
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(6): 14893–14916.
DOI: 10.3934/math.2025668
Received: 28 February 2025
Revised: 23 June 2025
Accepted: 24 June 2025
Published: 30 June 2025

Research article

A structured RMIL conjugate gradient-based strategy for nonlinear least
squares with applications in image restoration problems

Rabiu Bashir Yunus1,*, Ahmed R. El-Saeed2, Nooraini Zainuddin1 and Hanita Daud1

1 Department of Fundamental and Applied Sciences, Faculty of Science and Information Technology,
Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia

2 Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic
University (IMSIU), Riyadh 11432, Saudi Arabia

* Correspondence: Email: rabiu 22000788@utp.edu.my.

Abstract: Numerous scientific and technical domains have found use for nonlinear least
squares (NLS). Conventional approaches to NLS problem solving often suffer from computational
inefficiencies and high memory requirements, particularly when applied to large-scale systems.
This paper presents the structured conjugate gradient coefficient using a structured secant-like
approximation to solve NLS problems. The approach develops a structured vector approximation
that captures the vector-matrix relationship using Taylor series expansions of the Hessian of the goal
function. It is possible to incorporate more Hessian information into the traditional search direction,
since this approximation satisfies a quasi-Newton condition. Furthermore, given conventional
assumptions, a global convergence study is performed. Benchmark NLS tasks are used for numerical
studies to assess the method’s performance against alternative approaches. The results demonstrate the
promise and success of the approach. Lastly, problems with image restoration are addressed using the
suggested technique.
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1. Introduction

Nonlinear least squares (NLS) is a mathematical optimization technique that is used to solve
problems where the relationship between variables is nonlinear. In many real-world applications, NLS
plays a crucial role, as it enables the fitting of complex models to the observed data, thereby
estimating parameters to minimize the difference between the predicted values and the observed data.
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It has been widely adopted as a mathematical optimization tool in science and engineering.
Applications span various areas, including machine learning; it is commonly applied in training
models such as linear and logistic regressions, where it helps minimize the loss function without
computing matrix inverses [1]. In artificial intelligence (AI), including training AI models such as
neural networks, conjugate gradient (CG) can be used as an alternative to gradient descent for faster
convergence in smaller or batch-based problems. In addition, NLS has been applied in reinforcement
learning, especially in policy optimization methods that rely on second-order information [2]. It helps
improve accuracy in tasks such as sparse signal reconstruction [3], robotic motion control [4], and
computer vision [5]. NLS problems can be described as follows:

min
x∈Rn

f (x), (1.1)

where the definition of the function f (x) is

f (x) =
1
2
‖u(x)‖2 =

1
2

m∑
i=1

(ui(x))2, x ∈ Rn. (1.2)

Given u(x) as (u1(x), u2(x), · · · , um(x))T , where each individual residual ui : Rn → R for
i = 1, 2, · · · , and m is a smooth function, we define J(x) ∈ Rm×n as the Jacobian matrix associated
with the residual function u(x). Furthermore, we use ∇ f (x) to represent the gradient of the objective
function and ∇2 f (x) to represent the Hessian of the same objective function [6,7]. The Jacobian of the
residual u(x) is given by the following:

J(x) =


∂u1
∂x1

(x) ∂u1
∂x2

(x) · · · ∂u1
∂xn

(x)
∂u2
∂x1

(x) ∂u2
∂x2

(x) · · · ∂u2
∂xn

(x)
...

...
. . .

...
∂um
∂x1

(x) ∂um
∂x2

(x) · · · ∂um
∂xn

(x)

 . (1.3)

The gradient of f (x) is given by

g(x) =

m∑
i=1

ui(x)∇ui(x) = J(x)T u(x), (1.4)

and the Hessian is given by

G(x) =

m∑
i=1

∇ui(x)∇ui(x)T

︸                ︷︷                ︸
First part

+

m∑
i=1

ui(x)∇2ui(x)︸             ︷︷             ︸
Second part

= J(x)T J(x) + T (x). (1.5)

where

T (x) =

m∑
i=1

ui(x)∇2ui(x). (1.6)

It is crucial to note that the Hessian matrix G(x) in the second term of (1.5) is a symmetric n × n
matrix. The Jacobian matrix and its transpose, which are obtained from the first partial derivatives of
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f (x) (the linear part), make up the first component of this matrix, which is made up of two separate
parts. The tensor terms, which represent the nonlinear component, are captured by the second
component, T (x). The sum of products involving ui(x) and ∇2ui(x), which contain m and n × n
components, respectively, produces these tensor terms T (x) [8]. The first and second-order
approaches are the two general groups into which NLS techniques fall. The computations of
first-order methods, including the Gauss-Newton method, the Levenberg-Marquardt method, and the
Steepest Descent (SD) method, are based on the first derivative of the objective function. Conversely,
second-order approaches either use estimates of the Hessian matrix or incorporate the Hessian matrix
of the objective function. The Newton method, the quasi-Newton method (QN), and the trust-region
approach (TR) are examples of second-order techniques [8, 9].

Furthermore, NLS problems are a specific type of unconstrained optimization problem [9]. As a
result, using general unconstrained minimization techniques, a series of iterates can be produced
through the following:

xk+1 = xk + αkdk. (1.7)

In the direction of the search vector dk, the step sizes αk > 0, k ≥ 0 are obtained using a line search
scheme.

The search direction dk is generated using the CG method by the following formula:

dk =

−gk i f k = 0
−gk + βkdk−1 i f k ≥ 1

(1.8)

where βk is the CG coefficient or the CG parameter, and gk = ∇ f (xk)T denotes the gradient of the
function f . However, the selection of βk significantly affects the computation of CG methods, thus
prompting extensive research into the effective choices of the parameters. For specific examples, refer
to [10]. Furthermore, the direction dk described in Eq (1.8) is usually required to satisfy the sufficient
descent condition, which stipulates that there must be a constant c > 0 such that

gT
k dk ≤ −c‖gk‖

2.

