

0.
04

08
0.

12
83

1.
19

36
0.

03
15

0.
11

66
1.

21
90

1.
26

37
0.

11
76

1.
16

96
1.

15
19

0.
11

80
1.

20
04

0.
12

04
0.

20
73

1.
15

97
0.

14
48

0.
23

12
C

H
(t

)
2.

28
79

0.
14

90
0.

13
67

2.
15

24
0.

11
34

0.
12

23
2.

24
88

0.
13

04
0.

12
89

2.
06

65
0.

11
61

0.
12

64
2.

16
62

0.
11

31
0.

12
18

2.
08

33
0.

12
09

0.
12

84
M

R
(t

)
0.

78
24

0.
01

32
0.

11
71

0.
84

15
0.

01
61

0.
12

68
0.

85
35

0.
01

83
0.

13
53

0.
83

03
0.

01
43

0.
11

98
0.

84
59

0.
01

67
0.

12
94

0.
82

00
0.

01
35

0.
11

66

60
30

,4
0

λ
1.

53
34

0.
02

80
0.

08
77

1.
48

30
0.

02
31

0.
08

11
1.

50
18

0.
02

40
0.

08
21

1.
46

49
0.

02
30

0.
08

14
1.

48
71

0.
02

31
0.

08
10

1.
46

25
0.

02
37

0.
08

26
R

(t
)

0.
10

74
1.

94
02

0.
92

84
0.

12
17

0.
00

12
0.

24
30

0.
12

25
1.

89
85

0.
91

83
0.

12
08

1.
90

32
0.

91
95

0.
12

40
1.

89
45

0.
91

74
0.

11
00

1.
93

32
0.

92
67

H
(t

)
1.

26
00

0.
02

63
0.

10
37

1.
21

17
0.

02
16

0.
09

57
1.

22
93

1.
27

62
0.

09
70

1.
19

48
1.

19
82

0.
09

59
1.

21
64

0.
10

19
0.

19
28

1.
18

82
0.

11
80

0.
21

02
C

H
(t

)
2.

28
01

0.
10

21
0.

11
30

2.
18

73
0.

08
25

0.
10

38
2.

25
35

0.
09

26
0.

10
82

2.
12

60
0.

08
18

0.
10

48
2.

19
68

0.
08

27
0.

10
36

2.
13

93
0.

08
47

0.
10

64
M

R
(t

)
0.

77
93

0.
00

87
0.

09
51

0.
81

94
0.

00
98

0.
09

85
0.

82
70

0.
01

07
0.

10
28

0.
81

22
0.

00
90

0.
09

50
0.

82
23

0.
01

01
0.

09
98

0.
80

50
0.

00
87

0.
09

36
40

,5
0

λ
1.

53
13

0.
02

85
0.

08
88

1.
48

12
0.

02
37

0.
08

21
1.

49
98

0.
02

45
0.

08
31

1.
46

32
0.

02
36

0.
08

24
1.

48
52

0.
02

37
0.

08
20

1.
46

08
0.

02
43

0.
08

36
R

(t
)

0.
10

80
1.

93
87

0.
92

80
0.

12
21

0.
00

12
0.

24
69

0.
12

30
1.

89
72

0.
91

80
0.

12
13

1.
90

20
0.

91
92

0.
12

44
1.

89
33

0.
91

71
0.

11
05

1.
93

17
0.

92
63

H
(t

)
1.

25
80

0.
02

67
0.

10
51

1.
21

00
0.

02
21

0.
09

69
1.

22
74

1.
27

25
0.

09
82

1.
19

31
1.

19
50

0.
09

71
1.

21
46

0.
10

34
0.

19
39

1.
18

66
0.

11
94

0.
21

13
C

H
(t

)
2.

26
59

0.
09

67
0.

11
14

2.
17

49
0.

08
04

0.
10

35
2.

24
03

0.
08

85
0.

10
72

2.
11

44
0.

08
12

0.
10

51
2.

18
44

0.
08

03
0.

10
33

2.
12

73
0.

08
37

0.
10

64
M

R
(t

)
0.

78
08

0.
00

90
0.

09
68

0.
82

07
0.

01
01

0.
10

01
0.

82
83

0.
01

11
0.

10
43

0.
81

35
0.

00
94

0.
09

66
0.

82
37

0.
01

04
0.

10
13

0.
80

64
0.

00
90

0.
09

52
50

,5
5

λ
1.

52
58

0.
02

63
0.

08
39

1.
47

75
0.

02
21

0.
07

91
1.

49
55

0.
02

28
0.

07
94

1.
46

01
0.

02
21

0.
08

00
1.

48
15

0.
02

21
0.

07
89

1.
45

78
0.

02
28

0.
08

12
R

(t
)

0.
10

87
1.

93
66

0.
92

75
0.

12
24

0.
00

11
0.

23
95

0.
12

33
1.

89
63

0.
91

78
0.

12
16

1.
90

09
0.

91
89

0.
12

47
1.

89
25

0.
91

69
0.

11
12

1.
92

98
0.

92
59

H
(t

)
1.

25
27

0.
02

47
0.

09
92

1.
20

64
0.

02
06

0.
09

34
1.

22
32

1.
26

16
0.

09
38

1.
19

01
1.

18
69

0.
09

42
1.

21
09

0.
10

39
0.

19
62

1.
18

38
0.

11
96

0.
21

30
C

H
(t

)
2.

25
05

0.
08

88
0.

10
47

2.
16

33
0.

07
55

0.
10

02
2.

22
60

0.
08

17
0.

10
15

2.
10

51
0.

07
75

0.
10

37
2.

17
24

0.
07

53
0.

09
97

2.
11

73
0.

07
95

0.
10

46
M

R
(t

)
0.

78
31

0.
00

83
0.

09
15

0.
82

18
0.

00
94

0.
09

69
0.

82
91

0.
01

02
0.

10
12

0.
81

48
0.

00
87

0.
09

32
0.

82
46

0.
00

97
0.

