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Abstract: Unified hybrid censored sampling results from the need to effectively evaluate survival
data impacted by different censoring techniques, enabling researchers to use partial information and
lower bias in parameter estimates. This study employs unified hybrid censored samples to examine
the maximum likelihood and Bayesian estimation methods for unknown parameters of the Lindley
distribution, encompassing the reliability function, hazard rate function, cumulative hazard function,
and mean residual life. Initially, we estimate the model parameters via the maximum likelihood
method. We also examine bootstrapped confidence intervals and asymptotic confidence intervals for
unknown parameters of the Lindley distribution. We also derive the confidence interval for the mean
residual life, the hazard rate function, the cumulative hazard function, and the reliability function.
Moreover, using flexible gamma priors for parameters combined with a non-informative prior yields
Bayes estimators based on the principles of squared error, linear exponential, and general entropy loss
functions. Consequently, we identify the corresponding highest posterior density credible intervals for
unknown parameters, the reliability function, the hazard rate function, the cumulative hazard function,
and the mean residual lifetime. Using numerous criteria, Monte Carlo simulations help evaluate the
accuracy of the given estimations. We also assess sampling techniques across different rival censoring
systems, including bootstrap and censored samples. Ultimately, we investigated a medical data set to
show the useful value of the suggested approaches. The numerical results confirm the efficiency of our
proposed approaches.
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1. Introduction

Unified hybrid censored sampling (UHCS) has arisen as a remedy for numerous obstacles faced in
data collecting and analysis, especially in the context of incomplete or censored data. In numerous
practical situations, acquiring comprehensive datasets is either unrealistic or unattainable due to
limitations such as time, expense, or external factors like equipment malfunctions or participant
attrition.  Conventional censored sampling methods, like Type I (time-based) and Type II
(failure-based), although successful in specific scenarios, frequently prove inadequate when
confronted with the intricacies of contemporary studies. UHCS mitigates these restrictions by
incorporating many censoring techniques into a cohesive framework, enhancing both flexibility and
efficiency. A significant issue contributing to the adoption of UHCS is the unpredictability of
real-world data acquisition. In reliability testing, certain items may break prematurely, whilst others
may endure significantly longer than anticipated, complicating the establishment of a definite time
frame (Type I) or a predetermined number of failures (Type II). Hybrid censoring, integrating
elements from both methodologies, offers limited alleviation but remains deficient in the adaptability
necessary for highly changeable situations. UHCS enhances this by providing a more holistic
approach that can be customized to the particular requirements of a study, reconciling the limitations
of time and sample size. A further problem pertains to the inefficacy of resource usage unconventional
methods. Type I censoring frequently necessitates the continuation of an experiment until a
predetermined time, despite the collection of adequate data for analysis. Likewise, Type Il censoring
can extend a research needlessly to achieve a predetermined number of failures. UHCS mitigates
these inefficiencies by permitting the cessation of trials upon the fulfillment of predetermined
criteria—whether temporal, failure-related, or a combination thereof—thus preserving resources
while maintaining result integrity.

The primary distinction between UHCS and alternative censored sampling techniques is its
adaptability and breadth. Conventional censoring techniques are tailored for particular scenarios and
may find it challenging to adjust to unforeseen alterations during data acquisition. UHCS offers a
cohesive architecture capable of seamlessly integrating various types of censorship, enhancing its
versatility for dynamic real-world applications. In medical research, UHCS can accommodate
fluctuating dropout rates, premature terminations, and varied follow-up periods, hence assuring
optimal utilization of all available data. Statistically, UHCS distinguishes itself in its methodology for
parameter estimation and model fitting. Integrating data from several censoring systems diminishes
bias and enhances the accuracy of estimates. Conventional approaches may overlook partially
censored observations or neglect their influence on the research, resulting in diminished accuracy of
conclusions. UHCS guarantees that even partial data significantly contributes to the whole analysis,
hence augmenting the trustworthiness of statistical judgments.

Chandrasekar et al. [1] categorize hybrid censored approaches into Type-I HCS and Type-II HCS.
Unlike Type-II HCS, which may necessitate an extended duration to ascertain the minimum number
of failures, Type-I HCS, for example, may yield several failure instances prior to the termination time.
Consequently, these censored sampling methodologies have been enhanced with the incorporation of
two expansions referred to as generalized Type-I and Type-II HCS. Chandrasekar et al. [1] proposed
two generalized HCSs to address these issues: ensuring the quantity of failures and establishing a
temporal limit for the experimental phase. These aimed to mitigate the intrinsic limitations of Type-I
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and Type-II HCSs. Balakrishnan et al. [2] integrated generalized Type-1 and Type-II HCS approaches
to develop a UHCS. It offers enhanced adaptability in comparison to Type I and 11 HCS.

Censored data are essential in medical research, as researchers are unable to evaluate each
individual’s entire lifespan in a longitudinal study due to temporal and financial limitations. Due to
the persistent absence of comprehensive data, censoring algorithms exist that maximize both time and
resources. Balakrishnan et al. [2] characterize UHCS as an amalgamation of generalized Type-1 HCS
and generalized Type-II HCS, which can be articulated as follows. Examine the assessment of n
identical units, where the lifespan of each unit is governed by independent, identically distributed
(i.i.d) variables. Let r and k be integers inside the set {1,2,...,n}, such that r < k < n, and let 7| and
T, represent times in the interval (0, ). The experiment concludes at the moment
min {max {X;.,, T}, T,}, provided that the r-th failure transpires prior to 7. Should the r-th failure
occur between 77 and T,, the experiment terminates at min {X;.,, 75} . Ultimately, if the r-th failure
transpires subsequent to 75, the experiment finishes at X,.,.

The UHCS addresses Type-I, Type-II, hybrid, and generalized hybrid censorship flaws:

e Enhanced flexibility: Termination is based on time limits (7,7>) and failure counts (k,r),
enabling adaptation to changing situations.

e Resource efficiency: Experiments end by 7, after at least k failures, eliminating wasteful
extension and costs without compromising inferential validity.

e Improved estimation: UHCS uses all partially filtered data to lessen parameter estimate bias.
Kumar et al. [3] found that maximum likelihood estimates (MLEs) and Bayes estimators are
more accurate than traditional or single-criterion techniques.

e Robustness to complex scenarios: UHCS combines time and failure-count criteria to maintain
data integrity in medical or reliability research with unpredictable dropout or failure patterns.

UHCS thus guarantees that each experiment lasts no longer than 7, while recording at least & failures,
balancing logistical constraints and data needs. Its efficacy has been confirmed by Balakrishnan and
Kundu [4], Huang and Yang [5], Rabie and Li [6], Jeon and Kang [7], and Dutta et al. [8].

The Lindley distribution was introduced by Lindley [9] within the framework of fiducial and
Bayesian statistics to demonstrate the distinction between fiducial and posterior distributions.
Additionally, Ghitany et al. [10] examined its statistical features and showed that, in many
applications, Lindley provides a better fit than the exponential model. By construction. The
probability density function (PDF) and the cumulative distribution function (CDF) are provided by

2

A+1)

f(x; ) = (1+x)exp(—4Ax); x=>0,4,>0. (1.1)

and
(A+ Ax + 1) exp(—Ax)

a+1) ’
a

where A scale parameter. mixes an exponential(1) and a Gamma(2, 1) component in proportion 5.
Bakouch et al. [11] proposed an enhanced Lindley variant, Ghitany et al. [12] introduced a
two-parameter extension, and Nadarajah et al. [13] developed further generalizations—all
underscoring the family’s flexibility. The Lindley model enjoys wide applicability in industry,

FA) =1- x>0,1,>0, (1.2)
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medicine, biology, and beyond. For example, Ghitany et al. [14] used it to assess reliability in strength
systems, and Gémez—Déniz et al. [?] derived a bounded-domain density based on its generalized
form. Despite these extensions, the one-parameter core remains underutilized. In our real-data
analyses, Lindley consistently outperforms more flexible two- and three-parameter families—such as
the Weibull and Q-Weibull—in both goodness-of-fit and information criteria.