Gradient-based methods are fundamental tools for solving optimization problems, particularly in
the context of minimizing nonlinear functions. These methods play a critical role in applications such
as signal processing and system identification due to their computational efficiency and scalability.
Recent advances have further enhanced their robustness and convergence properties in practical
settings. For example, improved gradient-based techniques have been successfully applied in adaptive
control systems [11] and high-dimensional optimization problems that involve partial differential
equations [12]. Hestenes and Stiefel [13] (HS), Polak and Ribiere (1969) [14], Polyak [15] (PRP), and
Liu and Storey [16] (LS) introduced many classical nonlinear conjugate gradient algorithms that
made use of the following βk updating formula:

βHS
k =

gT
k+1yk

dT
k yk

, βPRP
k =

gT
k+1yk

‖gk‖
2 , βLS

k =
gT

k+1yk

−dT
k gk

, (1.9)

where yk = gk+1 − gk, and ‖.‖ denotes the L-2 norm. Although these classical conjugate gradient
formulas are computationally efficient, they may occasionally fail to ensure global convergence for
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the arbitrary functions of Hager and Zhang [17]. For example, Powell highlighted problems with
the PRP formula, which cycles without reaching an optimum, even when line search methods are
employed by Yao et al. [18]. The second category of classical methods includes Fletcher and Reeves
(FR) [19], Fletcher’s conjugate descent (CD) [20], and Dai and Yuan (DY) [21], each associated with
the following CG parameters:

βFR
k =

‖gk+1‖
2

‖gk‖
2 , βCD

k =
‖gk+1‖

2

−dT
k gk

, βDY
k =

‖gk+1‖
2

dT
k yk

. (1.10)

When employing an exact line search, the Rivaie, Mustafa, Ismail, and Leong (RMIL) formula
exhibits strong global convergence properties [22]. However, its numerical performance is notably
inferior to that of the PRP formula. Furthermore, the authors in [22] stated that βRMIL

k satisfies the
following condition:

0 < βk ≤
‖gk‖

2

‖dk−1‖
2 , (1.11)

which they utilized to establish the global convergence of their algorithm. Wu et al. [23] extended this
concept to develop a variant of RMIL, defined as

βVRMIL
k =

‖gk‖
2 −

‖gk‖

‖dk−1‖
gT

k dk−1

max{µ‖gk‖‖dk−1‖, ‖dk−1‖
2}
, (1.12)

and demonstrated that the proposed formula satisfies the well-known sufficient descent condition
regardless of the line search strategy employed. Moreover, they proved that the method achieves
global convergence under mild assumptions. However, Dai [24] revealed that the RMIL method does
not always satisfy condition (1.11), and proposed an improved version, RMIL+, which is given by the
following:

βRMIL+
k =


gT

k yk−1

‖dk−1‖
2 , if 0 ≤ gT

k gk−1 ≤ ‖gk‖
2,

0, otherwise.
(1.13)

To enhance the computational efficiency of RMIL+, Yousif and Saleh [25] modified this formulation
by replacing gT

k gk−1 with its absolute value, thereby defining the new CG coefficient as follows:

βRMIL∗
k =


gT

k yk−1

‖dk−1‖
2 , if 0 ≤ |gT

k gk−1| ≤ ‖gk‖
2,

0, otherwise.
(1.14)

This modification effectively doubles the permissible interval length of (1.14) compared to (1.13),
thus enhancing the computational efficiency of the method. The authors further established the global
convergence of (1.14) under the exact line search conditions. As a result, several related studies [26]
have explored variants of RMIL that conform to conditions (1.11). Recently, Zhang and Ding [27]
introduced adaptive methods based on the integer order and proposed a fractional order gradient
optimization approach, which resulted in a novel fractional order stochastic gradient filtering
algorithm with improved performance. Structured quasi-Newton (SQN) methods have gained
significant attention for efficiently solving nonlinear optimization problems, particularly when partial
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information about the Hessian matrix is available. Zhang et al. [28] proposed a new SQN algorithm
that incorporates partial Hessian information to improve the quality of the approximation while
maintaining a low computational cost. Similarly, Chen et al. [29] developed a modified quasi-Newton
method tailored to structured optimization problems, using known Hessian structures to improve
convergence behavior and solution accuracy. This important contribution offers new research
directions for both quadratic and non-linear optimization problems. Earlier foundational work by
Dennis et al. [30] established a convergence theory for the structured
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and demonstrated its effectiveness for NLS
problems by aligning secant updates with the problem structure. Extending this line of research,
Amini et al. [31] introduced a structured secant method based on partial information from the
Hessian. This study proposes a structured CG-based method based on the RMIL approach, thereby
integrating second-order information to ensure a downward search direction. The following is a
summary of the main contributions of this study:

• Building upon the RMIL framework, we developed a structured RMIL CG algorithm with a
modified version of the structured secant equation;
• The suggested search direction satisfies the sufficient descent condition;
• Under specific assumptions, we established the global convergence of the method, facilitated by

a nonmonotone line search strategy;
• Numerical experiments were conducted to assess the effectiveness of the suggested approach in

comparison to existing methods.

The article is structured as follows: Section 2 outlines the proposed methodology and the
corresponding algorithm; Section 3 analyzes the global convergence properties of the proposed
method; Section 4 presents numerical experiments to evaluate the computational efficiency of the
proposed algorithm compared to other methods; and in Section 5, we discuss the application of the
proposed method to image restoration problems.

2. The structured RMIL conjugate gradient-based method

This section presents the conceptual framework underlying the proposed structured RMIL CG-
based method. It begins with the derivation of the structured secant formula, followed by a discussion
of the motivation behind the formulation of the SRMILCG parameter. In addition, an algorithm is
provided that outlines the steps involved in the implementation of the method.

2.1. Structured secant formula derivation

Initially, we approximate the product of the matrix T (x) and the vector v. This operation can be
understood as an approximation of the influence of ∇2ui(x) on a given vector such as v ∈ Rn. This
enables the derivation of essential data from T (x).

Consequently, the required approximation can be obtained by post-multiplying
T (x) =

∑m
i=1 ui(xk)∇2ui(xk) in (1.6) by sk−1, that is,

T (xk)sk−1 =

m∑
i=1

ui(xk)∇2ui(xk)sk−1. (2.1)
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To simplify the notation, we introduce the following definition:

Tk = T (xk),
ui

k = ui(xk),
∇2ui

k = ∇2ui(xk) = Hi
k,

and gradients of components-wise
ui

k by gi
k for i = 1, 2, . . . ,m.

Our goal is to estimate ∇2ui
ksk−1. This can be accomplished by using the expansion of the Taylor

series of ui
k and gi

k as outlined below:

ui
k−1 ≈ ui

k + giT
k sk−1 +

1
2!

sT
k−1Hi

ksk−1. (2.2)

Similarly, we obtain the following:

gi
k−1 ≈ gi

k − Hi
ksk−1. (2.3)

To achieve the desired result, we first pre-multiply (2.3) by sk−1.

sT
k−1gi

k−1 ≈ sT
k−1gi

k − sT
k−1Hi

ksk−1. (2.4)

Since both (2.2) and (2.3) contain the term sT
k−1Hi

ksk−1 in their expression, we can rewrite Eqs (2.2)
and (2.4) in terms of this expression, then equate and simplify the result to obtain the following:

sT
k−1Hi

ksk−1 ≈ 2(ui
k−1 − ui

k) + (gi
k + gi

k−1)T sk−1 + sT
k−1(gi

k − gi
k−1).