09
82

0.
80

79
0.

00
84

0.
09

15

12
0

60
,7

0
λ

1.
51

84
0.

01
36

0.
06

15
1.

49
34

0.
01

23
0.

05
87

1.
50

29
0.

01
26

0.
05

92
1.

48
41

0.
01

22
0.

05
86

1.
49

55
0.

01
23

0.
05

87
1.

48
30

0.
01

24
0.

05
90

R
(t

)
0.

10
82

1.
93

77
0.

92
79

0.
11

54
0.

00
06

0.
16

90
0.

11
58

1.
91

66
0.

92
28

0.
11

50
1.

91
89

0.
92

34
0.

11
65

1.
91

45
0.

92
23

0.
10

95
1.

93
41

0.
92

70
H

(t
)

1.
24

53
0.

01
28

0.
07

27
1.

22
14

0.
01

15
0.

06
93

1.
23

02
1.

26
77

0.
06

99
1.

21
26

1.
22

81
0.

06
92

1.
22

37
0.

08
78

0.
18

47
1.

20
94

0.
09

58
0.

19
40

C
H

(t
)

2.
23

82
0.

04
45

0.
07

54
2.

19
28

0.
04

06
0.

07
33

2.
22

55
0.

04
25

0.
07

41
2.

16
13

0.
04

09
0.

07
43

2.
19

76
0.

04
05

0.
07

32
2.

16
85

0.
04

15
0.

07
48

M
R

(t
)

0.
78

27
0.

00
45

0.
06

80
0.

80
27

0.
00

48
0.

06
85

0.
80

63
0.

00
50

0.
06

98
0.

79
92

0.
00

46
0.

06
74

0.
80

41
0.

00
48

0.
06

89
0.

79
56

0.
00

45
0.

06
70

70
,9

0
λ

1.
51

84
0.

01
36

0.
06

15
1.

49
34

0.
01

23
0.

05
87

1.
50

29
0.

01
26

0.
05

92
1.

48
41

0.
01

22
0.

05
86

1.
49

55
0.

01
23

0.
05

87
1.

48
30

0.
01

24
0.

05
90

R
(t

)
0.

10
82

1.
93

77
0.

92
79

0.
11

54
0.

00
06

0.
16

90
0.

11
58

1.
91

66
0.

92
28

0.
11

50
1.

91
89

0.
92

34
0.

11
65

1.
91

45
0.

92
23

0.
10

95
1.

93
41

0.
92

70
H

(t
)

1.
24

53
0.

01
28

0.
07

27
1.

22
14

0.
01

15
0.

06
93

1.
23

02
1.

26
77

0.
06

99
1.

21
26

1.
22

81
0.

06
92

1.
22

37
0.

08
78

0.
18

47
1.

20
94

0.
09

58
0.

19
40

C
H

(t
)

2.
24

77
0.

04
91

0.
07

91
2.

20
22

0.
04

41
0.

07
58

2.
23

53
0.

04
68

0.
07

75
2.

17
05

0.
04

36
0.

07
58

2.
20

71
0.

04
41

0.
07

57
2.

17
78

0.
04

45
0.

07
64

M
R

(t
)

0.
78

27
0.

00
45

0.
06

80
0.

80
27

0.
00

48
0.

06
85

0.
80

63
0.

00
50

0.
06

98
0.

79
92

0.
00

46
0.

06
74

0.
80

41
0.

00
48

0.
06

89
0.

79
56

0.
00

45
0.

06
70

90
,1

00
)

λ
1.

51
79

0.
01

38
0.

06
19

1.
49

30
0.

01
25

0.
05

90
1.

50
24

0.
01

27
0.

05
95

1.
48

37
0.

01
24

0.
05

89
1.

49
50

0.
01

25
0.

05
90

1.
48

25
0.

01
26

0.
05

93
R

(t
)

0.
10

83
1.

93
73

0.
92

78
0.

11
55

0.
00

06
0.

17
01

0.
11

59
1.

91
63

0.
92

27
0.

11
51

1.
91

85
0.

92
33

0.
11

67
1.

91
42

0.
92

22
0.

10
96

1.
93

38
0.

92
69

H
(t

)
1.

24
48

0.
01

29
0.

07
31

1.
22

09
0.

01
16

0.
06

97
1.

22
98

1.
26

68
0.

07
03

1.
21

22
1.

22
72

0.
06

95
1.

22
33

0.
08

82
0.

18
50

1.
20

90
0.

09
61

0.
19

43
C

H
(t

)
2.

24
93

0.
04

74
0.

07
62

2.
20

36
0.

04
22

0.
07

29
2.

23
66

0.
04

50
0.

07
44

2.
17

18
0.

04
17

0.
07

35
2.

20
84

0.
04

23
0.

07
29

2.
17

92
0.

04
25

0.
07

40
M

R
(t

)
0.

78
31

0.
00

46
0.

06
85

0.
80

30
0.

00
48

0.
06

89
0.

80
66

0.
00

51
0.

07
02

0.
79

96
0.

00
47

0.
06

78
0.

80
45

0.
00

49
0.

06
93

0.
79

59
0.

00
46

0.
06

74

AIMS Mathematics Volume 10, Issue 6, 14943–14974.



14959

Ta
bl

e
3.

V
ar

io
us

co
nfi

de
nc

e
in

te
rv

al
s

of
λ

un
de

rd
iff

er
en

tc
en

so
ri

ng
sc

he
m

es
.

n
r,

k

A
sy

m
p.

C
I

B
oo

t-
p

B
oo

t-
t

C
rI

L
B

U
B

A
L

C
P

L
B

U
B

A
L

C
P

L
B

U
B

A
L

C
P

L
B

U
B

A
L

C
P

T
1

=
1.

2,
T

2
=

1.
7

40
20

,2
5

1.
11

66
1.

97
90

0.
86

24
96

.7
50

0
1.

23
28

2.
14

57
0.

91
29

95
.4

00
0

1.
12

60
1.

97
31

0.
84

71
90

.3
50

0
1.