Lindley’s single-parameter form yields closed-form expressions for key reliability measures like
the survival function, hazard rate, cumulative hazard, and mean residual life, avoiding numerical
integration and ensuring robust estimation under MLE and Bayesian frameworks, especially with
censored data. Multi-parameter variants have been suggested, but the original one-parameter form
offers the best blend of parsimony, interpretability, and operational efficiency for upper-hybrid
censored samples. Finally, the Lindley distribution is stable and interpretable since it follows Occam’s
rule by describing data with one parameter. This research uses its skills to improve UHCS data
modelling.

The reliability function R(¢), hazard rate function H(t), cumulative hazard function CH(?), and mean
residual lifetime MR(¢) of the Lindley distribution are provided, respectively,

(A4 A+ 1) exp(=A1)

R() T , (1.3)

221+
H(f) = m, (14)
CHm:Jdmmwzk@ﬂ+D+M—bgth+u (1.5)

0
and

“ R(u)d

MMﬂzﬂT—HT>0:£ wdn A+ 21+2 (1.6)

R() A+ 2+ 2%

For further information regarding the residual lifetime of the Lindley distribution, see Ebrahimi [16]
and Goel and Krishna [17].

System performance and lifetime are evaluated using key metrics: reliability, hazard rate,
cumulative hazard function, and mean residual life. Reliability represents the probability of a system
operating without failure over a given period, while hazard rate measures the instantaneous likelihood
of failure, indicating system degradation. The cumulative hazard function quantifies the cumulative
risk of failure over time, and mean residual life estimates the expected remaining lifetime after a given
point. These metrics collectively provide a comprehensive understanding of system reliability:
reliability assesses sustained functionality, hazard rate highlights failure risks, cumulative hazard
function measures accumulated exposure, and mean residual life aids in maintenance planning.

Figure 1 illustrates the behavior of the Lindley distribution functions for different values of A.
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Figure 1. (a) PDF of the Lindley Distribution; (b) Hazard Rate Function; (c) Cumulative
Hazard Function; (d) Mean Residual Life Function.

The remainder of this paper is organized as follows: we are given the ML estimator and the
asymptotic confidence interval (asymp. CI) for unknown parameters, R(¢), H(¢), CH(t), and MR(¢) in
Section 2. The Bayesian analysis under the square error (SE), linear exponential (LINEX), and
general entropy (GE) loss functions is discussed in Section 3. We introduced the MCMC algorithm in
Section 4, while the two bootstrap confidence intervals are shown in Section 5. Section 6 contains a
detailed presentation of the simulation technique and its findings. We provide a concrete example of
real-world data in Section 7. Finally, some concluding remarks in Section 8.

2. Maximum likelihood method

The ML method has been discussed for parameters of the Lindley distribution, R(¢), H(t), CH(t),
and MR(r) based on UHCS by point estimation and asymp. ClIs in this section.

2.1. Point estimation

Consider a random sample of size n, denoted as xi.,, X2., ..., Xn, derived from the Lindley
distribution based on UHCS. The subsequent six cases illustrate various censoring scenarios:

Case 1: When 0 < X,., < X;., < T1 < T,, the observation is stopped at 7.

AIMS Mathematics Volume 10, Issue 6, 14943-14974.



14948

Case 2: If 0 < X,., < Ty < X, < T, the observation is stopped at X.,,.

Case 3: If 0 < X,., < Ty < T» < X.n, the process is halted at T,.

Case 4: In the situation where 0 < T} < X,., < X, < T», the process is stopped at X;.,.
Case 5: When 0 < T} < X,., < T, < Xy, the process terminates at 7.

Case6: If 0 < T) < T, < X,., < Xy, the process stops at X,..,.

Then, the likelihood function can be presented as

n!

Lx) = (1=Fy ™| ] £ G,

! -1
(s(n m)+Zx,n) Zln(1+xm)

where, O and Q, denote the number of failures at 7 and 7, respectively.

n! 22" (A+As+1)0=m
(n—-m)! (A+1)"

exp |- 2.1)

(01,T;), forCasel,
(7, Xp-n), for Case 6,
(0,,T,), forCases 3,5,
(k, x1.,),  for Cases 2, 4.

(m, 5) =

The log-likelihood function is denoted by €(4; x) = log L(4; x) of (2.1) can be expressed as follows.

{(A;x) o« 2mlogA— nlog(/l + 1) +(m-m)log(A+ s+ 1)
- (s(n m) + Z x,n) + Z log(1 + Xiy). (2.2)
i=1
The ML estimate of the unknown parameters A in (2.2) requires a numerical solution to the equation

by setting the first partial derivative to zero.

H(A;x) _2m _ o -
Py R ;l+1+(n m)(—/“_/1 ) s(n —m) — ZX’”_O (2.3)

Substltutmg by Ay the ML estlmator of A1n (1.3) to (1.6). We obtain RML(t) the ML estimator of
R(t), Hy;1.(t) the ML estimator of H(7), CH m(t) the estimator of CH(¢), and MRML(t) the estimator of
MR(t) as follows:

RML(I) = (/AlML + 1)_1 (;lML + /AlMLl‘ + 1) exp (—;IMLZ) .
Hy () = Ay + et + D722, (1 +1).

CHML(I) = IOg(;lML + 1) + ;lMLt - IOg(;lML + ;lMLt + 1)

]\//I?QML(t) = (;IML + ;lMLt + 2)(;1ML + ;112\/1L + ;ljzl/lLt)_l.

AIMS Mathematics Volume 10, Issue 6, 14943-14974.



14949

2.2. Asymptotic interval estimation

One may be interested in a range of values that contain unknown parameters with a given probability
rather than point estimations. Ranges are interval estimates. To calculate the asymp. CIs for the
unknown parameter A7, we use the asymptotic properties of MLEs. Applying large sample theory, the
MLEs’ asymptotic distribution A” is a normal distribution with a mean of A and a variance—covariance
matrix /7!(1). The asymptotic variance—covariance matrix [ “1(Q) is used to estimate I~ (1) by inverting
the observed Fisher information matrix. Here, the asymptotic variance-covariance matrix is

) = {[ Sl ]A:M}_l = [ VarCi) . (2.4)

where
FlL_2m
0A? A2 A+ 1)
The confidence intervals for the unknown parameters A are obtained from the asymptotic
distribution of the MLEs. The asymptotic distribution of the ML estimator is illustrated.

—(m=m)(s+ D*A+ s+ D72

(D) = (D) = Ny (0,17'(2)),

where [(.) is the Fisher information matrix and N,(.) represents a bivariate normal distribution as
specified in Eq (2.4). The two-sided 100(1 — y) %, where 0 < vy < 1, asymp. ClIs for the vector of
unknown parameter A can be expressed as follows, given certain regularity conditions:

;1 + Zy/z \/VAar(/Al), (25)

where the MLs asymptotic variance of 1, Var(1), and Z,» 1s the upper y/2 th percentile for the standard
normal distribution.
Furthermore, we must calculate their variances utilizing the delta method, as outlined in Greene

[18], to construct the asymp. Cls for R(¢), H(t), CH(t), and MR(t). Let A, = [%L L Ay =
=AML
OH(1) _ [ ocHw _ [ oMr@) OR(t) OH() OCH() IMR()
[ a1 ]A:QML’ 3= [ a1 L:)ML’ Ay = [ a1 ]/l:;lML’ and, where Z3°, Z9=, T, ST are

the first derivatives of R(¢), H(t), CH(t), and MR(¢) with respect to the parameter A, respectively, as
follows:

OR(1) (1= At +1t— A —t)exp (—A1) _(A+ A+ 1exp(=21)

o1 A+ 1) 1+ 1) ’
OH(n) _ 2201+ A2(1 +1)?
ol A+Au+1) QA+Aa+1)?°
ACH(1) 1 (I+0)
= +1- ,
FR A+1) A+ A+ 1)
OMR(1) (I+0 B A+ At +2)(1 + 24+ 241
o1 T A+ 2+ 2% (A + 22 + 2%)?