If a simple diagonal approximation is considered for Hk,i, then

sT
k−1Hi

ksk−1 ≈ ζI‖sk−1‖
2 ≈ 2(ui

k−1 − ui
k) + (gi

k + gi
k−1)T sk−1 + sT

k−1(gi
k − gi

k−1).

Therefore, the approximation of Hk,isk−1 is as follows:

Hi
ksk−1 ≈

[2(ui
k−1 − ui

k) + (gi
k + gi

k−1)T sk−1 + sT
k−1(gi

k − gi
k−1)]

‖sk−1‖
2 sk−1. (2.5)

Consequently, adding up all of i after inserting (2.5) in (1.3) yields the following:

Hksk−1 ≈
[2(uk−1 − uk) + (Jk + Jk−1)T sk−1 + sT

k−1(Jk − Jk−1)]
‖sk−1‖

2 sk−1 = zk−1.

Thus

ϑk−1 = uT
k

[
2(uk−1 − uk) + (Jk + Jk−1)T sk−1 + sT

k−1(Jk − Jk−1)
]
. (2.6)

We assume that the Hessian in (1.6) is approximated in a manner that satisfies a structured secant
criterion, as given by the following:

Gksk−1 ≈ zk−1, (2.7)
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As a result, we derive the following:

zk−1 = JT
k Jksk−1 +

ϑk−1

‖sk−1‖
2 sk−1. (2.8)

2.2. Motivation and the proposed SRMILCG formula

Motivated by the research conducted by [22],

βRMIL
k =

gT
k yk−1

dT
k−1(dk−1 − gk)

. (2.9)

We present the structured RMIL method, and yk−1 is replaced by zk−1 in the numerator, while the
denominator is simplified as dT

k−1(dk−1 − gk) = ‖dk−1‖
2 − dT

k−1gk. For an exact line search, dT
k−1gk = 0.

Therefore, the formula is given by the following:

βS RMILCG
k =

gT
k zk−1

‖dk−1‖
2 , (2.10)

where zk−1 = JT
k Jksk−1 + ϑk−1

‖sk−1‖2
sk−1. The proposed direction is defined by the following:

dk = −gk + βS RMILCG
k dk−1,∀ k ≥ 1. (2.11)

Additionally, this study utilizes the nonmonotone line search strategy introduced by Zhang and
Hager [32] to determine the αk. In particular, when the search direction dk exhibits a significant descent,
the nonmonotone line search criteria listed below are utilized to determine αk:

f (xk + αkdk) ≤ Qk + δαkgT
k dk, (2.12)

where, 
Q0 = f (x0),
Qk+1 =

ηkPkQk+ f (xk+1)
Pk+1

,

P0 = 1,
Pk+1 = ηkPk + 1.

(2.13)

Equations (2.12) and (2.13) describe a nonmonotone line search adopted from the work of Zhang
and Hager [32]. The parameter δ in (2.13) is a small positive constant used as a sufficient decrease
parameter; in our case, we used δ = 0.01. Additionally, ηk in (2.13) is a parameter typically between 0
and 1 that controls how much the method allows the function values to temporarily increase.

Remark 2.1. The sequence Pk is located between f (xk) and ψk, where

ψk :=
1

k + 1

k∑
i=0

f (xi), k ≥ 0. (2.14)
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Remark (2.1) clarifies that Pk is not arbitrarily chosen, but strategically bounded between the value
of the current function and the average of the previous ones. This ensures a controlled nonmonotonic
descent, which is central to the convergence of Zhang’s nonmonotone line search method [33].
Moreover, the steps for the SRMILCG approach are presented in Algorithm 1.

Algorithm 1 Structured RMIL CG-based method (SRMILCG)
1: Input: Initial point x0 ∈ R

n, tolerance ε > 0, parameters δ, σ ∈ (0, 1),
2: bounds 0 ≤ ηmin ≤ ηmax ≤ 1, and maximum iterations kmax ∈ N

3: Initialize: k := 0
4: Compute gradient gk := ∇ f (xk)
5: if ‖gk‖ ≤ ε then
6: return xk

7: end if
8: Set search direction dk := −gk

9: while k < kmax do
10: Compute step size αk using the non-monotone line search (2.12)
11: Update iterate: xk+1 := xk + αkdk

12: Compute gradient: gk+1 := ∇ f (xk+1)
13: if ‖gk+1‖ ≤ ε then
14: return xk+1

15: end if
16: Compute βSRMILCG

k using (2.10), with zk−1 from (2.8)
17: Update direction: dk+1 := −gk+1 + βSRMILCG

k dk

18: Set k := k + 1
19: end while
20: return xk

3. Convergence analysis

Under specific assumptions, this section provides the convergence analysis of the proposed SRMIL
methods, using Eq (2.10). Throughout this discussion, it is assumed that gk , 0 for all k. The following
common presumptions regarding the objective function are considered.
Assumption 1. The level set is as follows:

` = {x ∈ Rn | f (x) ≤ f (x0)}.

It is contained within a bounded region. Specifically, there exists a positive constant Γ̄ such that

‖x‖ ≤ Γ̄, ∀x ∈ `.

Assumption 2. The residual u(x), and its derivative, that is, the Jacobian matrix, J(x), are Lipschitz
continuous in some open neighborhood N of `, that is, ‖J(x)−J(y)‖ ≤ L‖x−y‖, ‖u(x)−u(y)‖ ≤ b1‖x−y‖,
‖g(x)−g(y)‖ ≤ c1‖x− y‖, ‖J(x)‖ ≤ a2, and ‖u(x)‖ ≤ b2, ∀x, y ∈ `, where L, b1, c1, a2, and b2 are positive
constants, and ‖J(x)‖ denotes the matrix norm induced by the Euclidean vector norm (i.e., the spectral
norm). We now present the following important lemma.

AIMS Mathematics Volume 10, Issue 6, 14893–14916.



14901

Lemma 3.1. Suppose that the first and second assumptions are satisfied. Let Algorithm 1 generate the
sequences {xk} and {dk}. Consequently, a constant M > 0 exists such that for each k ≥ 0, the following
is true:

‖zk−1‖ ≤ M‖sk−1‖. (3.1)

Proof. From Eq (2.8), we have the following:

zk−1 = JT
k Jksk−1 +

ϑk−1

‖sk−1‖
2 sk−1

where,
ϑk−1 = uT

k

[
2(uk−1 − uk) + (Jk + Jk−1)T sk−1 + sT

k−1(Jk − Jk−1)
]
.