08
97

1.
88

48
0.

79
51

95
.0

50
0

25
,3

0
1.

11
79

1.
95

18
0.

83
39

97
.6

00
0

1.
23

08
2.

11
68

0.
88

61
94

.5
50

0
1.

13
22

1.
94

84
0.

81
62

89
.4

50
0

1.
09

23
1.

86
40

0.
77

18
95

.5
50

0

25
,3

5
1.

13
83

1.
94

37
0.

80
54

97
.8

00
0

1.
24

17
2.

09
52

0.
85

35
95

.9
50

0
1.

15
87

1.
98

91
0.

83
05

90
.0

50
0

1.
11

33
1.

86
27

0.
74

94
96

.2
00

0

60
30

,4
0

1.
18

68
1.

88
28

0.
69

60
96

.8
50

0
1.

25
68

1.
98

66
0.

72
97

94
.3

50
0

1.
19

23
1.

94
22

0.
74

99
91

.1
50

0
1.

16
53

1.
82

46
0.

65
93

95
.6

50
0

40
,5

0
1.

19
84

1.
85

42
0.

65
58

97
.9

50
0

1.
26

76
1.

94
89

0.
68

13
94

.0
00

0
1.

21
49

1.
89

47
0.

67
99

90
.4

00
0

1.
17

88
1.

80
31

0.
62

43
96

.6
50

0

50
,5

5
1.

20
55

1.
84

96
0.

64
41

97
.2

50
0

1.
26

30
1.

93
79

0.
67

48
93

.5
00

0
1.

22
10

1.
87

40
0.

65
31

91
.2

50
0

1.
18

62
1.

80
06

0.
61

43
96

.1
00

0

12
0

60
,7

0
1.

27
63

1.
76

56
0.

48
93

97
.1

50
0

1.
31

37
1.

81
47

0.
50

09
94

.3
00

0
1.

27
67

1.
79

58
0.

51
91

91
.1

00
0

1.
26

32
1.

73
94

0.
47

61
96

.4
00

0

70
,9

0
1.

27
68

1.
75

33
0.

47
66

96
.8

00
0

1.
31

60
1.

80
34

0.
48

74
92

.6
50

0
1.

27
98

1.
76

71
0.

48
73

90
.4

00
0

1.
26

42
1.

72
85

0.
46

43
96

.0
00

0

90
,1

00
1.

28
60

1.
74

48
0.

45
88

97
.4

00
0

1.
32

34
1.

79
09

0.
46

76
93

.7
50

0
1.

29
34

1.
74

51
0.

45
16

91
.1

50
0

1.
27

43
1.

72
20

0.
44

77
96

.6
50

0

T
1

=
1.

9,
T

2
=

2.
4

40
20

,2
5

1.
15

03
1.

94
14

0.
79

11
97

.3
50

0
1.

26
57

2.
09

18
0.

82
61

96
.0

50
0

1.
16

31
1.

91
14

0.
74

83
88

.8
50

0
1.

12
53

1.
86

36
0.

73
82

95
.9

00
0

25
,3

0
1.

15
02

1.
94

11
0.

79
09

97
.2

50
0

1.
26

16
2.

09
14

0.
82

98
95

.9
50

0
1.

16
31

1.
92

23
0.

75
92

89
.2

00
0

1.
12

53
1.

86
33

0.
73

81
95

.8
00

0

25
,3

5
1.

14
77

1.
92

81
0.

78
04

97
.4

00
0

1.
25

97
2.

07
53

0.
81

56
94

.9
00

0
1.

16
35

1.
90

81
0.

74
46

88
.6

00
0

1.
12

33
1.

85
24

0.
72

91
95

.5
00

0

60
30

,4
0

1.
21

33
1.

85
35

0.
64

02
98

.0
50

0
1.

29
07

1.
94

75
0.

65
69

95
.0

00
0

1.
22

14
1.

83
73

0.
61

59
89

.5
50

0
1.

19
40

1.
80

51
0.

61
11

96
.9

00
0

40
,5

0
1.

21
22

1.
85

03
0.

63
81

97
.4

00
0

1.
28

56
1.

94
39

0.
65

83
94

.6
50

0
1.

22
09

1.
84

56
0.

62
47

89
.3

00
0

1.
19

31
1.

80
23

0.
60

93
96

.3
00

0

50
,5

5
1.

21
28

1.
83

89
0.

62
62

97
.8

00
0

1.
28

22
1.

92
75

0.
64

54
94

.3
00

0
1.

22
61

1.
83

84
0.

61
23

89
.9

00
0

1.
19

43
1.

79
28

0.
59

85
96

.7
00

0

12
0

60
,7

0
1.

29
44

1.
74

23
0.

44
78

97
.3

00
0

1.
33

49
1.

78
91

0.
45

42
94

.4
00

0
1.

29
53

1.
73

38
0.

43
85

90
.1

00
0

1.
28

32
1.

72
08

0.
43

76
96

.5
00

0

70
,9

0
1.

29
44

1.
74

23
0.

44
78

97
.3

00
0

1.
33

41
1.

78
91

0.
45

50
94

.4
00

0
1.

29
53

1.
73

55
0.

44
02

90
.0

50
0

1.
28

32
1.

72
08

0.
43

76
96

.5
00

0

90
,1

00
1.

29
41

1.
74

16
0.

44
74

97
.1

00
0

1.
33

10
1.

78
82

0.
45

73
94

.2
00

0
1.

29
52

1.
74

14
0.

44
62

91
.0

00
0

1.
28

29
1.

72
01

0.
43

73
96

.0
50

0

AIMS Mathematics Volume 10, Issue 6, 14943–14974.



14960

Table 4. Various confidence intervals of reliability measures at T1 = 1.9,T2 = 2.4.