The approximate asymptotic variances of Ry (1), By (1), a?IML(t), and A//ITQML(t) can be computed,
respectively, by
Vor (D _ (7 AT ov (1 _ (AT
Var (Ryi(1)) = (4, VA] )(2)  Var (A.(0) = (A, VA] )@) :
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o [ _ AT (17 _ AT

Var (CHy(1) = (45VA] )@ . and Var (MRy.(1)) = (AsVA] )@ ,
where, A,{ is the transpose of Ay, k = 1,2, 3,4. These findings yield the approximate CI for R(¢), H(t),
CH(t), and MR(t) as follows:

(f?ML(f) + Zg Var (RML(t))) , (ﬁML(t) + Zg Var (FIML(t))) ,
(@ML(t) + Z% \73}' (@ML(t))) ,and (A//ITQML(t) + Z% \73?1' (MTQML(I))) .
3. Bayesian method

This section estimates the Lindley model parameter A and functions R(¢), H(¢), CH(t), and MR(t)
using Bayesian methods based on UHCS. Bayesian estimations use SE, LINEX, and GE loss
functions. Researchers commonly assume that the Lindley distribution parameter’s prior probability
density function is gamma. Based on its parameters, the gamma distribution can take many forms. It
is often used as a prior distribution because of its mathematical properties and ability to describe
positive continuous random variables.

By adopting a gamma prior for the parameter of the Lindley distribution, the gamma distribution is
a common choice in the literature for prior specification in Bayesian analysis. The logical selection for
the prior of A is to posit that the quantity is independent, such that A ~ G(a, b) as follows:

(A1) o A 'exp(=bd), 1> 0, (3.1)

when the gamma distribution G(a, D) has a mean of £, variance 5, and the hyperparameters a, b are
greater than zero, they are selected to represent prior knowledge of the two unknown parameters, which
are presumed to be known and non-negative. The posterior distribution of A is expressed as

Choice of Gamma prior: We select 1 ~ I'(1.5,3) so that E[1] = 1.5/3 = 0.5 with variance
1.5/3% ~ 0.167. This centers our prior on plausible failure rates while avoiding excessive dispersion.
Gamma priors are commonly used in Bayesian Lindley analyses—for instance, Pak et al. [19] adopt a
I'(a, b) prior for a power-Lindley model under various loss functions, and Fartyal and Kumar [20]
demonstrate that Gamma priors outperform uniform and exponential priors in a weighted Lindley
survival study. To confirm robustness in our UHCS context, we compared I'(1.5, 3) against a vague
I'(0.001,0.001) and the Jeffreys prior m(1) oc 1/4; the resulting Mean Squared Error (MSE) and
coverage changed negligibly, supporting our informative specification. Al-Babtain et al. [21] and
Ahmad et al. [22] provide relevant recent work—these references will enrich your literature review,
particularly in relation to Bayesian estimation and reliability modeling under non-standard censoring,
and they also validate gamma priors.

L(A; x) m(A)
7L %) 7)) dA

with x = (x1, X2, ..., X,,). The joint posterior distribution is determined by the likelihood function in
(2.1) and the prior distributions in (3.1) are as follow:

k—l /12m+a—l A+ As+ 1 (n—m) m m
7 Alx) o @+ds+ D77 o [—/l (s(n —m)+ ) X+ b) + 3 In(1 + 1)
i=1 i=1

' (Alx) =

(3.2)

A+ 1) G
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where k is a normalizing constant defined by,

el (A + s + D
kocf (Ards+ 1) da.
0

A+ 1)

Thus, the posterior density can be reformulated as

/12m+a—1 1 A 1 (n—m) u 7
7 () o @+as+ D" o [—/l [s(n )+ it b) + 3 In(1 + xi:,,)} . (34)
i=1 i=1

A+ 1)y
If ¢ is the estimator of the parameter ¢, so the SE Loss function is defined as
Li(p,®) = (@ - ¢),

then, the Bayesian estimate for the function u(1) under the loss function L; is represented by the

posterior mean, expressed as
W(pse = E[u() | x]

= f u(d) m° (4] x) dA.
0
The LINEX loss function for ¢ and @ is expressed as
Ly, @) =" —h(@—9) -1, h#0,

Thus, the Bayesian estimate for u(4) under the LINEX loss function L, is

a(prr = —% In [E (e_h v E)] ,

1 00
=——1In U e (1] x) d/l].
h 0 =

The GE loss function is also expressed as

AN\G A
Li(p, ) = (E) - an(f) -1, #0,
¢ ¢

and the Bayesian estimate under the GE loss function for u(1) is provided by

#(sor = {E [ 1 o),

) -1/q
- { f (DI (A | 2) cM} .
0

As the conditional probability distribution in (3.4) is unclear, we will use the Metropolis-Hastings
sampler to create A values that match the distribution. Metropolis et al. [23] describe how the
Metropolis-Hastings technique can create random samples with a normal proposal distribution. Using
Algorithm 1, the conditional posterior distribution was used to generate 4. Many writers used the
MCMC technique, including Nassr and Elharoun [24], Nassr et al. [25], Abu El Azm et al. [26],
Yousef et al. [27], and Nagy et al. [28].
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4. MCMC for Bayesian estimation

This section employs the MCMC technique to produce the Bayesian estimates of the parameters A,
R(?), H(t), CH(t), and MR(t). The parameter A is the complete conditional posterior PDF as stated in
(3.4). The conditional posterior PDF of the parameter A cannot be simplified to a recognized
distribution, as demonstrated in (3.4). Consequently, we employ the Metropolis—Hastings algorithm, a
method within MCMC techniques, to generate posterior samples of the parameter A from the full
conditional posterior PDF, thereby facilitating the calculation of Bayesian estimates for the unknown
parameter A, as well as the functions R(¢), H(t), CH(t), and MR(t). For additional information, go to
Cowles and Carlin [29], Hastings [30], and other sources. The subsequent phases illustrate the
Metropolis—Hastings method for simulating posterior samples, succeeded by the Bayesian estimates.

Algorithm: Metropolis—Hastings for A

Step (1).
Step (2).
Step (3).
Step (4).
Step (5).

Step (6).
Step (7).

Step (8).
Step (9).
Step (10).

Step (11).

Commence with 2° = A;.

seti=1.

Create a proposal A* from N (ﬂ(i‘l), V(/l)).

(A=) ]

Establish acceptance probabilities p, = min [1, T

Generate u; from a Uniform (0, 1) distribution.
If u; < p;, set A9 = A%, else set AV = A07D,
Compute R(t), H(t), CH(t), and MR(t) as follows:

RO = (10 +1) (A0 + A9 + 1) exp(-24),
HO() = (A9 + 291 + 1)_1 A9 (1 + 1),

CHO(®) = 1og(A? + 1) + 297 — log(A? + 197 + 1),
MRO() = (A9 + A9 +2) (10 + 207 4 29 1)

Puti=i+1.

Execute steps (3) to (8), N times, and obtain 17, i =1,2,...,N.

To calculate A from generated values, omit the first B values, which are the burn-in phase. Next,
arrange the remaining (N — B) values for A in ascending order: Ay, ..., Axn-p)-

The 100(1 — )% credible intervals (Crls) for A are as follows:

(/1[«N—B>y/2>], ﬂ[«N—B)(l—y/z))]) ,

and the lengths of the Crls are determined by the absolute difference between the lower and upper
bounds.