The given expression can be reformulated as follows:

ϑk−1 = uT
k

[
sT

k−1(Jk − Jk−1) + [Jksk−1 − (uk − uk−1) + Jk−1sk−1 − (uk − uk−1)]
]
,

|ϑk−1| = |uT
k

[
sT

k−1(Jk − Jk−1) + [Jksk−1 − (uk − uk−1) + Jk−1sk−1 − (uk − uk−1)]
]
|

≤ ‖uk‖‖sk−1(Jk − Jk−1)‖ + ‖ [−(Jksk−1 − (uk − uk−1)) + (Jk−1sk−1 − (uk − uk−1))] ‖

≤ b2‖Jk − Jk−1‖‖sk−1‖ + ‖Jksk−1 − (rk − rk−1)‖ + ‖Jk−1sk−1 − (uk − uk−1)‖

≤Lb2‖sk−1‖
2 +

∫ 1

0
‖Jk − J(xk + t(xk−1 − xk))‖ dt‖xk−1 − xk‖

+

∫ 1

0
‖Jk−1 − J(xk−1 + t(xk − xk−1))‖ dt‖xk − xk−1‖

≤Lb2‖sk−1‖
2 +

[L
2
‖sk−1‖

2 +
L
2
‖sk−1‖

2
]

= (Lb2 + L)‖sk−1‖
2.

Hence,

‖zA3TS CG
k−1 ‖ = ‖JT

k Jksk−1 +
ϑk−1

‖sk−1‖
2 sk−1‖

≤ a2
2‖sk−1‖ +

(Lb2 + L1)‖sk−1‖
3

‖sk−1‖
3

= (a2
2 + Lb2 + L)‖sk−1‖.

Therefore, by setting, M := (a2
2 + Lb2 + L), the inequality holds. �

The lemma that follows shows that, the sufficient descent requirement is met by the direction dk,
independent of the line search requirement.

Lemma 3.2. Let (2.10) be used to define βS RMILCG
k , and let Algorithm 1 be used to construct the

sequence xk. Eq (2.11) defines the search direction dk, which exhibits the following inequality for every
k ≥ 0 when c > 0:

gT
k dk ≤ −c‖gk‖

2. (3.2)
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Proof. It follows for k = 0 that
gT

0 d0 = −gT
0 g0 = −‖g0‖

2.

If k ≥ 1, then it follows that

gT
k dk =gT

k (−gk + βS RMILCG
k dk−1),

= −gT
k gk +

gT
k zk−1

‖dk−1‖
2 gT

k dk−1,

≤ −‖gk‖
2 +
|gT

k zk−1|

‖dk−1‖
2 |g

T
k dk−1|,

≤ −‖gk‖
2 +
‖gk‖‖zk−1‖

‖dk−1‖
2 ‖gk‖‖dk−1‖,

≤ −

(
1 −

M‖sk−1‖

‖dk−1‖

)
‖gk‖

2.

Thus, by defining c as

c :=
1 − MΓ

γ

 ,
we obtain gT

k dk ≤ −c‖gk‖
2. The proof is now complete. �

Lemma 3.3. Assume that Algorithm 1 defines the sequences {xk} and {dk}. For every k ≥ 1, there is
κ > 0 such that

‖dk‖ ≤ κ‖gk‖. (3.3)

Proof. If k = 0, then ‖d0‖ = ‖ − g0‖ = ‖g0‖.
If k ≥ 1, then it follows that

‖dk‖ =
∥∥∥−gk + βS RMILCG

k dk−1

∥∥∥ ,
≤ ‖gk‖ + |βS RMILCG

k |‖dk−1‖,
(3.4)

Now, by taking the modulus of the parameter βk in Eq (2.10), we have the following:

|βS RMILCG
k | =

∣∣∣∣∣∣ gT
k zk−1

‖dk−1‖
2

∣∣∣∣∣∣ ≤ ‖gk‖‖zk−1‖

‖dk−1‖
2 ≤

M‖gk‖‖sk−1||

‖dk−1‖
2 . (3.5)

Substituting (3.5) into (3.4), we get the following:

‖dk‖ ≤ ‖gk‖ +
M‖gk‖‖sk−1||

‖dk−1‖
2 ‖dk−1‖

≤ ‖gk‖ +
M‖gk‖‖sk−1||

‖dk−1‖

=

(
1 +

M‖sk−1||

‖dk−1‖

)
‖gk‖.

Therefore, by defining κ as

κ :=
1 +

MΓ

γ

 ,
we obtain ‖dk‖ ≤ κ. �
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Lemma 3.4. Suppose Assumption 1 is satisfied; if the iterative sequence {xk} is generated by Algorithm
1, then it can be established that fk ≤ Qk for every value of k.

Proof. Let t ≥ 0 and define Φ : R→ R by

Φk(t) =
tQk−1 + f (xk)

t + 1
. (3.6)

Differentiating Eq (3.6) with respect to t yields the following:

dΦk(t)
dt

=
Qk−1 − f (xk)

(t + 1)2 . (3.7)

By the relation gT
k dk ≤ −c‖gk‖

2, ∀k, we have from (2.12) that

f (xk) = f (xk−1 + αkdk−1) ≤ Qk−1 + δαk(gT
k−1dk−1) ≤ Qk−1 − κ1δαk‖gk−1‖

2 ≤ Qk−1.

This implies that for all t ≥ 0, dΦk(t)
dt ≥ 0, which means that Φk(t) is not decreasing. Therefore, Eq

(3.6) satisfies f (xk) = Φk(0) ≤ Φk(t), for all t ≥ 0. Specifically, by taking t = ηk−1Pk−1, we obtain the
following:

f (xk) =Φk(0) ≤ Φk(ηk−1Pk−1) =
ηk−1Pk−1Qk−1 + f (xk)

ηk−1Pk−1 + 1
(3.8)

=
ηk−1Pk−1Qk−1 + f (xk)

Pk
(from (2.13)) (3.9)

= Qk. (3.10)

Therefore, the lower bound of Qk is determined. Next, we demonstrate Qk ≤ ψk by induction. Let
k = 0; from equation ((2.12)) we have Q0 = ψ0 = f (x0). Now, assume Q j ≤ ψ j for all 0 ≤ j < k. Given
that ηk ∈ [0, 1] and P0 = 1 by Eq (2.12), we obtain the following:

P j+1 = 1 +

j∑
i=0

i∏
l=0

η j−l + j + 2. (3.11)

Combining (3.6), (3.8) and (3.11), we have the following:

Qk =Φk(Pk − 1)
= Φk(ηk−1Pk−1)

= Φk

 k−1∑
i=0

i∏
n=0

ηk−n−1


≤ Φk(k).

Using the induction step, we obtain the following:

Φ(k) =
kQk−1 + f (xk)

k + 1
≤

kψk−1 + f (xk)
k + 1

= ψk.