Asymp. CI CrI

n r, k Par. LB UB AL CP LB UB AL CP

40 20,25 R(t) 0.0260 0.1905 0.1645 91.5000 0.0586 0.2385 0.1799 99.1000
H(t) 0.8568 1.6918 0.8350 96.7500 0.8353 1.6021 0.7668 95.0500

CH(t) 1.5100 3.1207 1.6107 97.4000 1.4767 2.9492 1.4726 95.6000
MR(t) 0.5338 1.0258 0.4920 93.6500 0.6224 1.1602 0.5377 99.1000

25,30 R(t) 0.0297 0.1912 0.1614 91.7000 0.0609 0.2365 0.1756 99.1000
H(t) 0.8582 1.6654 0.8072 97.3500 0.8377 1.5819 0.7442 95.5500

CH(t) 1.5063 3.0575 1.5512 96.9000 1.4747 2.9005 1.4259 95.5000
MR(t) 0.5459 1.0268 0.4809 93.8000 0.6302 1.1528 0.5226 99.1000

25,35 R(t) 0.0340 0.1839 0.1500 91.6500 0.0616 0.2235 0.1619 99.2000
H(t) 0.8869 1.6424 0.7554 97.3000 0.8669 1.5705 0.7036 95.5000

CH(t) 1.5377 3.0328 1.4951 96.8500 1.5058 2.8885 1.3827 95.8500
MR(t) 0.5590 1.0058 0.4467 93.6000 0.6334 1.1141 0.4807 99.2000

60 30,40 R(t) 0.0456 0.1693 0.1237 92.6500 0.0653 0.1960 0.1307 98.8000
H(t) 0.9502 1.5699 0.6197 97.9000 0.9339 1.5241 0.5902 96.9000

CH(t) 1.6255 2.9172 1.2917 97.0000 1.5971 2.8144 1.2174 95.6500
MR(t) 0.5959 0.9626 0.3667 94.5500 0.6480 1.0337 0.3857 98.8000

40,50 R(t) 0.0461 0.1698 0.1237 92.7000 0.0658 0.1964 0.1306 98.8000
H(t) 0.9492 1.5668 0.6176 97.3500 0.9330 1.5214 0.5884 96.3000

CH(t) 1.6467 2.8611 1.2144 97.3000 1.6195 2.7710 1.1516 95.9500
MR(t) 0.5975 0.9641 0.3665 94.5500 0.6495 1.0348 0.3853 98.8000

50,55 R(t) 0.0476 0.1698 0.1223 93.3000 0.0667 0.1955 0.1288 98.8000
H(t) 0.9497 1.5557 0.6060 97.7500 0.9341 1.5121 0.5780 96.7000

CH(t) 1.6590 2.8517 1.1926 97.0000 1.6333 2.7656 1.1323 95.6000
MR(t) 0.6024 0.9638 0.3615 95.0000 0.6529 1.0321 0.3793 98.8000

120 60,70 R(t) 0.0640 0.1524 0.0885 94.0500 0.0745 0.1655 0.0910 98.3500
H(t) 1.0286 1.4619 0.4333 97.2500 1.0188 1.4417 0.4229 96.5000

CH(t) 1.7925 2.6993 0.9068 97.1000 1.7738 2.6535 0.8797 95.9000
MR(t) 0.6527 0.9127 0.2600 95.5000 0.6798 0.9465 0.2667 98.3500

70,90 R(t) 0.0640 0.1524 0.0885 94.0500 0.0745 0.1655 0.0910 98.3500
H(t) 1.0286 1.4619 0.4333 97.2500 1.0188 1.4417 0.4229 96.5000

CH(t) 1.7937 2.6767 0.8830 96.8000 1.7755 2.6330 0.8576 96.1500
MR(t) 0.6527 0.9127 0.2600 95.5000 0.6798 0.9465 0.2667 98.3500

90,100 R(t) 0.0641 0.1525 0.0884 94.0500 0.0746 0.1656 0.0910 98.3500
H(t) 1.0283 1.4612 0.4329 97.0500 1.0186 1.4411 0.4226 96.0500

CH(t) 1.8148 2.6667 0.8519 97.2500 1.7974 2.6275 0.8302 96.6500
MR(t) 0.6531 0.9130 0.2600 95.5000 0.6802 0.9468 0.2666 98.3500
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Table 5. Various confidence intervals of reliability measures at T1 = 1.2,T2 = 1.7.

Asymp. CI CrI

n r, k Par. LB UB AL CP LB UB AL CP

40 20,25 R(t) 0.0259 0.1901 0.1642 91.1500 0.0585 0.2381 0.1796 98.9500
H(t) 0.8580 1.6938 0.8358 96.8500 0.8364 1.6035 0.7671 95.0500

CH(t) 1.5590 3.0284 1.4695 97.8000 1.5273 2.8901 1.3627 96.8000
MR(t) 0.5334 1.0248 0.4915 93.4500 0.6221 1.1591 0.5371 98.9500

25,30 R(t) 0.0295 0.1905 0.1610 91.5000 0.0606 0.2358 0.1752 99.0000
H(t) 0.8601 1.6686 0.8085 97.3000 0.8394 1.5846 0.7452 95.5000

CH(t) 1.5724 3.0509 1.4786 97.4000 1.5393 2.9077 1.3684 96.2000
MR(t) 0.5450 1.0249 0.4800 93.6500 0.6293 1.1508 0.5215 99.0000

25,35 R(t) 0.0310 0.1852 0.1542 93.1500 0.0601 0.2273 0.1672 99.4500
H(t) 0.8777 1.6575 0.7797 97.6500 0.8575 1.5805 0.7230 96.2000

CH(t) 1.5615 3.0144 1.4530 97.1500 1.5302 2.8789 1.3487 95.9000
MR(t) 0.5502 1.0099 0.4598 94.6000 0.6288 1.1257 0.4969 99.4500

60 30,40 R(t) 0.0409 0.1756 0.1347 92.3000 0.0638 0.2073 0.1435 98.8000
H(t) 0.9247 1.5984 0.6737 96.7000 0.9067 1.5432 0.6365 95.6500