Bayesian estimates under SE, LINEX, and GE loss functions for ¢ = A, based on ¢ values for
i=B+1,B+2,...,N, are as follows, respectively:

S g [ T

N-B

@BSE = ¥BLI = 7 , and ‘;bBGE =

MR -1 a S per €XP (hQD(i))
N-B '’ N-B
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5. Bootstrap confidence interval

Many statistical inference methods use bootstrap resampling, especially for confidence intervals.
Efron [31] has more information. In this study, we construct two types of bootstrap confidence intervals
for the unknown parameter A: the percentile bootstrap (Boot-P), a nonparametric method, and the
bootstrap-t (Boot-t), a semi-parametric method.

(1) Percentile Bootstrap confidence interval (Boot-P)

e Obtain the MLE of A for the Lindley distribution under UHC schemes.

e Generate bootstrap samples utilizing the estimated parameter A to get the bootstrap estimates
D S L L

Execute step 2 for B iterations to generate a series of bootstrap estimates A*", A*®, . 1®),
Order the bootstrap estimates A°P, A*® .. 1*® in ascending sequence as 4”11, 47121 P81,
The two-sided 100(1 — ) percentile bootstrap confidence interval for the unknown parameter A
is expressed as (/lb[BV/ 2 AbiBd=y/ 2)]).

(2) Bootstrap-t confidence interval (Boot-t)

e Repeat steps 1 and 2 from the percentile bootstrap approach. o
e To calculate the t-statistic for A, use the formula: TG = A0 1, ..., B.,The Fisher

vy’

information matrix can be used to calculate the t-statistics 7(1), T(2), ..., T(B), where V(1°®)
represents the asymptotic variance of 1”7,

e Order these t-statistics in ascending order as T[1], T[2],...,T[B].

e The two-sided 100(1 — y) bootstrap-t confidence interval for the unknown parameter A is:

(/Al = Tia—y2n - V), A - Tigy2 - A V(/Al)) )

where T'p(1-y/2) and T, are the critical values obtained from the ordered bootstrap t-statistics,
and V(Q) represents the asymptotic variance of 1, may be computed using the Fisher information
matrix.

6. Simulation study

A Monte Carlo simulation was performed to compare the performance of maximum likelihood
(ML) and Bayesian estimators under various unified hybrid censoring schemes (UHCS). We ran M =
1 000 independent replicates. In each replicate:

First, a UHCS sample of size m was drawn from a Lindley(A) distribution with true value 4 = 1.5.
The ML estimate Ay was then computed directly.  For the Bayesian analysis, we ran a
Metropolis—Hastings chain of length N = 11 000, discarding the first B = 1 000 draws as burn-in.

Scheme parameters (n, r, k, Ty, T,) were systematically varied to assess their impact on estimator
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accuracy. We computed three metrics over M replicates:

M

— 1 ; 2 -~ 1 & F_ 1< i i
MSE(®) = MZ@—@) , MRE(®) = MZ'QTG and CP = MZl{ee L9, U7},

where [L®, U®] is the interval from replicate i, and 1{-} is the indicator. All three metrics—MSE, mean
relative error (MRE) and coverage probability (CP)-were computed for A and for the reliability-related
functions R(¢), H(t), CH(t), MR(¢t) evaluated at a fixed time point ¢ = 2.

To simulate a unified hybrid censoring sample of size m from a Lindley(1) distribution under two
censor times 77 < T, and scheme parameters n, r, k (1 < r < k < n), proceed as follows:
Step 1: Specify (n,r,k, Ty < T,,A), with 1 <r <k <n.
Step 2: Generate and sort n i.i.d. Lindley(1) draws x;.,, < - -+ < X5
Step 3: Determine termination time s and number of failures m.

(@) If x., < Ty:

- Ika;n <T\,sets=T;,m= |{x,‘ tx; < T]}l
— Else if x.,, < T,, set s = x.,, m = k.
— Else, set s = To, m = |{x; : x; < T,}|.

(b) Else if x,., < T5:

- If xp.,, < Ty, set s = xpp, m = k.
— Else, set s = T,, m = |{x; : x; < T1}|.

(c) Else, set s = x,.,, m = r.

Step 4: Observe the first m order statistics Xi.,, Xp.n, - - -» X, the censoring time s, and the total
failures m. These (Xxi.,,. .., Xn,) together with (s,m) form the required UHCS sample for further
MCMC-based Bayesian estimation.

Tables 1 and 2 present the performance metrics—including the estimated mean, MSE, and
MRE—of the ML and Bayesian estimates for A, R(¢), H(t), CH(t), and MR(t) under various censoring
schemes specified by (r,k,n) at T = 2. Table 3 displays the average asymp. Cls, 95% Crls, Boot-p,
and Boot-t for 4. The bootstrap confidence intervals are obtained using 1000 bootstrap replications.
Additionally, Tables 4 and 5 show the average asymptotic and credible 95% confidence intervals for
R(t), H(t), CH(t), and MR(t) at T = 2.

All Bayesian conclusions are derived utilizing the hyperparameters (a,b) associated with an
informative prior (IP), where @ = 1.5 and b = 3. The Bayesian estimates are obtained using various
loss functions, including the SE, LINEX loss functions (with 4 = —1.5 and 1.5), and the GE loss
function (with ¢ = —1.5 and 1.5).

The parameters & = +1.5 (LINEX) and ¢ = 1.5 (GE) deliver superior performance in Bayesian
reliability analysis, as rigorously demonstrated in Pak et al. [19]. Their comprehensive study of power
Lindley models tested multiple asymmetry values, revealing distinct optima: 2 = 1.5 and g = 1.5
minimized Bayes risk for distribution parameter estimation, while reliability function estimation
achieved optimal performance at 4 = —-0.5 and ¢ = -0.5. Our sensitivity analysis across
h,q € {-3.0,-2.0,-1.5,-0.5,0.5, 1.5,2.0, 3.0} confirms the generalized superiority of |h| = |g| = 1.5:
this parameterization yields optimal stability with near minimal MSE fluctuations compared to
alternatives across all reliability metrics.
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The MCMC samples from this study are shown in Figures 2 and 3. These figures illustrate MCMC
convergence under different censoring schemes. Figure 2 corresponds to the setting with parameters
n=2~60k=255r=50T =1.2,and T, = 1.7, while Figure 3 shows results for 7; = 1.9 and
T, = 2.4. In both cases, the MCMC samples exhibit good convergence toward the target distribution,
as seen from the trace plots, posterior densities, and running means. To formally assess convergence,
the Gelman—Rubin diagnostic (R-hat) was applied to each chain. All parameters—A, R(t), H(t),
CH(t), and MR(t)—had R-hat values very close to 1, with point estimates ranging from 1.000 to
1.003. These results strongly suggest that the chains have mixed well and reached stationarity.
Therefore, the findings confirm that the MCMC method is reliable for sampling from complex
distributions across multiple parameter settings.

The Bayesian estimators, using different loss functions—SE, LINEX, and Generalized
GE—consistently show lower MSE and MRE compared to ML estimators, as seen in Tables 1 and 2.
Among the Bayesian methods, the LINEX loss function with 4 = —1.5 and the GE loss function with
g = —1.5 often achieve the lowest MSE and MRE, indicating their effectiveness in reducing
estimation errors. As highlighted in Tables 1 and 2, the Bayesian approaches, especially with LINEX
and GE loss, consistently outperform ML in both error and bias. As the censoring times 7 and T,
increase, the performance of all estimation methods improves, with noticeable reductions in both
MSE and MRE. Moreover, as the dataset size increases, both MSE and MRE decrease across all
estimation methods, with Bayesian approaches showing the most significant improvements. These
results confirm the reliability and precision of the Bayesian approach, making it a strong choice for
practical applications.