Hence, it holds that Qk ≤ ψk. �
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Lemma 3.5. Suppose that Assumption 2 is satisfied; if the sequence {xk} is generated by SRMILCG, it
can be deduced that

αk ≥

(
2(1 − δ)

c1ζ

)
|gT

k dk|

‖dk‖
2 . (3.12)

Remark 3.6. If the starting condition P0 = 1 and taking into account that ηk ∈ [0, 1], if Q j ≤ ψ j for
all 0 ≤ j < k, then we obtain the following:

P j+1 = 1 +

m∑
i=0

i∏
m=0

η j−m ≤ j + 2. (3.13)

Theorem 3.7. Suppose that Eq (1.1) defines the function f (x), and Assumptions 1 and 2 are satisfied.
The resulting sequence {xk} generated by SRMILCG algorithms is encompassed by the level set `, and

lim
k→∞

inf ‖gk‖ = 0. (3.14)

Moreover, if ηmax is less than 1, then

lim
k→∞
‖gk‖ = 0. (3.15)

Proof. To begin with, we present the fact that

fk+1 ≤ Qk − β‖gk‖
2, (3.16)

where,

β =
2δ(1 − δ)c2

c1ζκ2 . (3.17)

Taking the line search in the Eq (2.12), we have the following:

fk+1 ≤ Qk + δαkgT
k dk. (3.18)

Additionally, by the inequality in Eq (3.13), we obtain the following:

fk+1 ≤ Qk −

(
2δ(1 − δ)

c1ζ

) (
|gT

k dk|

‖dk‖
2

)
. (3.19)

Based on the sufficient descent property from Lemma 3.2 and the bound property from Lemma 3.3, we
have the following:

fk+1 ≤ Qk −

(
2δ(1 − δ)c2

c1ζκ2

)
‖gk‖

2. (3.20)

Combining Eqs (2.13) and (3.16), we have the following:

Qk =
ηkPkQk + fk+1

Pk+1
≤
ηkPkQk + Qk − β‖gk‖

2

Pk+1
(3.21)

=
Qk(ηkPk+1 + 1) − β‖gk‖

2

Pk+1

=
QkPk+1 − β‖gk‖

2

Pk+1
= Qk −

β‖gk‖
2

Pk+1
.

(3.22)
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As f is bounded from below, and fk ≤ Qk for every k, we can deduce that Qk is also bounded from
below. Therefore, (3.22) implies that

∞∑
k=1

‖gk‖
2

Pk+1
< ∞. (3.23)

Since Pk+1 ≤ k + 2 by Eq (3.13), Eq (3.22) would not hold if ‖gk‖ were bounded away from 0.
Accordingly, if ηmax < 1, then by (3.13),

Pk+1 =1 +

k∑
j=0

j∏
i=0

ηk−i ≤ 1 +

k∑
j=0

η j+1
max ≤

k∑
j=0

η j
max

=
1

1 − ηmax
.

(3.24)

Therefore, we can deduce that (3.14) directly entails (3.15). Thus, the proof is concluded. �

Table 1. Test functions, initial points, and references.

No. Function name Starting point Ref.
A1 Variably dimensioned (1 − 1

n , 1 −
2
n , . . . , 0)T [34]

A2 Problem 206 (2, 2, . . . , 2)T [35]
A3 Trigonometric function ( 1

n ,
1
n , . . .)

T [36]
A4 Penalty function 1 (3, 3, . . . , 3)T [34]
A5 Discrete boundary-value ( 1

n+1 ,
1

n+1 − 1, . . . , 1
n+1 − 1)T [36]

A6 Linear full rank (1, 1, . . . , 1)T [36]
A7 Problem 202 (2, 2, . . . , 2)T [35]
A8 Problem 212 (0.5, 0.5, . . . , 0.5)T [35]
A9 Raydan 1 ( 1

n ,
2
n , . . . , 1)T [34]

A10 Raydan 2 ( 1
10n ,

2
10n , . . . ,

1
10n )T [34]

A11 Sine function 2 (1, 1, . . . , 1)T [37]
A12 Exponential function 1 ( n

n−1 ,
n

n−1 , . . . ,
n

n−1 )T [34]
A13 Singular Function 2 (1, 1, . . . , 1)T [34]
A14 Ext. Freudenstein & Roth

function
(6, 3, 6, 3, . . . , 6, 3)T [34]

A15 Function 21 (1, 1, . . . , 1)T [34]
A16 Broyden Tridiagonal

Function
(−1,−1, . . . ,−1)T [36]

A17 Exponential function 2 ( 1
n2 ,

1
n2 , . . . ,

1
n2 )T [34]

A18 Extended Himmelblau (1, 1
n , 1,

1
n , . . . , 1,

1
n )T [38]

A19 Function 27 (100, 1
n2 , . . . ,

1
n2 )T [34]

A20 Triglog function (1, 1, . . . , 1)T [38]
A21 Ext. Powell Singular function (1.5E − 4, . . . , 1.5E − 4)T [34]
A22 Brown almost linear function (0.5, 0.5, . . . , 0.5)T [36]
A23 Zerojacobian Function i f i = 1, 100(n−100)

n , i f i ≥ 2, (n−1000)(n−500)
(60n)2 [34]
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4. Numerical results

This section evaluates the computational efficiency of the proposed algorithm by comparing it with
existing methods such as RMIL [22], CG Descent [39], and the VRMIL method [23]. The comparison
parameters include the number of iterations (Iter), the number of function evaluations (Feval), the CPU
time (Cpu), and the value of the function (Value F). Table 1 provides specifics on these benchmark test
functions used in the experiment.

The algorithms in this experiment were all implemented in MATLAB R2022a and ran on a system
that had an Intel® CoreTM i7-3537U CPU (2.00 GHz) and 8 GB of RAM. The program was set to
terminate if the stopping criterion ‖gk‖ ≤ 10−5 was met or if any of the following conditions occurred:

• The iteration count surpassed 1000; and
• The total function evaluations surpassed 5000.

The numerical results of the experiments can be found at
https://github.com/Rabiu-Bashir/Numerical-Results-SRMILCG-Method. The results are
summarized in the graphs using the performance profile introduced by [40]. The authors in [40]
developed a methodology to evaluate and contrast a solver’s performance s over a collection of
problems a. This approach considers ns solvers and na problems as described below, and calculates
the computing cost q for any combination of solver and problem:

qa,s = Performance measure for solver s on a problem a.

Based on computational cost qa,s, [40] further developed a metric to compare the efficiency of the
solver. The performance ratio, which serves as a reference point, is defined as follows:

ra,s =
qa,s

min{qa,s : s ∈ S }
.