CH(t) 1.6840 2.8761 1.1921 97.5500 1.6565 2.7899 1.1334 96.6500
MR(t) 0.5811 0.9811 0.4001 94.1500 0.6420 1.0667 0.4247 98.8000

40,50 R(t) 0.0448 0.1729 0.1281 93.8000 0.0656 0.2012 0.1356 99.0000
H(t) 0.9359 1.5705 0.6346 97.9000 0.9194 1.5221 0.6027 96.6500

CH(t) 1.6742 2.8576 1.1834 97.1000 1.6476 2.7737 1.1261 95.9500
MR(t) 0.5940 0.9729 0.3789 95.0500 0.6490 1.0485 0.3995 99.0000

50,55 R(t) 0.0461 0.1717 0.1256 93.0000 0.0661 0.1988 0.1327 98.8500
H(t) 0.9427 1.5661 0.6233 97.2000 0.9265 1.5197 0.5932 96.1000

CH(t) 1.6712 2.8298 1.1586 97.3000 1.6462 2.7495 1.1033 95.8500
MR(t) 0.5974 0.9692 0.3718 94.8500 0.6505 1.0418 0.3913 98.8500

120 60,70 R(t) 0.0599 0.1564 0.0965 93.6500 0.0723 0.1721 0.0998 98.4000
H(t) 0.9998 1.4599 0.4601 96.4000 1.0111 1.4845 0.4734 97.1000

CH(t) 1.8236 2.6528 0.8292 97.7000 1.8069 2.6149 0.8080 97.3000
MR(t) 0.6725 0.9653 0.2928 98.4000 0.6404 0.9245 0.2841 94.4000

70,90 R(t) 0.0620 0.1566 0.0946 93.8500 0.0738 0.1715 0.0977 98.4000
H(t) 1.0116 1.4726 0.4611 96.7500 1.0007 1.4493 0.4486 96.0000

CH(t) 1.8317 2.6638 0.8321 97.5000 1.8147 2.6263 0.8116 97.0500
MR(t) 0.6466 0.9246 0.2780 94.6000 0.6773 0.9635 0.2862 98.4000

90,100 R(t) 0.0633 0.1543 0.0910 94.8000 0.0744 0.1681 0.0937 98.7000
H(t) 1.0205 1.4643 0.4439 97.4000 1.0103 1.4430 0.4327 96.6500

CH(t) 1.8333 2.6653 0.8320 98.1000 1.8164 2.6273 0.8109 97.3500
MR(t) 0.6508 0.9181 0.2673 95.7000 0.6794 0.9539 0.2745 98.7000
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7. Application

This section employs two datasets to fit the Lindley distribution and juxtaposes the findings with an
analysis of alternative lifetime distributions from previous works. Subsequent to fitting the data with
the Lindley distribution, the results were juxtaposed with those derived from alternative probability
distributions defined within the unit interval, utilizing the Akaike information criterion (AIC), the
corrected Akaike information criterion (AICC), the consistent Akaike information criterion (CAIC),
the Bayesian information criterion (BIC), and the MLE. Furthermore, the Kolmogorov–Smirnov (KS)
test and the associated p-value were employed to evaluate the models’ goodness-of-fit at significance
levels of 0.01, 0.1, and 0.05, respectively, as detailed below.

- AIC = 2k − 2logl,
- AICC = AIC +

2k(k+1)
n−k−1 ,

- BIC = klogn − 2logl,
- HQIC = 2klog(logn) − 2logl,
- CAIC = −2logl + k(logn + 1).
In this context, logl represents the estimated maximum log-likelihood, k signifies the number of

parameters, and n indicates the number of observations.
Our objective is to assess the fit of the Lindley distribution and compare its statistical properties

to those of alternative models under both datasets. A comprehensive comparison will be provided in
subsequent sections, focusing on parameter estimates and goodness-of-fit measures for each data set.
In this study, Burr III (B-III), bathtub shape (BS), gamma (Gam), exponential (Ex), Gumbe-l (Gum-
1), Gumbel-2 (Gum-2), Gompertz (Gom), Weibull (W), Xgamma (XG), XLindley (XL), IXgamma
(IXG), Lomax (Lx), QWeibull (QW), inverse Weibull (IW), inverted modified Lindley (IML), and
Nadarajah-Haghighi (NH) are examined and compared to the Lindley (L) distribution. These models
have been extensively explored in existing literature, with numerous references detailing their statistical
characteristics and applications in reliability analysis, survival modeling, and extreme value theory.
The cdfs of the compared distributions that are used to compare with the Lindley are as follows:

• B-III Distribution: F(x) = (1 + x−α)−λ; x, λ, α > 0
• BS Distribution: F(x) = 1 − exp

[(
(1 − e(xλ))α

)]
; x, λ, α > 0

• Gam Distribution: F(x) =
∫ x

0
λ−α tα−1

Γ(α) exp(−t/λ)dt; x, λ, α > 0
• Ex Distribution: F(x) = 1 − exp(−λx); x, λ > 0
• Gum-1 Distribution: F(x) = exp

[
− exp

(
− x−α

λ

)]
; x, λ, α > 0

• Gum-2 Distribution: F(x) = exp [(−λx−α)] ; x, λ, α > 0
• Gom Distribution: F(x) = 1 −

[
λα−1(eαx − 1)

]
; x, λ, α > 0

• W Distribution: F(x) = 1 − exp(−λxα); x, λ, α > 0
• XG Distribution: F(x) = 1 −

[(
1 + λ + λx + 2−1 λ2x2

)
(1 + λ)−1e−λx

]
; x, λ > 0

• XL Distribution: F(x) = 1 − [1 + λx/(1 + λ)2] exp(−λx); x, λ > 0
• IXG Distribution: F(x) =

[
1 + λ

(1+λ)x + λ2

2(1+λ)x2

]
exp(−λx−1); x, λ > 0

• Lx Distribution: F(x) = 1 −
(

λ
λ+x

)α
; x, λ, α > 0

• QW Distribution: F(x) = 1 −
[
1 − (1 − q)λxα

](2−q)(1−q)−1
; x, λ, α > 0, 1 < q < 2

• IW Distribution: F(x) = exp(−λx−α); x, λ, α > 0
• IML Distribution: F(x) = 1 −

[(
1 + λ + λ x−1

)
exp(−λ x−1)

]
; x, λ > 0
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• NH Distribution: F(x) = 1 − exp [1 − (1 + xλ)α] ; x, λ, α > 0

7.1. Data set I: Medical survival data

This data details the duration (in days), as illustrated in Table 6, from remission to relapse for 51
patients diagnosed with acute non-lymphoblastic leukaemia. This dataset was utilized in the analysis
conducted by Pak and Ghitany [32]:

Table 6. Times (in days) from remission to relapse for patients with acute non-lymphoblastic
leukaemia.