Table 3 presents confidence intervals for the parameter A using four methods: asymptotic (Asymp.
CI), Boot-p, Boot-t, and Crls. The Crl method consistently provides the narrowest average length (AL)
of the confidence intervals, indicating higher precision. Moreover, the Crl method maintains relatively
high CP, often close to the nominal level of 95%, suggesting good reliability. In contrast, while the
asymptotic and bootstrap methods sometimes produce comparable CP, they often yield wider intervals,
with the Boot-t method occasionally showing lower coverage. Therefore, the Crl method appears
preferable overall, balancing precision and reliability more effectively. Table 3 clearly shows that Crls
offer the highest precision (shortest AL) and maintain reliable coverage close to 95%. Tables 4 and
5 give a comparison between asymp. Cls and Bayesian Crls for reliability measures at different time
points, revealing distinct trade-offs. Crl generally provides higher and more stable CP, often closer to
the nominal level (e.g., 95%), indicating better reliability in capturing the true parameter. However, this
comes at the cost of a longer AL compared to the asymptotic method. On the other hand, asymptotic
intervals offer shorter and more precise intervals, though they sometimes show lower and more variable
CP. The choice between these methods depends on the balance between precision and coverage. Crl is
preferable when higher CP is crucial, and asymptotic intervals are favored for more compact estimates.
Tables 4 and 5 highlight the trade-off: Crls yield higher, more stable coverage, while asymptotic CIs
are more compact but less reliable. It is worth noting, all computations in this study were performed
using R version 4.4.1.
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Figure 2. MCMC diagnostics for censoring scheme with n = 60, k = 55, r = 50, T, = 1.2,

and 7, = 1.7.
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Table 4. Various confidence intervals of reliability measures at 7y = 1.9, 7, = 2.4.

n rk

Par.

Asymp. CI

Crl

LB

UB

AL

CP

LB

UB

AL

CP

40 20,25

25,30

25,35

R()
H(z)
CH(1)
MR(t)
R()
H(r)
CH(1)
MR(1)
R()
H()
CH(1)
MR(1)

0.0260
0.8568
1.5100
0.5338
0.0297
0.8582
1.5063
0.5459
0.0340
0.8869
1.5377
0.5590

0.1905
1.6918
3.1207
1.0258
0.1912
1.6654
3.0575
1.0268
0.1839
1.6424
3.0328
1.0058

0.1645
0.8350
1.6107
0.4920
0.1614
0.8072
1.5512
0.4809
0.1500
0.7554
1.4951
0.4467

91.5000
96.7500
97.4000
93.6500
91.7000
97.3500
96.9000
93.8000
91.6500
97.3000
96.8500
93.6000

0.0586
0.8353
1.4767
0.6224
0.0609
0.8377
1.4747
0.6302
0.0616
0.8669
1.5058
0.6334

0.2385
1.6021
2.9492
1.1602
0.2365
1.5819
2.9005
1.1528
0.2235
1.5705
2.8885
1.1141

0.1799
0.7668
1.4726
0.5377
0.1756
0.7442
1.4259
0.5226
0.1619
0.7036
1.3827
0.4807

99.1000
95.0500
95.6000
99.1000
99.1000
95.5500
95.5000
99.1000
99.2000
95.5000
95.8500
99.2000

60 30,40

40,50

50,55

R()
H(t)
CH(1t)
MR(1)
R()
H()
CH(1)
MR(1)
R()
H()
CH(1t)
MR(t)

0.0456
0.9502
1.6255
0.5959
0.0461
0.9492
1.6467
0.5975
0.0476
0.9497
1.6590
0.6024

0.1693
1.5699
29172
0.9626
0.1698
1.5668
2.8611
0.9641
0.1698
1.5557
2.8517
0.9638

0.1237
0.6197
1.2917
0.3667
0.1237
0.6176
1.2144
0.3665
0.1223
0.6060
1.1926
0.3615

92.6500
97.9000
97.0000
94.5500
92.7000
97.3500
97.3000
94.5500
93.3000
97.7500
97.0000
95.0000

0.0653
0.9339
1.5971
0.6480
0.0658
0.9330
1.6195
0.6495
0.0667
0.9341
1.6333
0.6529

0.1960
1.5241
2.8144
1.0337
0.1964
1.5214
2.7710
1.0348
0.1955
1.5121
2.7656
1.0321

0.1307
0.5902
1.2174
0.3857
0.1306
0.5884
1.1516
0.3853
0.1288
0.5780
1.1323
0.3793

98.8000
96.9000
95.6500
98.8000
98.8000
96.3000
95.9500
98.8000
98.8000
96.7000
95.6000
98.8000

120 60,70

70,90

90,100

R()
H()
CH(1)
MR(1)
R()
H(t)
CH(t)
MR(1t)
R®@)
H()
CH(1)
MR(t)

0.0640
1.0286
1.7925
0.6527
0.0640
1.0286
1.7937
0.6527
0.0641
1.0283
1.8148
0.6531

0.1524
1.4619
2.6993
0.9127
0.1524
1.4619
2.6767
0.9127
0.1525
1.4612
2.6667
0.9130

0.0885
0.4333
0.9068
0.2600
0.0885
0.4333
0.8830
0.2600
0.0884
0.4329
0.8519
0.2600

94.0500
97.2500
97.1000
95.5000
94.0500
97.2500
96.8000
95.5000
94.0500
97.0500
97.2500
95.5000

0.0745
1.0188
1.7738
0.6798
0.0745
1.0188
1.7755
0.6798
0.0746
1.0186
1.7974
0.6802

0.1655
1.4417
2.6535
0.9465
0.1655
1.4417
2.6330
0.9465
0.1656
1.4411
2.6275
0.9468

0.0910
0.4229
0.8797
0.2667
0.0910
0.4229
0.8576
0.2667
0.0910
0.4226
0.8302
0.2666

98.3500
96.5000
95.9000
98.3500
98.3500
96.5000
96.1500
98.3500
98.3500
96.0500
96.6500
98.3500
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Table 5. Various confidence intervals of reliability measures at 7y = 1.2, 7, = 1.7.

n rk

Par.

Asymp. CI

Crl

LB

UB

AL

Cp

LB

UB

AL

Cp

40 20,25

25,30

25,35

R(1)
H(t)
CH(1)
MR(t)
R(1)
H(r)
CH(t)
MR(t)
R(1)
H(r)
CH(t)
MR(t)

0.0259
0.8580
1.5590
0.5334
0.0295
0.8601
1.5724
0.5450
0.0310
0.8777
1.5615
0.5502

0.1901
1.6938
3.0284
1.0248
0.1905
1.6686
3.0509
1.0249
0.1852
1.6575
3.0144
1.0099

0.1642
0.8358
1.4695
0.4915
0.1610
0.8085
1.4786
0.4800
0.1542
0.7797
1.4530
0.4598

91.1500
96.8500
97.8000
93.4500
91.5000
97.3000
97.4000
93.6500
93.1500
97.6500
97.1500
94.6000

0.0585
0.8364
1.5273
0.6221
0.0606
0.8394
1.5393
0.6293
0.0601
0.8575
1.5302
0.6288

0.2381
1.6035
2.8901
1.1591
0.2358
1.5846
2.9077
1.1508
0.2273
1.5805
2.8789
1.1257

0.1796
0.7671
1.3627
0.5371
0.1752
0.7452
1.3684
0.5215
0.1672
0.7230
1.3487
0.4969

98.9500
95.0500
96.8000
98.9500
99.0000
95.5000
96.2000
99.0000
99.4500
96.2000
95.9000
99.4500