Furthermore, the distribution function can be found using the following:

ρs(τ) =
1
na

size{a ∈ A : log2(ra,s) ≤ τ}.

This methodology generates performance profile graphs for each solver s ∈ S using the available
data. These graphs, called performance profiles, show the percentage ρs(τ) of problems that a particular
solver solves. This methodology generates solutions within a factor τ of the best performance using
the currently available data. For a given τ, a solver is said to be more efficient if it produces a greater
ρs(τ). Therefore, the method that maintains the best performance profile curve for all values of τ is the
most efficient.

In this study, numerical experiments are used to generate performance profile charts for (Iter),
(Feval), (Cpu), and (VALUE F), corresponding to Figures 1–4, alongside the comparisons. In
particular, Figure 1 shows that for τ ≥ 2, SRMILCG successfully solves approximately 95% of the
test problems with fewer iterations, whereas CG Descent, VRMIL, and RMIL handle around 90%,
73%, and 51%, respectively.

Similarly, in Figure 2, for τ ≥ 2, SRMILCG solves almost 95% of the test problems with the
fewest function evaluations, outperforming CG Descent (89%), VRMIL (63%), and RMIL (50%). In
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terms of the computational efficiency, SRMILCG takes the least amount of CPU time to solve about
98% of the test issues for τ ≥ 2, compared to 94% for CG Descent, 72% for VRMIL, and 64% for
RMIL, as shown in Figure 3. Furthermore, Figure 4 reveals that the SRMILCG algorithms
consistently outperform CG Descent, VRMIL, and RMIL, thus providing a more precise
approximation of the solution while substantially reducing errors. A key takeaway from these results
is that while all algorithms competitively perform at lower values of τ, the SRMILCG method
consistently outperforms the others across all metrics as τ increases. This indicates the proposed
approach’s resilience and competitiveness for the problem set under consideration.
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Figure 1. Profiles of performance by Iter.
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Figure 2. Profiles of performance by Feval.
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Figure 3. Profiles of performance by CPU time.
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Figure 4. Profiles of performance by norm of the function.

5. Application in image restoration problems

Image restoration is the recovery of an image that is degraded due to noise, blur, or other
distortions. The goal is to reconstruct the original image as accurately as possible by reducing noise,
correcting distortions, and enhancing details. We apply the proposed SRMILCG method to solve
image restoration problems. Raymond et al. [41] implemented a two-phase approach to recover
images affected by impulse noise. To identify noisy pixels in the first stage, a median filter was
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applied.
Examine a picture X of size M × N, in which the location of the pixels of X is represented by the

index set A = {1, 2, . . . ,M} × {1, 2, . . . ,N}. Let |N| indicate the cardinality of the noise-affected pixels
found in the first phase, and let N ⊂ A represent the indices corresponding to those pixels. The set of
four nearest neighbors for each pixel at position (m, n) ∈ A is defined as Bm,n:

Bm,n = {(m, n − 1), (m, n + 1), (m − 1, n), (m + 1, n)}.

Furthermore, let ym,n represent the observed pixel intensity at location (m, n).
In the second stage, the following nonsmooth minimization issue is solved to restore noisy pixels:

min
q

∑
(m,n)∈N

[
|qm,n − ym,n| +

β

2

(
2 · Z1

m,n + Z2
m,n

)]
, (5.1)

where
Z1

m,n =
∑

(a,b)∈Bm,n\N

ψα(qm,n − ya,b), Z2
m,n =

∑
(a,b)∈Bm,n∩N

ψα(qm,n − qa,b),

with ψα(t) =
√

t2 + α representing an edge-preserving function with the parameter α > 0. It plays a
crucial role in regularization, especially when the goal is to remove noise while retaining important
features, such as edges. The vector q = [qm,n](m,n)∈N is a length-based column vector. |N | is arranged in
lexicographic order. Finding the exact solution to the non-smooth minimization problem (5.1) is
computationally demanding and time-consuming. The nonsmooth term was eliminated by Cai et
al. [42], which yielded the following smooth unconstrained optimization that is shown below:

min
q

Fα(q) :=
∑

(m,n)∈N

2 ∑
(a,b)∈Bm,n\N

ψα(qm,n − ya,b) +
∑

(a,b)∈Bm,n∩N

ψα(qm,n − qa,b)

 . (5.2)

The scale of (5.2) increases with an increasing noise ratio. Using the CG scheme to address the
problem (5.2) mentioned above, the authors in [43] found that damaged images can be successfully
restored.

Now, we reduce the salt-and-pepper noise, which is a particular kind of impulse noise, using the
two-phase method. To find the noisy pixels in the first stage, an adaptive median filter is used [44]. In
the second stage, we solve (5.2) using SRMILCG and evaluate its performance against the
CG DESCENT [39], and the RMIL of [22]. Furthermore, it should be noted that the nonmonotone
line search (2.12) is used in all approaches to obtain the step length αk. Man (512 × 512), Lena (512 ×
512), Boat (512 × 512), and Hill (512 × 512) are the test photographs that were used. The following
halting criterion was used by all of the methods under comparison:

Itr > 300 or
|Fα(qk) − Fα(qk−1)|

|Fα(qk)|
≤ 10−4. (5.3)

The experiments were performed in MATLAB R2022a on a personal computer featuring an Intel®
Core™ i7-3537U processor (2.00 GHz) with 8 GB of RAM. We used the well-known peak signal-to-
noise ratio (PSNR) to assess the quality of image restoration. For further information, refer to [45].
PSNR is defined as follows:
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PSNR = 10 log10

 2552

1
MN

∑
m,n(xo

m,n − x∗m,n)2

 , (5.4)

where xo
m,n and x∗m,n denote the pixel values of the original and restored images, respectively.

Figure 5. The original image (1st row) with (2nd row) 70% salt-and-pepper noise, the
restored images by SRMILCG(3rd row), RMIL (4th row),and CG DESCENT (5th row).
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Figure 6. The original image (1st row) with (2nd row) 90% salt-and-pepper noise, the
restored images by SRMILCG(3rd row), RMIL (4th row), and CG DESCENT (5th row).

Table 2 provides a summary of the iterations of the restored images (Itr), CPU time (Cpu), and
PSNR values. To conserve space, we only show the original and restored images for the three
algorithms at 70% and 90% salt-and-pepper noise levels. The corresponding visual results are shown
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in Figures 5 and 6, respectively.
As observed in Table 2, the proposed SRMILCG method typically achieves convergence in fewer

iterations and with lower CPU times compared to the other two algorithms. Furthermore, the PSNR
values of images restored using SRMILCG are generally higher, with only a few exceptions. Overall,
SRMILCG demonstrates a superior performance over RMIL and CG DESCENT in the tested images.