304 273 955 642 239 269 230 534 197 1160 24 697 57 395
284 64 209 90 82 89 111 117 128 143 148 152 166 171
186 191 223 247 254 258 264 270 332 393 487 510 516 518
518 608 46 57 304 341 294 65 90

Figure 4 presents the exploratory data analysis for dataset I, which includes a histogram, quantile-
quantile (Q-Q) plot, boxplot, and violin plot illustrating the duration from remission to relapse for
patients diagnosed with acute non-lymphoblastic leukaemia. Table 7 presents the model’s goodness
of fit for data set I. In contrast, Figure 5 presents the estimated pdf, cdf, cumulative hazard plots, and
Profile Log-Likelihood Plot of lambda. Meanwhile, Figure 6 displays the Q-Q graphs of the calculated
densities. Figures 7 and 8 show MCMC diagnostics under two censoring schemes for dataset I. At the
same time, Table 8 shows evaluating ML and Bayesian estimates for λ,R(t),H(t),CH(t), and MR(t)
with censoring data set I. LINEX1/2 denote LINEX loss function with h = ∓1.5; GE1/2 denote GE
loss function with q = ∓1.5.
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Figure 4. Exploratory data analysis: Histogram, Q-Q plot, boxplot, and violin plot for data
set I.
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Table 7. Model fit statistics and p-values for additional distributions data set I.

Models AIC AICC BIC HQIC CAIC KS Stat p-value

L 673.9641 674.0457 675.8959 674.7023 676.8959 0.08669 0.83800
XL 673.9939 674.0756 675.9258 674.7321 676.9258 0.08673 0.83764
Gam 675.7071 675.9571 679.5707 677.1835 681.5707 0.08746 0.83017
Gum-1 681.8777 682.1277 685.7441 683.3542 687.7441 0.09328 0.76657
XG 681.4427 681.5243 683.3745 682.1809 684.3745 0.12464 0.40652
B-III 689.0841 689.3341 692.9477 690.5605 694.9477 0.12567 0.39620
IW 689.1587 689.4337 693.0474 690.6601 695.0474 0.12645 0.38861
Gum-2 689.1587 689.4337 693.0474 690.6601 695.0474 0.12645 0.38861
W 682.9083 682.9083 688.5219 684.1347 688.5219 0.13102 0.36296
QW 684.7192 685.2299 690.5147 686.9338 690.5147 0.12982 0.35640
BS 683.2922 683.2922 688.9058 685.5186 690.9058 0.13191 0.35650
NH 683.4671 683.7171 687.3308 684.9436 689.3308 0.13442 0.31542
Ex 679.0292 679.0292 683.6429 680.2557 686.0209 0.13817 0.28453
Lx 685.1126 685.3626 688.9763 686.5891 690.9763 0.13817 0.28453
IML 689.2911 689.2911 691.2229 690.0293 692.2229 0.15602 0.16691
IXG 689.3187 689.4004 691.2505 690.0569 692.2505 0.15764 0.15847
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Figure 5. Plots for the fit of dataset I: (a) Estimated PDFs; (b) Reliability plots; (c)
Cumulative Hazard plots; (d) Profile Log-Likelihood plot of λ.
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Figure 6. The Q-Q plots of the different models for the data set I.
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Figure 7. MCMC diagnostics: Trace, density, and convergence for dataset I ( r = 30, k =

40, T1 = 150, T2 = 250).
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Figure 8. MCMC diagnostics: Trace, density, and convergence for dataset I ( r = 30, k = 40, T1 = 300, T2 =

600).

Table 8. Evaluating ML and Bayesian performance for λ, R(t), H(t), CH(t) and MR(t) with censoring data
I.

ML Bayesian Asymp. CI Boot-p Boot-t CrI

r, k T1,T2 Par. SEL LINEX1 LINEX2 GE1 GE2 AL AL AL AL

20,30 150 ,250 λ 0.0070 0.0071 0.0071 0.0071 0.0072 0.0070 0.0034 0.0035 0.0033 0.0036
R(t) 0.3776 0.3733 0.3768 0.3698 0.3764 0.3569 0.2635 - - 0.2657
H(t) 0.0048 0.0049 0.0049 0.0049 0.0049 0.0047 0.0031 - - 0.0032

CH(t) 0.9740 1.0027 1.0302 0.9770 1.0114 0.9581 0.6979 - - 0.7334
MR(t) 188.7380 188.9850 329.5878 115.4508 190.0877 183.7283 107.3486 - - 112.0889

300 ,600 λ 0.0074 0.0076 0.0076 0.0076 0.0076 0.0075 0.0033 0.0038 0.0031 0.0033
R(t) 0.3454 0.3382 0.3408 0.3356 0.3408 0.3249 0.2360 - - 0.2304
H(t) 0.0051 0.0053 0.0053 0.0053 0.0053 0.0052 0.0030 - - 0.0030

CH(t) 1.0630 1.0996 1.1243 1.0765 1.1068 1.0637 0.6833 - - 0.6989
MR(t) 176.0349 174.4705 287.5407 115.2206 175.2177 170.8242 90.4448 - - 89.9263