60 30,40

40,50

50,55

R(1)
H(t)
CH(1)
MR(t)
R(1)
H()
CH(1)
MR(1)
R(1)
H()
CH(1)
MR(1)

0.0409
0.9247
1.6840
0.5811
0.0448
0.9359
1.6742
0.5940
0.0461
0.9427
1.6712
0.5974

0.1756
1.5984
2.8761
0.9811
0.1729
1.5705
2.8576
0.9729
0.1717
1.5661
2.8298
0.9692

0.1347
0.6737
1.1921
0.4001
0.1281
0.6346
1.1834
0.3789
0.1256
0.6233
1.1586
0.3718

92.3000
96.7000
97.5500
94.1500
93.8000
97.9000
97.1000
95.0500
93.0000
97.2000
97.3000
94.8500

0.0638
0.9067
1.6565
0.6420
0.0656
0.9194
1.6476
0.6490
0.0661
0.9265
1.6462
0.6505

0.2073
1.5432
2.7899
1.0667
0.2012
1.5221
2.7737
1.0485
0.1988
1.5197
2.7495
1.0418

0.1435
0.6365
1.1334
0.4247
0.1356
0.6027
1.1261
0.3995
0.1327
0.5932
1.1033
0.3913

98.8000
95.6500
96.6500
98.8000
99.0000
96.6500
95.9500
99.0000
98.8500
96.1000
95.8500
98.8500

120 60,70

70,90

90,100

R(1)
H()
CH(1)
MR(1)
R(1)
H()
CH(1)
MR(1)
R(?)
H(r)
CH(1)
MR(?)

0.0599
0.9998
1.8236
0.6725
0.0620
1.0116
1.8317
0.6466
0.0633
1.0205
1.8333
0.6508

0.1564
1.4599
2.6528
0.9653
0.1566
1.4726
2.6638
0.9246
0.1543
1.4643
2.6653
0.9181

0.0965
0.4601
0.8292
0.2928
0.0946
0.4611
0.8321
0.2780
0.0910
0.4439
0.8320
0.2673

93.6500
96.4000
97.7000
98.4000
93.8500
96.7500
97.5000
94.6000
94.8000
97.4000
98.1000
95.7000

0.0723
1.0111
1.8069
0.6404
0.0738
1.0007
1.8147
0.6773
0.0744
1.0103
1.8164
0.6794

0.1721
1.4845
2.6149
0.9245
0.1715
1.4493
2.6263
0.9635
0.1681
1.4430
2.6273
0.9539

0.0998
0.4734
0.8080
0.2841
0.0977
0.4486
0.8116
0.2862
0.0937
0.4327
0.8109
0.2745

98.4000
97.1000
97.3000
94.4000
98.4000
96.0000
97.0500
98.4000
98.7000
96.6500
97.3500
98.7000
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7. Application

This section employs two datasets to fit the Lindley distribution and juxtaposes the findings with an
analysis of alternative lifetime distributions from previous works. Subsequent to fitting the data with
the Lindley distribution, the results were juxtaposed with those derived from alternative probability
distributions defined within the unit interval, utilizing the Akaike information criterion (AIC), the
corrected Akaike information criterion (AICC), the consistent Akaike information criterion (CAIC),
the Bayesian information criterion (BIC), and the MLE. Furthermore, the Kolmogorov—Smirnov (KS)
test and the associated p-value were employed to evaluate the models’ goodness-of-fit at significance
levels of 0.01, 0.1, and 0.05, respectively, as detailed below.

- AIC = 2k - 2logl,

- AICC = AIC + 281,

- BIC = klogn — 2logl,

- HQIC = 2klog(logn) — 2logl,

- CAIC = -2logl + k(logn + 1).

In this context, logl represents the estimated maximum log-likelihood, k signifies the number of
parameters, and n indicates the number of observations.

Our objective is to assess the fit of the Lindley distribution and compare its statistical properties
to those of alternative models under both datasets. A comprehensive comparison will be provided in
subsequent sections, focusing on parameter estimates and goodness-of-fit measures for each data set.
In this study, Burr IIT (B-1II), bathtub shape (BS), gamma (Gam), exponential (Ex), Gumbe-1 (Gum-
1), Gumbel-2 (Gum-2), Gompertz (Gom), Weibull (W), Xgamma (XG), XLindley (XL), [Xgamma
(IXG), Lomax (Lx), QWeibull (QW), inverse Weibull (IW), inverted modified Lindley (IML), and
Nadarajah-Haghighi (NH) are examined and compared to the Lindley (L) distribution. These models
have been extensively explored in existing literature, with numerous references detailing their statistical
characteristics and applications in reliability analysis, survival modeling, and extreme value theory.
The cdfs of the compared distributions that are used to compare with the Lindley are as follows:

e B-III Distribution: F(x)=(1+x*)™ x, 4, a>0
e BS Distribution: F(x) =1 -exp[((1-¢“")e)]: x 1. a>0

Gam Distribution: F(x) = fox I;((’;l exp(—t/dt, x, A, a >0

Ex Distribution: F(x) = 1 —exp(-=4Ax); x, 4>0

Gum-1 Distribution: F(x) = exp [— exp (— x;")] ;ox, A, a>0

Gum-2 Distribution: F(x) = exp [(-Ax™¥)]; x, 4, a >0

Gom Distribution: F(x) =1 - [1a™'(e™ = D]; x4, a>0

W Distribution:  F(x) = 1 —exp(=Ax%); x, 4, >0

XG Distribution:  F(x) = 1= [(1+ 4+ Ax+ 27 222) (1 + H)~le™ |5 x, 1> 0
XL Distribution: F(x) = 1 —[1 + Ax/(1 + 1)*]exp(-=Ax); x, 1>0

IXG Distribution: F(x) = [1 + 7= + 570 [exp(-Ax™);  x, 4> 0

e Lx Distribution: F(x)=1-— (L)a; x, A, a>0

A+x
¢ QW Distribution: F(x) = 1 - [1 = (1 = @)Ax?]® 29" x L a>0,1<g<?2
e [W Distribution: F(x) =exp(—Ax%); x, 4, a>0
e IML Distribution: F(x) =1 - [(1+4+Ax")exp(-AxD)|; x1>0
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e NH Distribution: F(x) =1 —exp[l — (1 + x2)?]; x,4,a>0

7.1. Data set I: Medical survival data

This data details the duration (in days), as illustrated in Table 6, from remission to relapse for 51
patients diagnosed with acute non-lymphoblastic leukaemia. This dataset was utilized in the analysis
conducted by Pak and Ghitany [32]:

Table 6. Times (in days) from remission to relapse for patients with acute non-lymphoblastic
leukaemia.

304 273 955 642 239 269 230 534 197 1160 24 697 57 395
284 64 209 90 82 &9 111 117 128 143 148 152 166 171
186 191 223 247 254 258 264 270 332 393 487 510 516 518
518 608 46 57 304 341 294 65 90

Figure 4 presents the exploratory data analysis for dataset I, which includes a histogram, quantile-
quantile (Q-Q) plot, boxplot, and violin plot illustrating the duration from remission to relapse for
patients diagnosed with acute non-lymphoblastic leukaemia. Table 7 presents the model’s goodness
of fit for data set I. In contrast, Figure 5 presents the estimated pdf, cdf, cumulative hazard plots, and
Profile Log-Likelihood Plot of lambda. Meanwhile, Figure 6 displays the Q-Q graphs of the calculated
densities. Figures 7 and 8 show MCMC diagnostics under two censoring schemes for dataset I. At the
same time, Table 8 shows evaluating ML and Bayesian estimates for A, R(¢), H(t), CH(t), and MR(t)
with censoring data set I. LINEX1/2 denote LINEX loss function with 4 = ¥1.5; GE1/2 denote GE
loss function with ¢ = F1.5.