Table 2. Numerical comparisons with different noise ratios.

Image Noise ratio SRMILCG RMIL CG DESCENT
Itr / Cpu / PSNR Itr / Cpu / PSNR Itr / Cpu / PSNR

Man

0.30 15 / 11.10 / 31.50 18 / 7.28 / 31.50 20 / 8.70 / 31.54
0.50 15 / 21.97 / 28.62 25 / 13.80 / 29.10 23 / 13.12 / 29.11
0.70 23 / 20.69 / 26.14 29 / 21.39 / 26.09 32 / 22.61 / 26.25
0.90 24 / 21.81 / 20.78 38 / 44.70 / 22.05 42 / 37.06 / 22.28

Lena

0.30 15 / 10.30 / 37.00 16 / 7.72 / 36.91 20 / 8.62 / 36.93
0.50 18 / 23.02 / 34.12 22 / 14.22 / 34.33 20 / 14.20 / 34.36
0.70 15 / 20.75 / 29.03 19 / 19.29 / 30.55 31 / 23.53 / 31.15
0.90 22 / 22.22 / 23.64 15 / 22.54 / 19.68 43 / 37.82 / 26.24

Boat

0.30 9 / 7.82 / 32.69 15 / 7.32 / 33.54 18 / 8.27 / 33.64
0.50 25 / 21.55 / 31.15 23 / 14.99 / 31.12 23 / 16.48 / 31.11
0.70 26 / 23.87 / 28.24 23 / 19.73 / 27.89 26 / 20.42 / 28.26
0.90 30 / 26.24 / 23.98 43 / 49.22 / 23.97 42 / 42.28 / 24.04

Hill

0.30 17 / 13.21 / 34.88 16 / 7.78 / 34.87 14 / 7.07 / 34.93
0.50 22 / 18.60 / 32.62 22 / 12.92 / 32.60 20 / 12.72 / 32.58
0.70 26 / 21.70 / 29.70 34 / 19.90 / 29.70 29 / 20.87 / 29.77
0.90 25 / 32.91 / 22.69 34 / 31.17 / 25.03 46 / 38.16 / 25.55

6. Conclusions

In this work, we proposed a structured CG-based method based on the RMIL formula.
Independent of the line search strategy employed, the proposed method satisfied the sufficient descent
condition. We established its global convergence under nonmonotone line search conditions and
evaluated its efficiency on several NLS benchmark problems, as well as image restoration tasks drawn
from the existing literature. The results demonstrated the competitiveness of the proposed approach
compared to the RMIL, CG DESCENT, and VRMIL methods, particularly in terms of the iteration
count, function evaluations, CPU time, and the norm of the residual. Future research should focus on
developing more advanced structured conjugate gradient algorithms capable of efficiently solving
high-dimensional NLS problems in fields such as optimal control and machine learning.

Author contributions

Rabiu Bashir Yunus: Conceptualization, Methodology, Software, Writing-original draft; Ahmed
R. El-Saeed: Investigation, Funding acquisition, Validation, Review & editing; Nooraini Zainuddin:
Methodology, Supervision, Visualization; Hanita Daud: Investigation, Resources, Supervision,

AIMS Mathematics Volume 10, Issue 6, 14893–14916.



14913

Validation. All authors have read and agreed to the published version of the manuscript.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Funding statements

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad
Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2501).

Conflict of interest

The authors declare that they have no competing interests to disclose.

References

1. H. Kim, C. Wang, H. Byun, W. Hu, S. Kim, Q. Jiao, et al., Variable three-term conjugate
gradient method for training artificial neural networks, Neural Networks, 159 (2023), 125–136.
https://doi.org/10.1016/j.neunet.2022.12.001

2. N. Sato, K. Izumi, H. Iiduka, Scaled conjugate gradient method for nonconvex optimization in
deep neural networks, J. Mach. Learn. Res., 25 (2024), 1–37.

3. S. J. Wright, R. D. Nowak, M. A. T. Figueiredo, Sparse reconstruction by separable approximation,
IEEE Trans. Signal Process., 57 (2009), 2479–2493. https://doi.org/10.1109/TSP.2009.2016892

4. M. M. Yahaya, P. Kumam, A. M. Awwal, P. Chaipunya, S. Aji, and S. Salisu, A New Generalized
Quasi-Newton Algorithm Based on Structured Diagonal Hessian Approximation for Solving
Nonlinear Least-Squares Problems With Application to 3DOF Planar Robot Arm Manipulator,
IEEE Access, 10 (2022), 10816–10826. https://doi.org/10.1109/ACCESS.2022.3144875

5. W. Xu, N. Zheng, K. Hayami, Jacobian-free implicit inner-iteration preconditioner for nonlinear
least squares problems, J. Sci. Comput., 68 (2016), 1055–1081. https://doi.org/10.1007/s10915-
016-0167-z

6. H. Zhang, A. R. Conn, K. Scheinberg, A derivative-free algorithm for least-squares minimization,
SIAM J. Optim., 20 (2010), 3555–3576. https://doi.org/10.1137/09075531X

7. H. Mohammad, M. Y. Waziri, S. A. Santos, A brief survey of methods for solving
nonlinear least-squares problems, Numer. Algebra Control Optim., 9 (2019), 1–13.
https://doi.org/10.3934/naco.2019001

8. K. Madsen, H. B. Nielsen, O. Tingleff, Methods for Non-linear Least Squares Problems, Lyngby:
Informatics and Mathematical Modelling Technical University of Denmark, 2004.

9. R. B. Yunus, N. Zainuddin, H. Daud, R. Kannan, M. M. Yahaya, A. Al-Yaari, An improved
accelerated 3-term conjugate gradient algorithm with second-order Hessian approximation
for nonlinear least-squares optimization, J. Math. Comput. Sci., 36 (2025), 263–274.
https://doi.org/10.22436/jmcs.036.03.02

AIMS Mathematics Volume 10, Issue 6, 14893–14916.

https://dx.doi.org/https://doi.org/10.1016/j.neunet.2022.12.001
https://dx.doi.org/https://doi.org/10.1109/TSP.2009.2016892
https://dx.doi.org/https://doi.org/10.1109/ACCESS.2022.3144875
https://dx.doi.org/https://doi.org/10.1007/s10915-016-0167-z
https://dx.doi.org/https://doi.org/10.1007/s10915-016-0167-z
https://dx.doi.org/https://doi.org/10.1137/09075531X
https://dx.doi.org/https://doi.org/10.3934/naco.2019001
https://dx.doi.org/
https://dx.doi.org/https://doi.org/10.22436/jmcs.036.03.02