30,40 150 ,250 λ 0.0072 0.0073 0.0073 0.0073 0.0074 0.0072 0.0034 0.0030 0.0031 0.0034
R(t) 0.3598 0.3567 0.3597 0.3537 0.3595 0.3421 0.2486 - - 0.2430
H(t) 0.0050 0.0051 0.0051 0.0051 0.0051 0.0049 0.0030 - - 0.0031

CH(t) 1.0222 1.0471 1.0727 1.0231 1.0549 1.0076 0.6910 - - 0.7006
MR(t) 181.6148 181.9256 318.9812 112.2760 182.8243 177.5811 97.8263 - - 98.3764

300 ,600 λ 0.0073 0.0074 0.0074 0.0074 0.0074 0.0072 0.0030 0.0027 0.0032 0.0032
R(t) 0.3553 0.3551 0.3578 0.3525 0.3576 0.3426 0.2224 - - 0.2287
H(t) 0.0050 0.0051 0.0051 0.0051 0.0051 0.0049 0.0027 - - 0.0028

CH(t) 1.0348 1.0494 1.0712 1.0284 1.0562 1.0147 0.6261 - - 0.6515
MR(t) 179.8582 181.1165 292.1560 129.9057 181.9038 177.3405 86.7939 - - 92.7469

40,50 150 ,250 λ 0.0073 0.0074 0.0074 0.0074 0.0074 0.0073 0.0030 0.0026 0.0028 0.0031
R(t) 0.3553 0.3550 0.3575 0.3526 0.3573 0.3433 0.2224 - - 0.2228
H(t) 0.0050 0.0051 0.0051 0.0051 0.0051 0.0049 0.0027 - - 0.0028

CH(t) 1.0348 1.0488 1.0692 1.0291 1.0551 1.0158 0.6261 - - 0.6355
MR(t) 179.8582 181.0147 349.1234 125.0204 181.7683 177.4600 86.7939 - - 89.9369

300 ,600 λ 0.0071 0.0071 0.0071 0.0071 0.0071 0.0070 0.0028 0.0024 0.0026 0.0029
R(t) 0.3685 0.3708 0.3731 0.3686 0.3728 0.3605 0.2122 - - 0.2152
H(t) 0.0049 0.0049 0.0049 0.0049 0.0049 0.0048 0.0025 - - 0.0026

CH(t) 0.9984 1.0032 1.0203 0.9867 1.0088 0.9751 0.5758 - - 0.5890
MR(t) 185.0611 187.2099 290.5867 136.4770 187.8874 183.9091 84.8867 - - 89.1814
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7.2. Data set II: Biological lifetime data

This data was presented by Okash et al. [33], which comprises the survival times (in days) of guinea
pigs subjected to different dosages of virulent tubercle bacilli. This data set, as illustrated in Table 9,
contains 64 observations and has been examined in the research conducted by Haj Ahmad et al. [34].

Figure 9 displays the exploratory data analysis for dataset II, which includes a histogram, Q-Q plot,
boxplot, and violin plot of the survival times of guinea pigs exposed to virulent tubercle bacilli. Table
10 shows the model’s goodness of fit for dataset I. But, Figure 10 presents the estimated pdf, cdf,
cumulative hazard plots, and profile log-likelihood plot of lambda. While Figure 11 displays the Q-Q
graphs of the calculated densities. Figures 12 and 13 show MCMC diagnostics under two censoring
schemes for dataset II. At the same time, Table 11 shows evaluating ML and Bayesian estimates for
λ,R(t),H(t),CH(t), and MR(t) with censoring data II.

Table 9. Survival times (in days) of guinea pigs exposed to virulent tubercle bacilli.

12 15 22 24 24 32 32 33 38 38 43 44 48 52 53 54
55 56 57 58 58 59 60 60 60 61 62 63 65 65 67 68
70 72 73 75 76 76 81 83 85 87 91 95 96 98 99 109
121 127 129 131 143 146 146 175 211 233 258 258 263 297 341 341
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Figure 9. Exploratory data analysis: Histogram, Q-Q plot, boxplot, and violin plot for data
set II.
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Table 10. Model fit statistics and p-values for all distributions based on data set II.

Models AIC AICC BIC HQIC CAIC KS Stat p-value

L 699.3687 699.4333 701.5276 700.2129 702.5276 0.13041 0.22650
XL 699.8017 699.8662 701.9606 700.6522 702.9606 0.13042 0.22635
Gam 700.7982 700.9949 705.1160 702.4992 707.1160 0.13755 0.17740
Gum-1 707.1215 707.3120 711.4393 708.8223 713.4393 0.15008 0.11192
W 707.6603 707.8570 711.9738 709.3613 713.9780 0.15071 0.10920
B-III 705.3836 705.5803 709.7014 707.0846 711.7014 0.15405 0.09588
IW 705.5414 705.7381 709.8592 707.2424 711.8592 0.15495 0.09255
Gum-2 705.5414 705.7381 709.8592 707.2424 711.8592 0.15495 0.09255
Gom 714.2821 714.4788 718.3934 715.9334 720.5998 0.16041 0.07506
QW 708.3382 708.7382 714.8149 710.8897 717.8149 0.16477 0.06192
BS 720.0061 720.2029 724.3239 721.7077 726.3239 0.17281 0.04375
XG 703.8040 703.8685 705.9629 704.6545 706.9629 0.17502 0.03964
NH 713.7876 713.7876 718.1054 715.4868 720.1054 0.17590 0.03797
IML 715.1596 715.2241 717.3184 716.0100 718.3184 0.18840 0.02128
IXG 715.8512 715.9157 718.0100 716.7016 719.0100 0.19316 0.01687
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Figure 10. Plots for the fit of dataset II: (a) Estimated PDFs; (b) Reliability plots; (c)
Cumulative hazard plots; (d) Profile log-likelihood plot of λ.
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Figure 11. The Q-Q plots of the different models for the data set II.
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Figure 12. MCMC diagnostics: Trace, density, and convergence for dataset II ( r = 35, k =

45, T1 = 50, T2 = 100).
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Figure 13. MCMC diagnostics: Trace, density, and convergence for dataset II ( r = 35, k =

45, T1 = 150, T2 = 300).