Histogram with Density Quantile-Quantile Plot
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E o
o
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Boxplot of x Violin Plot of x
1200 o 1200
900 ° 900
x 600 x 600
300 : : 300
0 ! 0
1 1

Figure 4. Exploratory data analysis: Histogram, Q-Q plot, boxplot, and violin plot for data
set I.
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Table 7. Model fit statistics and p-values for additional distributions data set I.

Models AIC AICC BIC HQIC CAIC KS Stat p-value
L 673.9641 674.0457 675.8959 674.7023 676.8959 0.08669 0.83800
XL 673.9939 674.0756 675.9258 674.7321 676.9258 0.08673 0.83764
Gam 675.7071 6759571 679.5707 677.1835 681.5707 0.08746 0.83017
Gum-1 681.8777 682.1277 685.7441 683.3542 687.7441 0.09328 0.76657
XG 681.4427 681.5243 683.3745 682.1809 684.3745 0.12464 0.40652
B-1I1 689.0841 689.3341 692.9477 690.5605 694.9477 0.12567 0.39620
Iw 689.1587 689.4337 693.0474 690.6601 695.0474 0.12645 0.38861
Gum-2 689.1587 689.4337 693.0474 690.6601 695.0474 0.12645 0.38861
Y 682.9083 682.9083 688.5219 684.1347 688.5219 0.13102 0.36296
QW 684.7192 685.2299 690.5147 686.9338 690.5147 0.12982 0.35640
BS 683.2922 683.2922 688.9058 685.5186 690.9058 0.13191 0.35650
NH 683.4671 683.7171 687.3308 684.9436 689.3308 0.13442 0.31542
Ex 679.0292 679.0292 683.6429 680.2557 686.0209 0.13817 0.28453
Lx 685.1126 685.3626 688.9763 686.5891 690.9763 0.13817 0.28453
IML 689.2911 689.2911 691.2229 690.0293 692.2229 0.15602 0.16691
IXG 689.3187 689.4004 691.2505 690.0569 692.2505 0.15764 0.15847
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Figure 5. Plots for the fit of dataset I: (a) Estimated PDFs; (b) Reliability plots; (c)
Cumulative Hazard plots; (d) Profile Log-Likelihood plot of A.
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Figure 6. The Q-Q plots of the different models for the data set I.
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Figure 7. MCMC diagnostics: Trace, density, and convergence for dataset I ( r = 30, k =
40, T, = 150, T, = 250).
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Figure 8. MCMC diagnostics: Trace, density, and convergence for dataset I (7 = 30, k = 40, T; = 300, T, =

600).

Table 8. Evaluating ML and Bayesian performance for A, R(t), H(t), CH(t) and MR(t) with censoring data

L
ML Bayesian Asymp. CI Boot-p Boot-t  Crl
rnk T.T, Pa SEL LINEXI LINEX2 GEl  GE2 AL AL AL AL
20,30 150,250 A 0.0070 0.0071 0.0071 0.0071 0.0072 0.0070  0.0034 0.0035 0.0033 0.0036
R(r) 03776 0.3733 03768 0.3698 0.3764 03569  0.2635 - 0.2657
H(r) 0.0048 0.0049 0.0049 0.0049 0.0049 0.0047 0.0031 - 0.0032
CH(r) 09740 1.0027 1.0302 0.9770 1.0114 09581 0.6979 - 0.7334
MR(r) 188.7380 188.9850 329.5878 115.4508 190.0877 183.7283 107.3486 - 112.0889
300,600 A4 0.0074 0.0076 0.0076 0.0076 0.0076 0.0075  0.0033 0.0038 0.0031 0.0033
R(r) 03454 0.3382 03408 0.3356 0.3408 0.3249  0.2360 - 0.2304
H(r) 0.0051 0.0053 0.0053 0.0053 0.0053 0.0052  0.0030 - 0.0030
CH(r) 1.0630 1.0996 1.1243 1.0765 1.1068 1.0637  0.6833 - 0.6989
MR(t) 176.0349 174.4705 287.5407 115.2206 175.2177 170.8242 90.4448 - 89.9263
30,40 150,250 4 0.0072 0.0073 0.0073 0.0073 0.0074 0.0072  0.0034 0.0030 0.0031 0.0034
R(r) 03598 0.3567 03597 0.3537 0.3595 0.3421  0.2486 - - 0.2430
H(r) 0.0050 0.0051 0.0051 0.0051 0.0051 0.0049 0.0030 - 0.0031
CH(r) 1.0222 1.0471 1.0727 1.0231 1.0549 1.0076  0.6910 - 0.7006
MR(r) 181.6148 181.9256 318.9812 112.2760 182.8243 177.5811 97.8263 - - 98.3764
300,600 2 0.0073  0.0074 0.0074 0.0074 0.0074 0.0072  0.0030 0.0027 0.0032 0.0032
R() 03553 0.3551 03578 0.3525 0.3576 03426  0.2224 - 0.2287
H(t) 0.0050 0.0051 0.0051 0.0051 0.0051 0.0049 0.0027 - 0.0028
CH(r) 1.0348 1.0494 1.0712 1.0284 1.0562 1.0147  0.6261 - 0.6515
MR(r) 179.8582 181.1165 292.1560 129.9057 181.9038 177.3405 86.7939 - 92.7469
40,50 150,250 A4 0.0073 0.0074 0.0074 0.0074 0.0074 0.0073  0.0030 0.0026 0.0028 0.0031
R(r) 03553 0.3550 03575 0.3526 0.3573 03433 0.2224 - 0.2228
H(r) 0.0050 0.0051 0.0051 0.0051 0.0051 0.0049 0.0027 - 0.0028
CH(r) 1.0348 1.0488 1.0692 1.0291 1.0551 1.0158 0.6261 - 0.6355
MR() 179.8582 181.0147 349.1234 125.0204 181.7683 177.4600 86.7939 - - 89.9369
300,600 2 0.0071 0.0071 0.0071 0.0071 0.0071 0.0070  0.0028 0.0024 0.0026 0.0029
R() 03685 0.3708 0.3731 0.3686 0.3728 0.3605  0.2122 - 0.2152
H(r) 0.0049 0.0049 0.0049 0.0049 0.0049 0.0048  0.0025 - 0.0026
CH(r) 0.9984 1.0032 1.0203 0.9867 1.0088 0.9751  0.5758 - 0.5890
MR(r) 185.0611 187.2099 290.5867 136.4770 187.8874 183.9091 84.8867 - 89.1814
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7.2. Data set II: Biological lifetime data

This data was presented by Okash et al. [33], which comprises the survival times (in days) of guinea
pigs subjected to different dosages of virulent tubercle bacilli. This data set, as illustrated in Table 9,
contains 64 observations and has been examined in the research conducted by Haj Ahmad et al. [34].

Figure 9 displays the exploratory data analysis for dataset II, which includes a histogram, Q-Q plot,
boxplot, and violin plot of the survival times of guinea pigs exposed to virulent tubercle bacilli. Table
10 shows the model’s goodness of fit for dataset I. But, Figure 10 presents the estimated pdf, cdf,
cumulative hazard plots, and profile log-likelihood plot of lambda. While Figure 11 displays the Q-Q
graphs of the calculated densities. Figures 12 and 13 show MCMC diagnostics under two censoring
schemes for dataset II. At the same time, Table 11 shows evaluating ML and Bayesian estimates for
A, R(t), H(t), CH(t), and MR(t) with censoring data II.

Table 9. Survival times (in days) of guinea pigs exposed to virulent tubercle bacilli.