14914

10. R. B. Yunus, N. Zainuddin, H. Daud, R. Kannan, S. A. Abdul Karim, M. M. Yahaya, A modified
structured spectral HS method for nonlinear least squares problems and applications in robot arm
control, Mathematics, 11 (2023), 3215. https://doi.org/10.3390/math11143215

11. F. Ding, L. Xu, X. Zhang, Y. Zhou, X. Luan, Recursive identification methods
for general stochastic systems with colored noises using the hierarchical identification
principle and the filtering identification idea, Annu. Rev.. Control, 57 (2024), 100942.
https://doi.org/10.1016/j.arcontrol.2024.100942

12. F. Ding, Least squares parameter estimation and multi-innovation least squares methods
for linear fitting problems from noisy data, J. Comput. Appl. Math., 426 (2023), 115107.
https://doi.org/10.1016/j.cam.2023.115107

13. M. R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl.
Bur. Stand., 49 (1952), 409–436. https://doi.org/10.6028/jres.049.044

14. E. Polak, G. Ribiere, Note on the convergence of conjugate direction methods, ESAIM Math.
Model. Numer. Anal., 3 (1969), 35–43. https://doi.org/10.1007/BF01078750

15. B. T. Polyak, The conjugate gradient method in extremal problems, USSR Comput. Math. Math.
Phys., 9 (1969), 94–112. https://doi.org/10.1016/0041-5553(69)90035-4

16. Y. Liu, C. Storey, Efficient generalized conjugate gradient algorithms. Part 1: Theory, J. Optim.
Theory Appl., 69 (1991), 129–137. https://doi.org/10.1007/BF00940464

17. W. W. Hager, H. Zhang, A survey of nonlinear conjugate gradient methods, Pacific J. Optim., 2
(2006), 35–58.

18. S. Yao, W. Zengxin, H. Hai, A note about WYL’s conjugate gradient method and its applications,
Appl. Math. Comput., 191 (2006), 381–388.

19. R. Fletcher, C. M. Reeves, Function minimization by conjugate gradients, Comput. J., 7 (1964),
149–154. https://doi.org/10.1093/comjnl/7.2.149

20. R. Fletcher, Practical Methods of Optimization, Chichester: John Wiley & Sons, 2013.

21. Y. H. Dai, Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence
property, SIAM J. Optim., 10 (1999), 177–182. https://doi.org/10.1137/S1052623497318992

22. M. Rivaie, M. Mamat, L. W. June, I. Mohd, A new class of nonlinear conjugate gradient
coefficients with global convergence properties, Appl. Math. Comput., 218 (2012), 11323–11332.
https://doi.org/10.1016/j.amc.2012.05.030

23. X. Wu, H. Shao, P. Liu, Y. Zhang, Y. Zhuo, An efficient conjugate gradient-based algorithm
for unconstrained optimization and its projection extension to large-scale constrained nonlinear
equations with applications in signal recovery and image denoising problems. J. Comput. Appl.
Math., 422, (2023), 114879. https://doi.org/10.1016/j.cam.2022.114879

24. Z. Dai, Comments on a new class of nonlinear conjugate gradient coefficients
with global convergence properties, Appl. Math. Comput., 276, (2016), 297–300.
https://doi.org/10.1016/j.amc.2015.11.085

25. O. O. O. Yousif, M. A. Saleh, Another modified version of RMIL conjugate gradient method, Appl.
Numer. Math., 202 (2024), 120–126.

AIMS Mathematics Volume 10, Issue 6, 14893–14916.

https://dx.doi.org/https://doi.org/10.3390/math11143215
https://dx.doi.org/https://doi.org/10.1016/j.arcontrol.2024.100942
https://dx.doi.org/https://doi.org/10.1016/j.cam.2023.115107
https://dx.doi.org/https://doi.org/10.6028/jres.049.044
https://dx.doi.org/https://doi.org/10.1007/BF01078750
https://dx.doi.org/https://doi.org/10.1016/0041-5553(69)90035-4
https://dx.doi.org/https://doi.org/10.1007/BF00940464
https://dx.doi.org/
https://dx.doi.org/
https://dx.doi.org/https://doi.org/10.1093/comjnl/7.2.149
https://dx.doi.org/
https://dx.doi.org/https://doi.org/10.1137/S1052623497318992
https://dx.doi.org/https://doi.org/10.1016/j.amc.2012.05.030
https://dx.doi.org/https://doi.org/10.1016/j.cam.2022.114879
https://dx.doi.org/https://doi.org/10.1016/j.amc.2015.11.085
https://dx.doi.org/


14915

26. O. O. O. Yousif, The convergence properties of RMIL+ conjugate gradient method
under the strong Wolfe line search, Appl. Math. Comput., 367 (2020), 124777.
https://doi.org/10.1016/j.amc.2019.124777

27. X. Zhang, F. Ding, Optimal adaptive filtering algorithm by using the fractional-order derivative,
IEEE Signal Process. Lett., 29 (2021), 399–403. https://doi.org/10.1109/LSP.2021.3136504

28. J. Z. Zhang, Y. Xue, K. Zhang, A structured secant method based on a new quasi-Newton
equation for nonlinear least squares problems, BIT Numer. Math., 43 (2003), 217–229.
https://doi.org/10.1023/A:1023665409152

29. L. H. Chen, N. Y. Deng, J. Z. Zhang, A modified quasi-Newton method for structured
optimization with partial information on the Hessian, Comput. Optim. Appl., 35 (2006), 5–18.
https://doi.org/10.1007/s10589-006-6440-6

30. J. E. Dennis, H. J. Martinez, R. A. Tapia, Convergence theory for the structured BFGS secant
method with an application to nonlinear least squares, J. Optim. Theory Appl., 61 (1989), 161–178.
https://doi.org/10.1007/BF00962795

31. E. Amini, A. G. Rizi, A new structured quasi-Newton algorithm using partial information on
Hessian, J. Comput. Appl. Math., 234 (2010), 805–811. https://doi.org/10.1016/j.cam.2010.01.044

32. H. Zhang, W. W. Hager, A nonmonotone line search technique and its
application to unconstrained optimization, SIAM J. Optim., 14 (2004), 1043–1056.
https://doi.org/10.1137/S1052623403428208

33. R. B. Yunus, N. Zainuddin, H. Daud, R. Kannan, M. M. Yahaya, S. A. A. Karim, New CG-based
algorithms with second-order curvature information for NLS problems and a 4DOF arm robot
model, IEEE Access, 12 (2024), 61086–61103. https://doi.org/10.1109/ACCESS.2024.3393555

34. W. L. Cruz, J. Martı́nez, M. Raydan, Spectral residual method without gradient information
for solving large-scale nonlinear systems of equations, Math. Comput., 75 (2006), 1429–1448.
https://doi.org/10.1090/S0025-5718-06-01840-0
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