Table 11. Evaluating ML and Bayesian performance for λ, R(t), H(t), CH(t) and MR(t) with censoring data
II.

ML Bayesian Asymp. CI Boot-p Boot-t CrI

r, k T1,T2 Par. SEL LINEX1 LINEX2 GE1 GE2 AL AL AL AL

25,35 50, 100 λ 0.0224 0.0228 0.0228 0.0228 0.0229 0.0225 0.0097 0.0100 0.0099 0.0098
R(t) 0.0091 0.0099 0.0100 0.0099 0.0109 0.0057 0.0232 - - 0.0251
H(t) 0.0195 0.0199 0.0199 0.0199 0.0200 0.0196 0.0096 - - 0.0096

CH(t) 4.6990 4.8122 5.1651 4.5188 4.8342 4.7018 2.5502 - - 2.5623
MR(t) 50.3756 50.0703 68.7021 37.4463 50.2521 49.1840 24.0436 - - 23.9105

150, 300 λ 0.0224 0.0226 0.0226 0.0226 0.0227 0.0224 0.0082 0.0082 0.0080 0.0081
R(t) 0.0092 0.0099 0.0099 0.0099 0.0106 0.0068 0.0196 - - 0.0206
H(t) 0.0195 0.0197 0.0197 0.0197 0.0198 0.0195 0.0080 - - 0.0080

CH(t) 4.6929 4.7591 4.9978 4.5507 4.7747 4.6813 2.1384 - - 2.1315
MR(t) 50.4330 50.3451 66.1244 40.8823 50.4742 49.7090 20.2090 - - 20.0369

35,45 50, 100 λ 0.0230 0.0234 0.0234 0.0234 0.0234 0.0231 0.0091 0.0127 0.0066 0.0090
R(t) 0.0078 0.0084 0.0084 0.0084 0.0091 0.0053 0.0185 - - 0.0195
H(t) 0.0201 0.0205 0.0205 0.0205 0.0205 0.0202 0.0089 - - 0.0088

CH(t) 4.8551 4.9545 5.2485 4.6995 4.9729 4.8625 2.3793 - - 2.3650
MR(t) 48.9467 48.6638 69.8521 38.7486 48.8067 47.9636 21.1301 - - 20.7312

150, 300 λ 0.0224 0.0226 0.0226 0.0226 0.0227 0.0224 0.0082 0.0095 0.0077 0.0083
R(t) 0.0092 0.0100 0.0100 0.0099 0.0107 0.0068 0.0196 - - 0.0217
H(t) 0.0195 0.0197 0.0197 0.0197 0.0198 0.0195 0.0080 - - 0.0081

CH(t) 4.6929 4.7585 4.9953 4.5367 4.7746 4.6766 2.1384 - - 2.1684
MR(t) 50.4330 50.3776 71.5722 41.3365 50.5147 49.7113 20.2090 - - 20.6182

45,55 50, 100 λ 0.0233 0.0236 0.0236 0.0236 0.0237 0.0233 0.0090 0.0128 0.0099 0.0091
R(t) 0.0071 0.0079 0.0079 0.0079 0.0086 0.0049 0.0170 - - 0.0189
H(t) 0.0204 0.0207 0.0207 0.0207 0.0208 0.0204 0.0089 - - 0.0090

CH(t) 4.9416 5.0166 5.3149 4.7572 5.0350 4.9239 2.3787 - - 2.4034
MR(t) 48.1909 48.1297 66.2535 38.6430 48.2703 47.4402 20.4527 - - 20.6487

150, 300 λ 0.0224 0.0226 0.0226 0.0226 0.0227 0.0224 0.0082 0.0074 0.0079 0.0086
R(t) 0.0092 0.0100 0.0100 0.0099 0.0107 0.0066 0.0196 - - 0.0220
H(t) 0.0195 0.0198 0.0198 0.0198 0.0198 0.0195 0.0080 - - 0.0084

CH(t) 4.6929 4.7627 5.0186 4.5383 4.7794 4.6790 2.1384 - - 2.2447
MR(t) 50.4330 50.3514 66.7191 39.1555 50.4906 49.6686 20.2090 - - 21.1253
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8. Concluding remarks

This study analyzes UHCS statistical conclusions for the one-parameter Lindley distribution. We
calculated point and interval estimates for model parameters, reliability, hazard rate, cumulative
hazard, and mean residual life functions using classical and Bayesian methods. In addition to
maximum likelihood point estimates, the approximation and bootstrap confidence intervals for the
parameters are obtained using their asymptotic properties. The delta technique estimates reliability,
hazard rate, cumulative hazard, and mean residual life function variances to provide intervals.
Squared error, LINEX, and general entropy loss functions are used to generate Bayesian estimates
utilizing the gamma prior distribution and previous knowledge of the unknown parameter. One cannot
directly calculate the posterior distribution. Thus, Markov Chain Monte Carlo is used to obtain point
estimates and maximum posterior density credible ranges. A simulation and application test the
approaches’ efficacy and adaptability.

The UHCS plan increases traditional by extending an experiment beyond a defined inspection
interval if a few failures are observed. According to simulation results, Lindley parameters should be
estimated using Bayesian methods with UHCS data. The Lindley model fit acute non-lymphoblastic
leukemia data and guinea pig survival durations (in days) subjected to varied dosages of virulent
tubercle bacilli better than several established models. Future research may use the maximum product
of spacing approach with Bayesian estimation to estimate the Lindley distribution using the proposed
censoring strategy and compare the findings to current work. It can also examine Bayesian estimating
results with different loss functions. Future work could estimate Lindley distribution information
measures under the suggested filtering technique using established information measure
methodologies. For further information on these methods and estimation, see Nassr et al. [35],
El-Saeed et al. [36], Alawady et al. [37], Barakat et al. [38], and Husseiny et al. [39].
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