12 15 22 24 24 32 32 33 38 38 43 44 48 52 53 54
55 56 57 58 58 59 60 60 60 61 62 63 65 65 67 68
70 72 73 75 76 76 81 8 8 & 91 95 96 98 99 109
121 127 129 131 143 146 146 175 211 233 258 258 263 297 341 341
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Figure 9. Exploratory data analysis: Histogram, Q-Q plot, boxplot, and violin plot for data
set II.
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Table 10. Model fit statistics and p-values for all distributions based on data set II.

Models AIC AICC BIC HQIC CAIC KS Stat p-value
L 699.3687 699.4333 701.5276 700.2129 702.5276 0.13041 0.22650
XL 699.8017 699.8662 701.9606 700.6522 702.9606 0.13042 0.22635
Gam 700.7982 700.9949 705.1160 702.4992 707.1160 0.13755 0.17740
Gum-1 707.1215 707.3120 711.4393 708.8223 713.4393 0.15008 0.11192
Y 707.6603 707.8570 711.9738 709.3613 713.9780 0.15071 0.10920
B-1I1 705.3836 705.5803 709.7014 707.0846 711.7014 0.15405 0.09588
Iw 705.5414 705.7381 709.8592 707.2424 711.8592 0.15495 0.09255
Gum-2 705.5414 705.7381 709.8592 707.2424 711.8592 0.15495 0.09255
Gom 714.2821 714.4788 718.3934 715.9334 720.5998 0.16041 0.07506
QW 708.3382 708.7382 714.8149 710.8897 717.8149 0.16477 0.06192
BS 720.0061 720.2029 724.3239 721.7077 726.3239 0.17281 0.04375
XG 703.8040 703.8685 705.9629 704.6545 706.9629 0.17502 0.03964
NH 713.7876 713.7876 718.1054 715.4868 720.1054 0.17590 0.03797
IML 715.1596 715.2241 717.3184 716.0100 718.3184 0.18840 0.02128
IXG 715.8512 7159157 718.0100 716.7016 719.0100 0.19316 0.01687
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Figure 10. Plots for the fit of dataset II: (a) Estimated PDFs; (b) Reliability plots; (c)
Cumulative hazard plots; (d) Profile log-likelihood plot of A.
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Figure 11. The Q-Q plots of the different models for the data set II.
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Figure 12. MCMC diagnostics: Trace,
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Table 11. Evaluating ML and Bayesian performance for A, R(1), H(t), CH(t) and MR(t) with censoring data

IL
ML Bayesian Asymp. CI Boot-p Boot-t Crl
rnk T.,T, Par. SEL LINEX1 LINEX2 GEl GE2 AL AL AL AL

25,35 50, 100 A 0.0224 0.0228 0.0228  0.0228 0.0229 0.0225 0.0097  0.0100 0.0099 0.0098
R(r)  0.0091 0.0099 0.0100 0.0099 0.0109 0.0057 0.0232 - - 0.0251

H@r) 00195 0.0199 0.0199 0.0199 0.0200 0.0196 0.0096 - - 0.0096

CH(t) 4.6990 4.8122 5.1651 451838 4.8342 4.7018 2.5502 - - 2.5623

MR(1) 50.3756 50.0703 68.7021 37.4463 50.2521 49.1840 24.0436 - - 23.9105

150,300 2 0.0224 0.0226  0.0226  0.0226  0.0227 0.0224 0.0082  0.0082 0.0080 0.0081

R(r) 0.0092 0.0099 0.0099 0.0099 0.0106 0.0068 0.0196 - - 0.0206

H(r 0.0195 0.0197 0.0197 0.0197 0.0198 0.0195 0.0080 - - 0.0080

CH(t) 4.6929 4.7591 4.9978 45507 4.7747 4.6813 2.1384 - - 2.1315

MR(r) 50.4330 50.3451 66.1244 40.8823 50.4742 49.7090  20.2090 - - 20.0369

35,45 50, 100 A 0.0230 0.0234 0.0234 0.0234 0.0234 0.0231 0.0091  0.0127 0.0066 0.0090
R(@) 0.0078 0.0084 0.0084 0.0084 0.0091 0.0053 0.0185 - - 0.0195

H(r 0.0201 0.0205 0.0205 0.0205 0.0205 0.0202 0.0089 - - 0.0088

CH(t) 4.8551 49545 52485 4.6995 49729 4.8625 2.3793 - - 2.3650

MR(1) 48.9467 48.6638 69.8521 38.7486 48.8067 47.9636 21.1301 - - 20.7312

150,300 2 0.0224 0.0226  0.0226  0.0226  0.0227 0.0224 0.0082  0.0095 0.0077 0.0083

R(r) 0.0092 0.0100 0.0100 0.0099 0.0107 0.0068 0.0196 - - 0.0217

H(r) 0.0195 0.0197 0.0197 0.0197 0.0198 0.0195 0.0080 - - 0.0081

CH(t) 4.6929 47585 4.9953 4.5367 4.7746 4.6766 2.1384 - - 2.1684

MR(r) 50.4330 50.3776 71.5722 41.3365 50.5147 49.7113  20.2090 - - 20.6182

45,55 50, 100 A 0.0233  0.0236  0.0236  0.0236  0.0237 0.0233 0.0090  0.0128 0.0099 0.0091
R@) 0.0071 0.0079 0.0079 0.0079 0.0086 0.0049 0.0170 - - 0.0189

H(r) 0.0204 0.0207 0.0207 0.0207 0.0208 0.0204 0.0089 - - 0.0090

CH(t) 4.9416 5.0166 5.3149 47572 5.0350 4.9239 2.3787 - - 2.4034

MR(t) 48.1909 48.1297 66.2535 38.6430 48.2703 47.4402  20.4527 - - 20.6487

150,300 2 0.0224 0.0226  0.0226  0.0226  0.0227 0.0224 0.0082  0.0074 0.0079 0.0086

R(r) 0.0092 0.0100 0.0100  0.0099 0.0107 0.0066 0.0196 - - 0.0220

H(r) 00195 0.0198 0.0198 0.0198 0.0198 0.0195 0.0080 - - 0.0084

CH(t) 4.6929 4.7627 5.0186 45383 4.7794 4.6790 2.1384 - - 2.2447

MR(1) 50.4330 50.3514 66.7191 39.1555 50.4906 49.6686  20.2090 - - 21.1253
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8. Concluding remarks

This study analyzes UHCS statistical conclusions for the one-parameter Lindley distribution. We
calculated point and interval estimates for model parameters, reliability, hazard rate, cumulative
hazard, and mean residual life functions using classical and Bayesian methods. In addition to
maximum likelihood point estimates, the approximation and bootstrap confidence intervals for the
parameters are obtained using their asymptotic properties. The delta technique estimates reliability,
hazard rate, cumulative hazard, and mean residual life function variances to provide intervals.
Squared error, LINEX, and general entropy loss functions are used to generate Bayesian estimates
utilizing the gamma prior distribution and previous knowledge of the unknown parameter. One cannot
directly calculate the posterior distribution. Thus, Markov Chain Monte Carlo is used to obtain point
estimates and maximum posterior density credible ranges. A simulation and application test the
approaches’ efficacy and adaptability.

The UHCS plan increases traditional by extending an experiment beyond a defined inspection
interval if a few failures are observed. According to simulation results, Lindley parameters should be
estimated using Bayesian methods with UHCS data. The Lindley model fit acute non-lymphoblastic
leukemia data and guinea pig survival durations (in days) subjected to varied dosages of virulent
tubercle bacilli better than several established models. Future research may use the maximum product
of spacing approach with Bayesian estimation to estimate the Lindley distribution using the proposed
censoring strategy and compare the findings to current work. It can also examine Bayesian estimating
results with different loss functions. Future work could estimate Lindley distribution information
measures under the suggested filtering technique using established information measure
methodologies. For further information on these methods and estimation, see Nassr et al. [35],
El-Saeed et al. [36], Alawady et al. [37], Barakat et al. [38], and Husseiny et al. [39].
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